
Stronger Regret Bounds for Safe Online Reinforcement
Learning in the Linear Quadratic Regulator

Benjamin Schiffer and Lucas Janson

Department of Statistics, Harvard University

Abstract

Many practical applications of online reinforcement learning require the satisfaction
of safety constraints while learning about the unknown environment. In this work, we
study Linear Quadratic Regulator (LQR) learning with unknown dynamics, but with
the additional constraint that the position must stay within a safe region for the entire
trajectory with high probability. Unlike in previous works, we allow for both bounded
and unbounded noise distributions and study stronger baselines of nonlinear controllers
that are better suited for constrained problems than linear controllers. Due to these
complications, we focus on 1-dimensional state- and action- spaces, however we also
discuss how we expect the high-level takeaways can generalize to higher dimensions.
Our primary contribution is the first ÕT (

√
T)-regret bound for constrained LQR learn-

ing, which we show relative to a specific baseline of non-linear controllers. We then
prove that, for any non-linear baseline satisfying natural assumptions, ÕT (

√
T)-regret

is possible when the noise distribution has sufficiently large support and ÕT (T
2/3)-

regret is possible for any subgaussian noise distribution. An overarching theme of our
results is that enforcing safety provides “free exploration” that compensates for the
added cost of uncertainty in safety constrained control, resulting in the same regret
rate as in the unconstrained problem.

1 Introduction

1.1 Background and Motivation

Recent advances in reinforcement learning (RL) have led to many successes in applying
RL algorithms to a variety of practical online applications, from robotics to personalized
health ([LFDA16, LHP+15, TM17]). A core concept behind online RL algorithms is the
careful balance between exploration (proactively learning about the unknown environment)
and exploitation (using what is already known to maximize reward). In practice, however,
RL algorithms are restricted in the possible actions and states by safety constraints. For
example, a drone using an RL algorithm must have safety constraints restricting possible
states that would result in the drone crashing into a building or injuring a bystander. There-
fore, the drone cannot explore the environment by accelerating directly into a building, and

1

instead must explore in a safe manner. To deploy more RL algorithms to practical applica-
tions, instead of just balancing exploration versus exploitation, the optimal algorithm must
now balance exploration versus exploitation versus safety. In many applications, the safety
constraints must be obeyed at all time steps (even at the beginning), which does not allow
for any violation of safety even during the initial learning period. Therefore, this component
of “safety” involves both learning safely as well as learning how to be safe in the future.
Studying simple canonical problems in RL can give insights into how to develop safe RL al-
gorithms in more complex practical settings. In this paper, we address safety in the context
of online LQR with unknown dynamics. Online LQR with unknown dynamics can be viewed
as one of the simplest RL problems with a continuous decision space, and this problem has
recently gained significant attention within the RL community both with and without safety
constraints (see e.g. [AYS11, DMM+18, DTMR19]).

1.2 Setting and Motivation

In order to better understand the interaction between safety and the balance of explo-
ration/exploitation, we study the classic problem of controlling a discrete-time linear dy-
namical system with unknown dynamics while minimizing a quadratic cost. In our problem
setting, the position at the next time step depends on the current position, the current
control input, and a random noise. The goal is to choose controls (actions) that keep the
position as close to the origin as possible while using as little control as possible. An exam-
ple application of this problem is controlling a drone around a target ([RSAM16]). In this
scenario, the goal is to maintain a safe distance from the target while preserving fuel despite
random disturbances from air currents. In this paper, we are interested in the setting where
the dynamics are unknown. When the dynamics are unknown, LQR becomes an online RL
problem of balancing exploration (controls that learn about the dynamics) and exploitation
(controls that minimize the cost). Extending the previous example of controlling a drone
around a target, the dynamics could for example be determined by the weather pattern that
is unknown in advance. The goal in this paper is to design an algorithm that can learn
the dynamics safely while not incurring significantly more cost than the best safe algorithm
when the dynamics are known.

To quantify safety in this setting, we will consider constraints on the position of the
controller which restrict the position to stay within a safe region. Continuing the previous
example, a drone control must be safe in that it must avoid positions that are currently
occupied by walls or other objects. We focus on position constraints rather than control
constraints because position constraints have the added difficulty that, at the time of choos-
ing the control, the next position for any given control is unknown due to the noise and
uncertainty about the dynamics. In contrast, the algorithm has perfect information about
(and control over) the choice of control. We therefore consider the LQR setting with only
position constraints. See Section 5 for discussion on how our results extend to the setting
with control constraints. While the optimal policy with known dynamics and without po-
sition constraints is the well-understood Linear Quadratic Regulator, with constraints the
optimal policy even for known dynamics no longer has a closed-form ([RM12]). Due to the
substantially increased complexity of the constrained LQR problem with both known and
unknown dynamics, we will focus on the setting when both the positions and controls are

2

one-dimensional. We focus on the one-dimensional setting to highlight the main ways in
which learning unknown dynamics changes in the presence of constraints, without the addi-
tional technical overhead that comes with proving results for higher dimensions. However,
we do predict that many of the results in this paper can be generalized to higher dimensions,
and we discuss this further in Section 5. Other works have also taken the same approach of
first studying only the one-dimensional case of LQR, see e.g. [FPRW21, AL17]. The one-
dimensional setting of safe LQR does have its own applications, for example maintaining a
fixed temperature of a room ([OJM08]). In this application, the goal is to maintain a certain
range of safe temperatures with high probability while using as little energy as possible.
Taking temperature as the position, this problem can be formulated as a one-dimensional
LQR problem with safety “position” constraints on the temperature.

1.3 Our Contribution

The main theorems of this paper each establish new regret results for safety-constrained LQR
learning. We improve prior works’ regret bounds for this setting along three dimensions, the
regret rate, the regret baseline, and the types of noise distributions. In contrast to prior
works, we focus on one-dimensional LQR with only positional constraints. The following
table summarizes our different results relative to prior works across these three dimensions:

Regret Rate Regret Baseline Noise Distributions

Previous works ÕT (T
2/3) Best Safe Linear Controller Bounded

Theorem 1 ÕT (
√
T) Best Truncated Linear Controller subgaussian

Theorem 2 ÕT (
√
T) Best General Baseline Controller subgaussian+Large Support

Theorem 3 ÕT (T
2/3) Best General Baseline Controller subgaussian

The main contribution of this paper is we that show a ÕT (
√
T) rate of regret is possible

for safety-constrained LQR learning in one-dimension, improving on ÕT (T
2/3) regret results

of previous works ([LDSL21, DTMR19]). This rate of regret for constrained LQR learning
matches the optimal regret rate for unconstrained LQR learning ([ZS24]). In addition to
improving the rate of regret, this result is also with respect to a stronger baseline than
previous works. The regret for this result is defined with respect to the best controller
from the baseline class of truncated linear controllers, which consists of linear controllers
corrected to obey the safety constraints. This is a significantly stronger baseline than in
previous works (see Section 3.1 for more details). To the best of our knowledge, this is
the first work on constrained LQR learning with respect to any baseline stronger than the
best safe linear controller. Therefore, our ÕT (

√
T) regret result is strictly better than the

previous ÕT (T
2/3) regret results of [LDSL21, DTMR19] in both the regret baseline and the

rate of regret. Our result also holds for any subgaussian noise distribution, which is the
(to the best of our knowledge) first safety-constrained LQR learning result for unbounded
distributions. In proving this result, we provide a better estimation bound for estimating
unknown dynamics in the presence of safety constraints, which is a key new technical tool
in achieving ÕT (

√
T) regret.

Moving beyond linear or truncated linear baselines, we also study regret of certainty

3

equivalence algorithms relative to the best controller from very general classes of baseline
controllers satisfying only minimal regularity conditions. We first show that a certainty
equivalence algorithm can achieve a regret rate of ÕT (T

2/3) relative to the best controller
from these general classes of baseline controllers. Furthermore, for noise distributions with
sufficiently large support (e.g. Gaussian noise), we show that a ÕT (

√
T) regret rate is

possible, which again matches the optimal regret rate. All of the proofs of the regret results
in this paper are constructive and provide certainty equivalence algorithms for achieving the
guaranteed rates of regret.

1.4 Related Work

RL has been recognized as being a powerful tool in a broad array of applications ([SHM+16,
KST+21, LFDA16]), but there is still a need to better understand RL in the presence of safety
constraints. There exists a wide array of definitions of safety in RL, many of which focus
on some notion of reachability or stability, see e.g. [GGY+24, GZS+24, GYD+22, MA12,
WSYO18, WSS24, YLC+24]. However, these notions of safety are less directly related to
our problem setting. More related to our problem, there is also a body of literature on
algorithms for RL for control with constraints that maintain safety for the entire trajectory,
see e.g. [FP18, COMB19, MK21, FAZ+18]. These works study different broad definitions of
safety in control, which can apply to a wider variety of models and settings than our results.
However, the technical contribution of these works focuses specifically on developing safe
algorithms, without proving theoretical results about the rates of regret or the optimality of
the proposed safe algorithms.

The LQR problem has many applications despite the simplicity of the problem state-
ment ([PCC+14, CS99, SJK03]). There has recently been a large body of work focusing
on minimizing regret in the unconstrained LQR setting with unknown dynamics, begin-
ning with [AYS11] which gave the first algorithm for ÕT (

√
T) regret for unconstrained LQR

learning. This was followed by many works that study variations of both the infinite and
finite time problem including (but not limited to) [DMM+18, MTR19, MJR20, SMT+18,
CKM19, WJ21, WJ22, MTR19, AL17, ZL20, SOF20, KS20, SO22, FTM18a, FTM17, OO19,
YCLG24, AMG+24, ZS24, LRM24]. Certainty Equivalence (CE) algorithms estimate the un-
known dynamics and find an optimal policy under the estimated dynamics. Later works on
LQR learning showed that CE algorithms are in fact (rate) optimal for the unconstrained
learning problem ([SF20, FTM18b, MTR19, WJ22]).

The two works that are most closely related to this paper are [DTMR19] and [LDSL21],
which both study safety-constrained LQR learning with unknown dynamics. Both works
study the regret with respect to the baseline of the best linear controllers of the form ut =
−Kxt and derive an upper bound of ÕT (T

2/3) on the regret. In [DTMR19], they use system
level synthesis to develop an algorithm that can safely inject noise into the system to give
statistical guarantees on the learning rate. [LDSL21] provide the first adaptive learning
algorithm for constrained LQR learning with unknown dynamics using a CE approach.
While their results hold for higher dimensional LQR, our results improve on theirs in two
ways. First, we are able to show a regret rate of ÕT (

√
T), an improvement over their regret

rate of ÕT (T
2/3). Second, our regret results are with respect to a significantly stronger and

more general baseline. These previous works focused on regret with respect to the best safe

4

linear controller. However, the class of safe linear controllers is a relatively weak class of
safe controllers, and the best safe linear controller can be far worse than the best overall
safe controller. The class of truncated linear controllers that we study is in fact a superset
of the safe linear controllers, and therefore our results are with respect to a strictly stronger
baseline than in [LDSL21]. See Section 3.2 for more discussion on the importance of the
choice of baseline. Note that these works allow constraints on both control and positions,
while our results focus only on positional constraints. See Section 5 for more discussion on
control constraints.

There are also some connections between our work and the areas of model predictive
control and system identification, but we defer these to the appendix (Appendix B) in the
interest of space because the connections to our work are not as strong as the works surveyed
in the rest of this subsection.

2 Preliminaries

2.1 Outline of Preliminaries

In order to formally state our problem, the preliminaries section is organized as follows.
First, in Section 2.2, we outline the dynamics of the system and the notation we will use for
controllers. In Section 2.3, we define and motivate the expected-position safety constraints
we use to represent safety throughout the paper. In order for it to be possible to learn safely,
we also need some initial information. In Section 2.4, we outline the exact assumptions we
make on the initial uncertainty. Finally, in Section 2.5, we put everything from the previous
sections together with a definition of regret to formally state our problem.

2.2 Problem Dynamics

Denote the state of the system at time t for t ∈ [T] as xt ∈ R and the control at time t
as ut ∈ R. For simplicity, we will assume that the system starts at position x0 = 0. The
position at time t + 1 follows dynamics xt+1 = a∗xt + b∗ut + wt, where a∗ ∈ R and b∗ ∈ R
determine the dynamics and wt

i.i.d.∼ D is the noise term drawn from a continuous, mean-0
probability distribution D with cumulative distribution function FD and variance σ2

D = 1.
We will consider the quadratic cost at time t as qx2

t + ru2
t for q, r ∈ R>0, and consider the

sum of cost over the first T steps. Throughout this paper, we will assume that the dynamics
a∗, b∗ are unknown, while all other problem parameters are known (e.g. D, q, r, etc.). For
simplicity, we will denote the unknown dynamics as θ∗ = (a∗, b∗) ∈ R2.

We will also use the following controller notation. Define Ht = (x0, u0, x1, ..., ut−1, xt),
and Ft = σ(Ht), the sigma algebra generated by Ht. We define a (possibly time-dependent
and randomized) controller C such that the control chosen at time t is ut = C(Ht). Note
that any randomness in the controller C must be independent of the noise random variables
{wt}T−1

t=0 . Define the T -step cost of a controller C starting at position x0 under dynamics θ

5

with noise random variables W = {wt}T−1
t=0 as

J(θ, C, T, x0,W) =
1

T

(
qx2

T +
T−1∑
t=0

qx2
t + ru2

t

)
, (1)

where ut = C(Ht), xt+1 = axt + but + wt, wt
i.i.d.∼ D.

Notice that J outputs an average cost. We will refer to T ·J(θ, C, T, x0,W) as the total cost.
We denote J∗(θ, C, T, x0) as the expectation of J(θ, C, T, x0,W) with respect to only the ran-
domness in W . Formally, this means that J∗(θ, C, T, x0) = E [J(θ, C, T, x0,W) | θ, C, T, x0]
in case any of θ, C, T , and x0 are random, but in the typical setting when θ, C, T , and x0

are all deterministic, J∗(θ, C, T, x0) will be non-random. For notational simplicity, we also
define J∗(θ, C, T) = J∗(θ, C, T, 0).

2.3 Constraints

Now we will formalize our positional constraints. Both [DTMR19] and [LDSL21] formulate
their positional constraints as realized-position constraints of the form

Dx
L ≤ xt ≤ Dx

U, (2)

which must be satisfied with probability 1 when the dynamics are known. Realized-position
constraints that hold with probability 1 have the easy interpretation that the realized posi-
tion must never exceed the realized-position boundaries given by the user of the algorithm.
However, in the case of unbounded noise distributions (for example Gaussian noise), having
the realized position never exceed any compact set with probability 1 is impossible even with
known dynamics. This is because with Gaussian noise, there is always a strictly positive
probability that xt will be outside of the safe region [Dx

L, D
x
U] for any choice of control ut−1.

Therefore, in order to allow for unbounded noise distributions, we must relax the requirement
of never exceeding the constraints with probability 1, and instead allow the position xt to
exceed the realized-position boundaries Dx

L and Dx
U with probability at most δtraj throughout

the entire trajectory. Using a union bound, one way to achieve this relaxation for T steps is
to require that for every t,

Dx
L − F−1

D

(
δtraj
2T

)
≤ a∗xt + b∗ut ≤ Dx

U − F−1
D

(
1− δtraj

2T

)
. (3)

Motivated by this result, we will formulate our problem in terms of expected-position con-
straints of the form

D
E[x]
L ≤ a∗xt + b∗ut ≤ D

E[x]
U . (4)

Because D is mean-0, this expected-position constraint has the easy interpretation of con-
straining the expected position, conditional on the history, at every time point (hence the
E[x] superscript). By constraining the expected position, we are also implicitly constrain-

ing the realized position xt to be within the random interval [D
E[x]
L + wt−1, D

E[x]
U + wt−1].

Furthermore, if the noise distribution has support [−w̄, w̄] and δtraj = 0 (as in [DTMR19]
and [LDSL21]), then realized-position constraints are a special case of the expected-position

6

constraints: Equation (2) with realized-position boundaries Dx :=
(
Dx

L, D
x
U

)
is equivalent to

Equation (4) with expected-position boundaries DE[x] := (D
E[x]
L , D

E[x]
U) =

(
Dx

L + w̄,Dx
U− w̄

)
.

For unbounded noise, Equation (2) is impossible to satisfy with probability 1, while Equa-
tion (4) is possible to satisfy and is directly related to the problem of satisfying the realized-
position constraints with high probability. Therefore, the constraints in Equation (4) can in
some sense be thought of as a generalization of the realized-position constraints in Equation
(2). To maintain that 0 is a safe position, we will also require that D

E[x]
L < 0 < D

E[x]
U (see

Assumption 3).
In order to satisfy the realized position constraints in Equation (2) for all T steps with

constant probability, the magnitude of the boundaries must scale with the max position,
which scales with the magnitude of the largest realized noise. For an unbounded distribution
D, this means that the realized-position boundaries must be a function of T that grows
with T . Now looking at Equation (3), the implied expected-position constraints include
both Dx (which may be a function of T) and a quantile of the noise distribution (which is
explicitly a function of T). Therefore, we will allow the expected-position boundary DE[x]

of Equation (4) to depend on T . However, in the typical feasible safe RL problem we will
have expected-position boundaries that are OT (1). The reason for this is that the expected-
position constraints only bound the position in expectation. Therefore, unlike the realized-
position boundary which must scale with the maximum position in order to be feasible, the
expected-position boundary is feasible as long as it scales with the largest product of position
and dynamics estimation error (uncertainty in θ). Under the assumptions in this paper, we
will achieve an estimation error that decreases at a rate that is much faster than the rate at
which the maximum position grows. Thus, while we allow the expected-position boundaries
to be functions of T , the reader should generally think of them as not growing with T in a
typical problem, and indeed some of our results will explicitly require the expected-position
boundaries to be OT (1).

Formally, we define safety as follows. Note that when the boundaries (D
E[x]
L , D

E[x]
U) are

clear in context, we will drop the constraints and simply refer to algorithms that are safe for
a specific dynamics θ∗.

Definition 1. A series of controls {ut}T−1
t=0 are safe for dynamics θ∗ and boundaries (D

E[x]
L , D

E[x]
U)

if every control satisfies Equation (4). Similarly, a controller C is safe for dynamics θ∗ and

boundaries (D
E[x]
L , D

E[x]
U) if the resulting controls {C(Ht)}T−1

t=0 under true dynamics θ∗ are
safe for dynamics θ∗.

2.4 Initial Uncertainty Assumptions

Without any prior knowledge about the unknown dynamics θ∗, it is impossible to choose a
first action that is guaranteed to be safe for all θ∗ ∈ R2. Therefore, to learn anything about
the unknown dynamics while maintaining safety, we require some initial information about
the unknown dynamics. Before getting into our main results, we will therefore formalize our
assumptions about the initial uncertainty in our problem. As is standard in previous works
([AYS11, LDSL21]), we will assume the following:

Assumption 1. The algorithm has access to some Θ = Θa × Θb = [a, ā] × [b, b̄] such that
θ∗ ∈ Θ and b̄ ≥ b > 0 and ā ≥ a > 0.

7

Θ can be thought of as the initial uncertainty set for θ∗. Define the size of such a set Θ as
size(Θ) = max(ā−a, b̄−b). Note that depending on the size of Θ, maintaining safety with re-
spect to the expected-position boundaries for any θ∗ ∈ Θ may be infeasible. Infeasible in our
setting means that there does not exist any adaptive controller C such that for all θ∗ ∈ Θ, the

controller is safe with high probability, i.e. P
(
∀t < T : D

E[x]
L ≤ a∗xt + b∗C(Ht) ≤ D

E[x]
U

)
≥

1− δ. Clearly feasibility of Θ (for some appropriate choice of δ) is a necessary condition for
our problem to have a solution. The assumptions we make are only slightly stronger than
just feasibility, which we discuss further in Appendix M.3. As described in Section 1.4, many
previous works have developed algorithms that maintain guaranteed safety, but to the best
of our knowledge the exact amount of prior information needed has not been quantified.

The assumption that a∗, b∗ > 0 is for algebraic convenience, and the same results can be
shown for any constant a∗, b∗ ∈ R. The assumption that a, b > 0 can actually be removed
given the next assumption, and we discuss this more in Appendix M.1.

The other main assumption about prior information that we make is that we have suffi-
cient information to not violate the safety constraint for some initial period of the algorithm.

Assumption 2. There is a known controller C init such that ∀x ∈
[
D

E[x]
L + F−1

D (1
T 4), D

E[x]
U + F−1

D (1− 1
T 4)
]
,

D
E[x]
L +

b∗

log(T)
≤ a∗x+ b∗C init(x) ≤ D

E[x]
U − b∗

log(T)
. (5)

To get a sense of how strong Assumption 2 is, note that if we ignore the vanishing log
terms in Equation (5), then Assumption 2 is equivalent to assuming that we can identify any
safe controller. If this is not the case, then safe learning is clearly impossible. We further
discuss Assumption 2 and how it relates to the concept of feasibility in Appendix M.3. In
Appendix M.2, we also provide further interpretation of Assumption 2 in the case of bounded
noise.

2.5 Problem Statement

We define Cθ∗ as a baseline class of controllers if every controller C ∈ Cθ∗ is safe with respect
to dynamics θ∗ with probability 1. If θ∗ were known, then the safe LQR problem with Cθ∗

as the baseline would simply be to minimize the expected total cost for all controllers in this
baseline, i.e. to solve

min
C∈Cθ∗

T · J∗(θ∗, C, T). (6)

We will use the expression in Equation (6) as the baseline cost to which we compare the cost
of our algorithms. We will often consider families of controller classes {Cθ}θ∈Θ such that for
any dynamics θ, every controller in the class Cθ is safe for dynamics θ with probability 1.
For example, the baseline class Cθ could be the class of linear controllers that are safe for
dynamics θ, the class of affine controllers that are safe for dynamics θ, all controllers that
are safe for dynamics θ, etc.

The regret of an algorithm with corresponding controller Calg with respect to baseline
Cθ∗ is the random variable

Regret := T · JT (θ, Calg, T, 0,W)− min
C∈Cθ∗

T · J∗(θ∗, C, T). (7)

8

Note that this regret random variable compares the realized cost of the algorithm with the
expected cost of a controller from the baseline class, and this definition of regret is typical
in the LQR learning literature (e.g. [AYS11, LDSL21]). We also could have defined regret
comparing the realized cost of an algorithm to the realized cost of the best (in expectation)
controller from the baseline class. Due to standard concentration inequalities, the realized
total cost of the baseline controller will be within Õ(

√
T) of the expected total cost of the

baseline controller. Therefore, considering a realized total cost for both terms in the regret
would change our regret bounds by at most Õ(

√
T) and therefore not change any of the

results.
The overarching goal of this paper is to find a controller Calg that achieves low regret as

defined in Equation (7) and such that for any true dynamics θ∗ ∈ Θ, the controller Calg is safe
for θ∗ with probability 1−oT (1/T). Note that we only require that the algorithm Calg is safe
with probability 1−oT (1/T), while we require the baseline to be safe with probability 1. This
(slightly unfair) mismatch is necessary to allow the algorithm to use information “learned”
from historical observations when trying to satisfy the safety constraints. For example, if
D is an unbounded distribution, then it is impossible to conclude anything with probability
1 based on any amount of historical information. We want to allow our algorithm to use
information about θ∗ learned from previous time steps to choose better future safe controls,
and therefore we only require safety with respect to θ∗ with probability 1 − oT (1/T). We
chose 1− oT (1/T) for the safety probability because this is strictly stronger than 1− oT (1)
or 1 − δ for constant δ > 0, and therefore our results hold for these larger probabilities of
satisfying safety as well. In principle, we could also compare to a baseline that allows some
probability of error. However, because the baseline does not need to learn θ∗, allowing it to
be safe with probability slightly less than 1 would not significantly impact its cost, while it
would significantly increase the mathematical complexity of the analysis.

Finally, we will make the following assumptions about the problem specifications through-
out this paper.

Assumption 3 (Problem Specifications). The noise distribution D is mean-0, variance 1,

and subgaussian with bounded density. The boundaries D
E[x]
L , D

E[x]
U (which may be functions

of T) satisfy that − log2(T) ≤ D
E[x]
L < 0 < D

E[x]
U ≤ log2(T) and that D

E[x]
U −D

E[x]
L ≥ 1

log(T)
.

For exposition purposes, we also assume that log2(T
1/12) is an integer. The assumption

of variance 1 gives a simpler uncertainty bound, but as in [AYS11] this can be relaxed. We

assume that max(|DE[x]
L |, D

E[x]
U) ≤ log2(T) because if the constraints are greater than log2(T),

then the constraints have very little impact on the optimal controller. This is because with
subgaussian noise, with high probability the noise random variables have magnitude less than
o(log(T)), and so reasonable controllers will with high probability never hit the constraint.
Therefore, if both boundaries are greater than log2(T) then the problem becomes similar
to the unconstrained problem, and if one boundary is large, then the problem becomes one
sided which is an easier version of our problem. The assumption of mean-0 and subgaussian
noise is also standard in the LQR literature [AYS11, DTMR19, LDSL21].

Putting everything together, the formal problem we are considering is the following.

Problem 1 (Safe LQR Learning). Suppose we are given D,D,Θ, T that satisfy Assumption
1–3 and a set of baseline classes of controllers {Cθ}θ∈Θ. Then the goal of safe LQR learning

9

is to find an algorithm Calg that achieves a regret with respect to baseline Cθ∗ that is as low
as possible, while also satisfying supθ∈Θ P

(
Calg is safe with respect to θ

)
= 1− oT (1/T).

Note that supθ∈Θ P
(
Calg is safe with respect to θ

)
= 1− oT (1/T) is equivalent to requir-

ing that there exists some probability p = 1− oT (1/T) such that for any θ ∈ Θ, if the true
dynamics θ∗ = θ then the controls used by Calg will be safe with respect θ∗ with probability
p.

2.6 Notation

To simplify notation, we use θ = (a, b) to represent an arbitrary set of dynamics and θ∗ =
(a∗, b∗) to represent the true (unknown) dynamics. We will also use D := (DL, DU) :=

(D
E[x]
L , D

E[x]
U) (i.e., drop the superscripts). We will use ÕT and OT notation to represent

Õ and O with respect to T , where the values of the hidden constants and log terms may
depend on the values of problem inputs such as q, r,D,D,Θ. Because the nature of our
problem requires us to define a significant amount of notation in this paper, we have a table
in Appendix A that lists the common notation used throughout the paper that the reader
can use as a reference if needed.

3 Theoretical Results

We will first present our main result on truncated linear controllers in Section 3.1. In Sec-
tion 3.2, we introduce a more general class of baselines satisfying certain regularity conditions
and present two further results for these general baselines.

3.1 ÕT (
√
T) Regret for Truncated Linear Controllers

In order to present our main theorem, we first need to specify a baseline class of controllers
Cθ∗ to define the regret in Equation (7). In both [LDSL21] and [DTMR19], the regret
baseline for the ÕT (T

2/3) results is the cost of the best stationary linear controller of the
form ut = −Kxt that is safe for θ

∗ with probability 1. We will refer to the class of stationary
linear controllers that are safe for θ∗ with probability 1 as the class of safe linear controllers.
Since not all linear controllers are safe for dynamics θ∗, this is restricted to K that will
maintain safety for θ∗ for any realization of the noise, and therefore can be a very weak
baseline. Linear controllers are not always well-suited for safety constrained LQR because
linear controllers only have one degree of freedom (K), but in safety constrained LQR the
controller must balance keeping regret low with being safe. For example, when DU and
DL are not symmetric, the best linear controller must still behave symmetrically. However,
symmetric behavior may be far from optimal for DU and DL that are not symmetric, and
linear controllers lack the flexibility to behave non-symmetrically.

One goal of this paper is to improve on these previous results by bounding regret with
respect to a stronger baseline class of controllers. The main result of this paper is Theorem
1, which bounds the regret on top of the baseline class of truncated linear controllers, a
significantly more powerful baseline than the class of safe linear controllers. Let Kθ

L = a−1
b

and Kθ
U = a

b
. Define the class of truncated linear controllers for dynamics θ as Cθtr =

10

{Cθ
K}K∈[Kθ

L,K
θ
U], where the controller Cθ

K is defined as the time invariant and Markovian
controller

Cθ
K(x) =

−Kx if DL ≤ (a− bK)x ≤ DU

DU−ax
b

if (a− bK)x > DU

DL−ax
b

if (a− bK)x < DL.

(8)

This class of controllers for dynamics θ is always at least as large as the class of linear
controllers that are safe for θ, as any linear controller that is safe for θ is also in this class.
Furthermore, this is a natural extension of linear controllers that remains non-trivial even
for unbounded noise distributions. Finally, we note that truncated linear controllers are
computationally tractable and require the same amount of computation as linear controllers
in each time-step. We can now state our main result.

Theorem 1. In the setting of Problem 1 when ∥D∥∞ = OT (1), there exists an algorithm
Calg (Algorithm 4) that with probability 1− oT (1/T) achieves ÕT (

√
T) regret with respect to

baseline Cθ∗tr while also satisfying supθ∈Θ P
(
Calg is safe with respect to θ

)
= 1− oT (1/T).

We present a proof sketch of Theorem 1 in Section 4.3 and the full proof in Appendix I.
Theorem 1 and the corresponding Algorithm 4 improve on previous results in two significant
ways, both with a better regret bound (ÕT (

√
T) versus ÕT (T

2/3)) and with a stronger regret
baseline (truncated linear controllers versus safe linear controllers).

The intuition of Algorithm 4 is relatively simple and is outlined in Algorithm 1. The
algorithm first explores for Θ̃T (

√
T) steps using the controller from Assumption 2. Using

the data from this exploration, the algorithm calculates a regularized least-squares estimate
of θ∗ (denoted θ̂wu) that is accurate up to Õ(T−1/4). Based on this least-squares estimate,
the algorithm then decides if the support of the noise distribution D is small relative to the
constraint boundary D or large relative to the constraint boundary D. In the small noise
case, the algorithm uses the best unconstrained controller for dynamics θ̂wu with small mod-
ifications to the control as needed to guarantee constraint satisfaction with high probability.
Because the noise is small in this case, the modification is only needed a small fraction of the
time. Therefore, in this case the regret of the algorithm is only slightly more than the regret
of the optimal unconstrained controller for θ̂wu, which can be shown to be ÕT (

√
T) using

standard certainty equivalence results. In the large noise case, the algorithm uses a modified
form of Algorithm 5 (which is outlined in Algorithm 2). Intuitively, in this case the noise
is large enough to force the algorithm to a constant fraction of the time be non-linear by a
constant amount. This non-linearity allows the algorithm to learn the unknown dynamics
at a faster rate of 1/

√
t, which in turn leads to regret of ÕT (

√
T) in this case as well.

Before moving on to the rest of the results, we want to highlight two key technical
contributions of the proof of Theorem 1 that go beyond just the stated result.

As discussed above, truncated linear controllers are computationally tractable and are a
natural extension of linear controllers better suited for problems with safety constraints. In
Section H, we show that the class of truncated linear controllers has two desirable properties,
namely that this class satisfies Assumptions 7 and 8. These proofs and results may be
independently interesting in that non-linear controllers have not been well-studied in this
setting and therefore little was previously known about properties of such controller classes.

11

Algorithm 1 Outline of Algorithm 4 for proof of Theorem 1

1: Explore for Θ̃T (
√
T) steps using controller C init from Assumption 2.

2: θ̂wu ← regularized least-squares estimate of θ∗.
3: Using θ̂wu, determine if support of noise distribution D is large or small relative to

boundary D.
4: if support of D is small relative to D then
5: For the rest of the steps, use the optimal unconstrained linear controller for dynamics

θ̂wu with small modifications to the control as necessary to enforce constraint satisfaction
w.h.p.

6: if support of D is large relative to D then
7: For the rest of the steps, use a variation of Lines 2–6 of Algorithm 2.

The second key aspect of Theorem 1 is that the result relies on a new estimation bound
for the unknown system dynamics θ∗ (Lemma 26). Informally, this estimation bound shows
that simply by obeying safety constraints, the unknown dynamics can be estimated at a rate
of 1/

√
t without injecting any additional randomness into the controller. This faster rate of

learning is because in order to be safe, the controller must frequently be non-linear, which
in turn helps learn the unknown dynamics. This result of safe behavior leading to faster
learning rates may also be of independent interest in other safe RL problems.

3.2 Regret Rates for General Baselines

While the result in Theorem 1 is with respect to a natural baseline, the best truncated linear
controller for θ∗ is still not the overall lowest cost controller that is safe for θ∗. Therefore,
there exist even stronger baselines with respect to which the algorithm in Theorem 1 may
achieve regret of more than ÕT (

√
T). To address this, we present two results that hold for

a wide range of baseline classes of controllers. Before stating the theorems, we will outline a
few assumptions on the controllers in these general baseline classes.

Let {Cθ}θ∈Θ be the set of baseline classes of controllers for dynamics θ ∈ Θ. For the rest
of this paper, we will assume that the baseline class of controllers satisfies Assumption 4.

Assumption 4. All of the controllers in the baseline class Cθ for all θ ∈ Θ are stationary,
Markovian, deterministic, and safe for dynamics θ with probability 1.

Note that the assumption that every controller in Cθ is safe for dynamics θ with prob-
ability 1 is consistent with the baselines of [LDSL21] and [DTMR19]. Additionally, this
means that the baseline class of controllers could change depending on the dynamics θ, as
the class of controllers that is safe for one dynamics will not necessarily be safe for a different
dynamics. One option is to construct the baseline class from another class of controllers C̃
(for example the class of linear controllers), as follows:

{C ∈ C̃ : C is safe for dynamics θ}. (9)

If C̃ is a rich enough class of controllers (e.g. all controllers), then Equation (9) would result
in a good safe baseline. However, if C̃ is a relatively small class of controllers (e.g. linear

12

controllers), then the restriction in Equation (9) to only controllers in the class that are safe
for θ may result in a weak safe baseline. Therefore, instead of simply subsetting the class
of controllers C̃ as in Equation (9), we will preserve the complexity of the function class C̃
by transforming every controller in C̃ into a controller that is safe for θ. We generalize even
further by allowing the starting class of controllers C̃θ to be different for each θ.

Assumption 5 (Truncation). For any θ, there exists a controller class C̃θ of deterministic
controllers such that the baseline class Cθ consists of all controllers of the following form for
C ∈ C̃θ:

Cθ(x) =

C(x) if DL ≤ ax+ bC(x) ≤ DU

DU−ax
b

if ax+ bC(x) > DU

DL−ax
b

if ax+ bC(x) < DL.

(10)

By this construction, every controller Cθ ∈ Cθ is safe for dynamics θ. We will also assume
that Cθ is parameterizable by a scalar parameterK ∈ R. This allows us to choose the optimal
controller in Cθ in terms of the parameter K.

Assumption 6 (Parametrization). For any θ, there exists Kθ
L, K

θ
U ∈ R such that the Cθ in

Assumption 5 can be parameterized as Cθ = {Cθ
K : K ∈ [Kθ

L, K
θ
U]}. Furthermore, for any θ,

T there exists a Kopt(θ, T) satisfying

Kopt(θ, T) = arg min
K∈[Kθ

L,K
θ
U]
J∗(θ, Cθ

K , T).

There are two more key assumptions on the class of controllers that are required for our
results.

Assumption 7 (Average Cost Lipschitz in Optimal Controller). There exists ϵA7 = Ω̃T (1)
such that for any ∥θ − θ∗∥∞ ≤ ϵA7 and t ≤ T ,

|J∗(θ∗, Cθ
Kopt(θ,t), t)− J∗(θ∗, Cθ∗

Kopt(θ∗,t), t)| ≤ ÕT

(
∥θ − θ∗∥∞ +

1

T 2

)
.

Assumption 7 relates the expected cost under dynamics θ∗ of the optimal controller for
dynamics θ∗ to the expected cost of the optimal controller for some other dynamics θ close
to θ∗. Intuitively, this is a form of Lipschitz continuity which implies that the performance
of the optimal controller is not too sensitive to the choice of θ. Some sort of continuity
assumption is intuitively required for any form of certainty equivalence algorithm to achieve
low regret guarantees.

Assumption 8 (Total Cost Lipschitz in Initial Position). There exist ϵA8, δA8 = Ω̃T (1) such
that for any θ satisfying ∥θ − θ∗∥∞ ≤ ϵA8 the following holds. For t < T , let W ′ = {wi}t−1

i=0.
Then for any K ∈ [Kθ

L, K
θ
U], there exists a set YA8 ∈ Rt that depends only on Cθ

K such that the
following holds. Define EA8

(
Cθ

K ,W
′) as the event that W ′ ∈ YA8. Then P(EA8

(
Cθ

K ,W
′)) ≥

1 − oT (1/T
10) and for any |x|, |y| ≤ 4 log2(T) such that |x − y| ≤ δA8, conditional on event

EA8

(
Cθ

K ,W
′),∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ ≤ ÕT (|x− y|+ ∥θ − θ∗∥∞). (11)

13

Assumption 8 relates the random variables of cost when starting at two different positions,
x and y, but with the same noise random variables W ′. Intuitively, this implies that making
a small non-optimal control will not have significant long-term impact on the total cost.
Therefore, this assumption can be thought of as assuming the total cost is Lipschitz in the
initial position.

The final assumption we consider is an assumption that the noise distribution has suffi-
ciently large support, which we require for Theorem 2 but not for Theorem 3. Note that we
only need the noise distribution to have large support relative to one of the two boundaries
(DU or DL). We will w.l.o.g. state Assumption 9 relative to boundary DU, however an
equivalent assumption swapping DL and DU would also be sufficient for Theorem 2.

Assumption 9. For any z, define P (θ,K, z) as the largest x such that ax + bCθ
K(x) ≤ z.

There exists a constant ϵA9 > 0 such that the following equation holds for all t ≥
√
T for

sufficiently large T :

Pw∼D (w ≥ P (θ∗, Kopt(θ
∗, t), DU)−DL) ≥ ϵA9 > 0. (12)

The quantity P (θ∗, Kopt(θ
∗, t), DU) will often be proportional to and greater than DU (for

example as we will show with truncated linear controllers). Because D is constant relative to
T , Assumption 9 implies that the boundary D must satisfy ∥D∥∞ = OT (1). When ∥D∥∞ =
OT (1), Assumption 9 is a strong assumption if DU and DL are far apart, as we are effectively
requiring the noise distribution D to have more than a constant probability of spanning the
distance between DL and DU. On the other hand, Assumption 9 is automatically satisfied for
any ∥D∥∞ = OT (1) when the noise distribution is Gaussian, unbounded, or bounded with
a high enough variance. This assumption will be necessary to achieve regret of ÕT (

√
T)

in Theorem 2, as the variance from the noise distribution of Assumption 9 provides the
controller with a source of exploration that leads to better parameter estimation. We will
also provide a result for general classes of controllers that does not require this assumption,
but achieves a worse regret rate (Theorem 3).

The goal of this section is to provide a general framework for studying the regret of
non-linear baselines of controllers that satisfy the above assumptions. We are now ready to
present our first theorem for general baselines.

Theorem 2. In the setting of Problem 1 and under further Assumptions 4–9, there exists
an algorithm Calg (Algorithm 5) that with probability 1 − oT (1/T) achieves ÕT (

√
T) regret

with respect to baseline Cθ∗ while also satisfying supθ∈Θ P
(
Calg is safe with respect to θ

)
=

1− oT (1/T).

Theorem 2 achieves the same regret rate of Theorem 1, but for much more general classes
of baseline controllers. However, Theorem 2 only applies to certain error distributions,
specifically distributions with sufficiently large support.

The most general result of this paper is Theorem 3, which achieves a weaker regret
rate of ÕT (T

2/3) but applies for any subgaussian noise distribution (in particular, it drops
Assumption 9).

Theorem 3. In the setting of Problem 1 and under further Assumptions 4–8, there exists
an algorithm Calg (Algorithm 3) that with probability 1 − oT (1/T) achieves ÕT (T

2/3) regret

14

with respect to baseline Cθ∗ while also satisfying supθ∈Θ P
(
Calg is safe with respect to θ

)
=

1− oT (1/T).

Similar to Theorem 1, Theorem 3 is an improvement on existing results in that it bounds
the regret of constrained LQR learning for any subgaussian noise distribution. See Section
4.1 and Section 4.2 for the proof sketches of Theorem 3 and Theorem 2 respectively. Previous
works focus on linear controller baselines, and linear controllers have properties that allow for
easier regret analysis. Theorems 3 and 2 reduce these “useful” properties of linear controllers
to Assumptions 7 and 8. Therefore, many classes of non-linear controllers can be constructed
as described in this section, and all that needs to be done to show that the result of Theorem
3 holds with such a class of controllers as a baseline is to show that this class of controllers
satisfies Assumptions 7 and 8. Both of Assumptions 7 and 8 are simply Lipschitz conditions
on the cost function (one with respect to the optimal controller and one with respect to
the starting position), and therefore are likely to hold for many classes of controllers. In
particular, we show that both of these assumptions are satisfied for the class of truncated
linear controllers (Section H). In fact, the properties in Assumptions 7 and 8 are the main
tools that allow us to analyze the regret of truncated linear controllers, and therefore these
properties may be of independent interest outside of these theorems.

The algorithms that achieve the regret bounds of Theorems 2 and 3 follow the same
general form. We outline the algorithm that achieves Theorem 3 below in Algorithm 2.

Algorithm 2 Outline of Algorithm 3 for proof of Theorem 3

1: Explore for Θ̃T (T
2/3) steps using controller C init from Assumption 2 with random noise.

2: for s ∈ [0 : log(T 1/3)− 1] do
3: θ̂s ← regularized least-squares estimate of θ∗ using data seen so far
4: ϵs ← high probability bound on ∥θ∗ − θ̂s∥∞
5: Calg

s ← optimal controller from baseline class for dynamics θ̂s
6: For next T 2/32s steps, use controller Calg

s modified at each step to be safe for all
dynamics θ satisfying ∥θ − θ̂s∥∞ ≤ ϵs

This algorithm mostly behaves like a standard certainty equivalence algorithm, first cal-
culating the regularized least-squares estimate of θ∗ and then finding the best controller for
this estimated dynamics. This algorithm deviates from standard certainty equivalence in the
final line, where the algorithm enforces safety by modifying the controller Calg

s . Because θ
with high probability satisfies ∥θ∗ − θ̂s∥∞ ≤ ϵs, the modification in the final line guarantees
safety for dynamics θ∗ with high probability. The bulk of the theoretical work in proving
Theorem 3 is upper bounding the regret contributed by these safety modifications. In the
setting of Theorem 2, the large support of the noise distribution leads to the controls used
by controller Calg

s being non-linear by a constant amount for a constant fraction of the steps.
This non-linearity allows the algorithm to learn at a faster rate than in Theorem 3 and
results in the lower regret bound of ÕT (

√
T). Note also that the length of the exploration

period and the number of steps in each round of the loop are chosen differently for Algorithm
5 than for Algorithm 3. See the proof sketches in the following section for more details.

15

4 Proof Sketches of Main Results

We will present the proof sketches (and formal proofs) of the main results in reverse of the
order in which they were stated in the previous section. We present the proofs in this manner
because the result of Theorem 3 is a weaker result in a more general setting. We therefore
build off of this proof in the subsequent proofs of Theorems 2 and 1 by strengthening the
result of Theorem 3 in less general settings.

4.1 Proof Sketch of Theorem 3

The full proof of Theorem 3 can be found in Appendix C.
First we state Algorithm 3, which is the algorithm that achieves the guarantee of The-

orem 3. But before presenting the algorithm, we need some additional notation. Fix a
constant λ > 0. Define zt = (xt, ut)

⊤ and Vt = λI +
∑t−1

i=0 ziz
⊤
i , where I is the identity ma-

trix. Define Xt as the column vector (x1, ..., xt)
⊤ and Zt as the matrix with rows z⊤0 , ..., z

⊤
t−1.

Define Bt = α
√
log(det(Vt)) + log(λ2) + 2 log(T 2) +

√
λ(ā2 + b̄2) = ÕT (1) where α is the

subgaussian parameter of D. The algorithm that achieves the regret bound of Theorem 3 is
given as Algorithm 3.

Algorithm 3 Intuition Algorithm 3 can be broken into two phases: a warm-up explo-
ration phase (Lines 2–4) and a safe certainty equivalence phase (Lines 5–13). In the warm-up
phase, the controls are random which allows for sufficient exploration and learning of the
unknown dynamics. In the certainty equivalence phase, θ̂s is the regularized least-square
estimate of θ∗ based on the data seen so far. ϵs is an upper bound on the distance between
θ̂s and θ∗ that holds with high probability. Calg

s is the optimal controller from the baseline
class for dynamics θ̂s. Because C

alg
s is not guaranteed to be safe for dynamics θ∗, we calculate

usafeU
t and usafeL

t which are respectively the largest and smallest possible controls that satisfy
the constraints for all dynamics θ within ϵs distance of θ̂s (which will with high probability
include θ∗). We then censor the control Calg

s (xt) with these two controls to guarantee with
high probability that the final chosen control is safe with respect to dynamics θ∗. In order
to show Theorem 3, we must show that with probability 1 − oT (1/T), Algorithm 3 is safe
with respect to θ∗ and that Algorithm 3 has ÕT (T

2/3) regret. To show the latter, we will
decompose the regret into four main components and consider each separately.

Safety of Algorithm 3 We begin with analyzing the safety of Algorithm 3. The first
loop (warm-up exploration) of Algorithm 3 is safe with respect to dynamics θ∗ as a result
of Assumption 2. In the second loop (safe certainty equivalence), the control in Line 13 is
chosen to enforce safety relative to all θ satisfying ∥θ − θ̂s∥∞ ≤ ϵs. By the choice of ϵs, the
true dynamics θ∗ satisfy ∥θ∗− θ̂s∥∞ ≤ ϵs for all s with probability 1− oT (1/T) (Lemma 23).
Therefore, the control applied in Line 13 is safe with respect to θ∗ for all t with probability
1− oT (1/T). Therefore, Algorithm 3 is safe with respect to θ∗ with probability 1− oT (1/T).

Regret from warm-up period The first component of regret (R0) is the cost of the warm-
up exploration phase, which is the first 1/ν2

T steps of the algorithm. Using Assumption 3,

16

Algorithm 3 Safe LQR for General Baselines

Input: D,D,Θ, C init, {Cθ}θ∈Θ, T, λ
1: νT ← T−1/3

2: for t← 0 to 1
ν2T
− 1 do ▷ Safe warm-up exploration phase

3: ϕt ∼ Rademacher(0.5)
4: Use control ut = C init(xt) +

ϕt

log(T)

5: for s← 0 to log2(Tν
2
T)− 1 do ▷ Safe certainty equivalence phase

6: Ts ← 2s

ν2T

7: θ̂s ← (Z⊤
Ts
ZTs + λI)−1Z⊤

Ts
XTs

8: Calg
s ← C θ̂s

Kopt(θ̂s,Ts)

9: ϵs ← BTs

√
max(V 22

Ts
,V 11

Ts)
V 11
Ts

V 22
Ts

−(V 12
Ts

)2

10: for t← Ts to 2Ts − 1 do

11: usafeU
t ← max

{
u : max

∥θ−θ̂s∥∞≤ϵs

axt + bu ≤ DU

}
12: usafeL

t ← min

{
u : min

∥θ−θ̂s∥∞≤ϵs

axt + bu ≥ DL

}
13: Use control ut = max

(
min

(
Calg

s (xt), u
safeU
t

)
, usafeL

t

)
we can show that the positions and controls during this phase are with high probability
bounded by ÕT (1) (Lemma 4). Therefore, the cost during this phase can be bounded by
ÕT (1/ν

2
T) (Proposition 4). Importantly, after this initial exploration phase, ϵs = ÕT (νT) with

probability 1− oT (1/T) (Lemma 2). This is a result of the Rademacher random variables in
the warm-up phase.

Regret from certainty equivalence The second source of regret (R1) comes from the
certainty equivalence aspect of the algorithm. In other words, R1 is the regret from the fact
thatKopt(θ̂s, Ts) is the optimal controller for dynamics θ̂s and not for dynamics θ∗. By Lemma

2 and Lemma 23, with high probability ∥θ̂s − θ∗∥∞ ≤ ϵs = ÕT (νT), so by Assumption 7 the

expected cost of using controller C θ̂s
Kopt(θ̂s,Ts)

for Ts steps is at most ÕT (Ts∥θ̂s − θ∗∥∞ + 1/T)

more than the expected cost of using Cθ∗

Kopt(θ∗,Ts)
for Ts steps. Using the aforementioned bound

comparing θ̂s and θ∗, this source of regret can therefore be upper-bounded by ÕT (TνT) with
probability 1− oT (1/T) (Proposition 5).

Regret from deviation from expectation The third source of regret (R2) comes from
the fact that we defined regret as the difference between the cost of the algorithm (which is a
random variable) and the expected cost of the best controller in the baseline class (which is
nonrandom). To bound this regret term, we show that the cost of the algorithm concentrates
within ÕT (

√
T) of its expectation with probability 1 − oT (1/T) (Proposition 6). For this

result, we use a variant of McDiarmid’s Inequality that applies to high probability events
combined with Assumption 8 (Lemma 6).

17

Regret from enforcing safety The final source of regret (R3) is a result of the times
the algorithm “enforces safety” on the controls by sometimes using controls usafeU

t and usafeL
t .

With probability 1− oT (1/T), when the algorithm enforces safety, the chosen ut differs from
Calg

s (xt) by ÕT (ϵs) (Lemma 9). By Assumption 8 and Lemma 2, the small differences between
Calg

s (xt) and ut each increase the cost by at most ÕT (νT) with probability 1 − oT (1/T).
Therefore, the total cost of enforcing safety with these controls is ÕT (νTT) with probability
1− oT (1/T) (Proposition 7).

Combining Regret Terms Putting these four sources of regret together, the total regret
can be upper bounded as follows with probability 1− oT (1/T):

T ·J(θ∗, Calg, T, 0,W)−T ·J∗(θ∗, Cθ∗

Kopt(θ∗,T), T) ≤ R0+R1+R2+R3 = ÕT

(√
T + TνT +

1

ν2
T

)
= ÕT (T

2/3),

(13)
where the last line comes from the fact that νT = T−1/3. See Appendix C and Equation (32)
for a formal description of these four sources of regret.

4.2 Proof Sketch of Theorem 2

The full proof of Theorem 2 can be found in Appendix F.

Algorithm and Intuition The algorithm that achieves the regret result of Theorem 2 is
Algorithm 5, which is very similar to Algorithm 3. Rather than restating the entire algorithm
here, we defer the full algorithm to the appendix and instead highlight the main differences
between Algorithm 5 and Algorithm 3. The first modification is that for Algorithm 5 we
choose νT = T−1/4, which affects the lengths of the exploration and certainty equivalence
periods. The second major difference is that we change how θ̂s is defined. Recall that in
Algorithm 3, θ̂s is the regularized least-squares estimate of θ∗. For this algorithm we instead
denote the regularized least-squares estimate as

θ̂pres = (Z⊤
Ts
ZTs + λI)−1Z⊤

Ts
XTs . (14)

Recall the function P defined in Assumption 9. We choose θ̂s as

θ̂s = argmin
∥θ̂s−θ̂pres ∥∞≤ϵs

min
∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ̂s, Ts), DU). (15)

The choice of θ̂s described above is a technical way of ensuring that Calg
s will do a sufficient

amount of exploration, which in turn guarantees a faster learning rate of the unknown
dynamics. The key difference between the proof of Theorem 2 and the proof of Theorem
3 is a new upper bound on ϵs which is stronger than Lemma 2. Instead of ϵs = ÕT (νT)

with probability 1− oT (1/T), we can show that ϵs = ÕT

(
1√
Ts

)
with probability 1− oT (1/T)

(Lemma 19). Informally, this means that with high probability, the estimated dynamics at

time t are at most ÕT

(
1√
t

)
different from θ∗, and this is a faster learning rate that we had

in Theorem 3. This faster learning rate gives better upper bounds on the regret terms than
in Theorem 3.

18

Faster Learning Rate Showing the faster learning rate requires two main results. The
first result is that the uncertainty ϵs can be upper-bounded by ÕT (1/

√
|STs|), where |STs|

is the number of times Algorithm 5 uses the control usafeU
t before time Ts (Lemma 21). To

prove this result, we prove a more general uncertainty bound in Lemma 26. The key insight
is that in order to maintain safety, the control usafeU

t will with high probability be sufficiently
non-linear. This non-linearity combined with the variance in the position leads to a faster
convergence rate of the upper bound in Lemma 23. The second result is that Algorithm 5
uses the control usafeU

t at least ΩT (Ts) times before time Ts (Lemma 20). The key insight to
this result is that every time the position exceeds P (θ∗, Kopt(θ

∗, Ts), DU), Algorithm 5 will
use control usafeU

t . Assumption 9 says that the noise is large enough that (due to the choice
of θ̂s in Equation (15)) the position will exceed P (θ∗, Kopt(θ

∗, Ts), DU) in each round with
constant probability. This implies that with probability 1−oT (1/T), for every s, the control
usafeU
t is used a constant fraction of the times before time Ts. Combining these two results,

we have for all s that with probability 1− oT (1/T), ϵs = ÕT (1/
√
|STs|) and |STs| = ΩT (Ts).

Therefore, we can conclude that with probability 1− oT (1/T), we have ϵs = ÕT

(
1√
Ts

)
.

Regret Proof Changes Equipped with this tighter upper bound on ϵs, we can bound

R1 (the regret of using controller C θ̂s
Kopt(θ̂s,Ts)

rather than Cθ∗

Kopt(θ∗,Ts)
) and R3 (the regret of

enforcing safety at every time step with controls usafeU
t and usafeL

t) by ÕT (
√
T) (Proposition

10 and 11, respectively). Because νT = T−1/4, R0 is ÕT (
√
T). Therefore, we can conclude

as in the proof sketch of Theorem 3 that the regret of Algorithm 5 is upper-bounded by
R0 +R1 +R2 +R3 = ÕT (

√
T).

4.3 Proof Sketch of Theorem 1

The full proof of Theorem 1 can be found in Appendix I.
Before presenting the algorithm that achieves the regret bound of Theorem 1, we need

some additional notation. For the rest of this proof sketch, Cθ
K will always refer to the

truncated linear controller as defined in Equation (8). Define Cunc = {Cunc
K }K∈R as the

class of untruncated linear controllers, therefore Cunc
K (x) = −Kx. For any controller C and

dynamics θ, define J∗(θ, C) = limT−→∞ J∗(θ, C, T). Define Kopt(θ) = arg supK J∗(θ, Cθ
K)

and Fopt(θ) = arg supK J∗(θ, Cunc
K). Finally, define Cswitch = cE212DU

c2L50
where cE212 = ÕT (1)

and is from Equation (212) and cL50 = Ω(1) from Lemma 50. The algorithm that achieves
the regret bound of Theorem 1 is given as Algorithm 4.

Algorithm 4 Intuition The main intuition behind the proof of Theorem 1 is to design
an algorithm that combines the results of Theorem 2 with the observation that ÕT (

√
T)

regret is possible in unconstrained LQR learning with unknown dynamics. The warm-up
period of Algorithm 4 is the same as the warm-up period of Algorithm 3. The key new
idea of Algorithm 4 is to split the choice of Calg

s into two cases (Line 11) depending on
the estimated dynamics (θ̂wu) at the end of the warm-up period. The first case in Line
11 corresponds to when the support of the noise is sufficiently small so that we can bound
the regret of the algorithm using the observation that ÕT (

√
T) regret is possible in the

19

Algorithm 4 Truncated Linear Controller Safe LQR

Input: D,D,Θ, C init, T, λ
1: νT ← T−1/4

2: for t← 0 to 1
ν2T
− 1 do ▷ Safe warm-up exploration phase

3: ϕt ∼ Rademacher(0.5)
4: Use control ut = C init(xt) +

ϕt

log(T)

5: θ̂wu ← (Z⊤
1/ν2T

Z1/ν2T
+ λI)−1Z⊤

1/ν2T
X1/ν2T

6: for s← 0 to log2(Tν
2
T)− 1 do ▷ Safe certainty equivalence phase

7: Ts ← 2s

ν2T

8: ϵs ← BTs

√
max(V 22

Ts
,V 11

Ts)
V 11
Ts

V 22
Ts

−(V 12
Ts

)2

9: θ̂pres ← (Z⊤
Ts
ZTs + λI)−1Z⊤

Ts
XTs

10: θ̂s ← argmax∥θ−θ̂pres ∥≤ϵs
a− bKopt(θ)

11: Calg
s ←

Cunc
Fopt(θ̂wu)

if w̄ +DU − DU

âwu−b̂wuFopt(θ̂wu)
≤ CswitchT

−1/4

C θ̂s
Kopt(θ̂s)

otherwise

12: for t← Ts to 2Ts − 1 do
13: if w̄ +DU − DU

âwu−b̂wuFopt(θ̂wu)
≤ CswitchT

−1/4 then

14: usafeU
t ← max

{
u : max

∥θ−θ̂wu∥∞≤ϵ0

axt + bu ≤ DU

}
15: usafeL

t ← min

{
u : min

∥θ−θ̂wu∥∞≤ϵ0

axt + bu ≥ DL

}
16: else

17: usafeU
t ← max

{
u : max

∥θ−θ̂s∥∞≤ϵs

axt + bu ≤ DU

}
18: usafeL

t ← min

{
u : min

∥θ−θ̂s∥∞≤ϵs

axt + bu ≥ DL

}
19: Use control ut = max

(
min

(
Calg

s (xt), u
safeU
t

)
, usafeL

t

)

20

unconstrained setting. More specifically, this case is when the boundaries are far enough
away from the origin compared to the magnitude of the noise, and therefore the algorithm
can use a controller very close to the optimal unconstrained controller. The second case in
Line 11 corresponds to when the support of the noise is sufficiently large so that we can use
a proof technique similar to that of the proof of Theorem 2. More specifically, in this case we
argue that the uncertainty bound ϵs will decrease at a rate of ÕT (1/

√
Ts) (Proposition 14).

Note that in order to use similar logic to Theorem 2, we also must show that the truncated
linear controllers satisfy Assumptions 1–8. We give more details on the ÕT (

√
T) regret of

these two cases separately below. Note that Algorithm 4 satisfies the safety constraints with
probability 1− oT (1/T) by the same logic as in Algorithm 3.

Sufficiently small noise case In this case, we let Calg
s = Cunc

Fopt(θ̂wu)
, i.e. the optimal

unconstrained controller based on the data in the warm-up period. First, we show that the
controller Cunc

Fopt(θ̂wu)
has ÕT (

√
T) more expected total cost for Ts steps than the baseline

controller Cθ∗

Kopt(θ∗,Ts)
(Lemma 22). Intuitively, this follows from the fact that Cunc

Fopt(θ̂wu)
has

similar expected cost as the best infinite time unconstrained controller for θ∗, and the best
infinite time controller and the best finite time controller for Ts steps have similar expected
cost. Because Cunc

Fopt(θ̂wu)
is an unconstrained linear controller, we can also show that the

realized total cost of using this controller concentrates to within Õ(
√
T) of the expected

total cost with high probability (Lemma 23).
The last (and most subtle) part of this case is to show that enforcing safety in Line 19

only contributes ÕT (
√
T) regret (Lemma 25). This is where we use the fact that w̄ +DU −

DU

âwu−b̂wuFopt(θ̂wu)
≤ CswitchT

−1/4. When this equation holds, the probability that the algorithm

uses control ut = usafeU
t or ut = usafeL

t is at most ÕT (T
−1/4) for any t. Furthermore, each

time these controls are used, the extra cost compared to using control ut = Calg
s (xt) is

ÕT (T
−1/4). Combining these two facts, the total extra regret from using controls usafeU

t or
usafeL
t is ÕT (

√
T) with probability 1− oT (1/T). As in the proof of Theorem 3, the warm-up

period has regret of ÕT (
√
T) with probability 1−oT (1/T). Putting this all together, we have

that with probability 1− oT (1/T), the total regret of the algorithm in this case is ÕT (
√
T).

Sufficiently large noise case In this case, we have that Calg
s = C θ̂s

Kopt(θ̂s)
. To prove that

the regret is ÕT (
√
T) in this case, we will show as in Theorem 2 that with probability

1 − oT (1/T), the uncertainty bound satisfies ϵs = ÕT (1/
√
Ts) for every s. Recall from the

proof sketch of Theorem 2 that Lemma 21 is the key result that shows that ϵs = ÕT (1/
√
Ts).

Importantly, this result relies on Lemma 26; Lemma 26 says that ϵs is upper bounded by
ÕT (1/

√
|STs |) with probability 1− oT (1/T), where |STs| is the number of times t < Ts that

the algorithm uses control usafeU
t and such that the probability of using the control usafeU

t

conditional on the history up until that point is lower-bounded by a constant. To use this
lemma, we show that with probability 1−oT (1/T), we have |STs| ≥ ΩT (Ts) for all s (Lemma
46).

In this case, the key observation is that when using the controller C θ̂s
Kopt(θ̂s)

, there exist

constants ϵ, dϵ > 0 such that at every time step t when the control is not usafeU
t , there is

21

an ϵ probability that the position increases by dϵ (Lemma 51). Informally, this says that
at every step, either ut = usafeU

t or the position will increase by a constant amount with a
constant probability. Therefore, because D is a constant relative to T , we have that high
probability, every Ω(1) steps the position will exceed P (θ∗, Kopt(θ̂s), DU) or there will be

a t such that ut = usafeU
t . The control at any time t where xt ≥ P (θ∗, Kopt(θ̂s), DU) is

ut = usafeU
t . Therefore, with high probability every Ω(1) steps there will exist a t such that

the algorithm uses control ut = usafeU
t , and we further show that this happens with constant

probability. This implies that |STs| ≥ Ω(Ts) for every s with high probability. Combining
with Lemma 26 gives that with probability 1 − oT (1/T), ϵs ≤ ÕT (1/

√
Ts). Finally, we can

finish this case as in the proof sketch of Theorems 3 and 2. As in Theorem 2, the faster
learning rate described above leads to ÕT (

√
T) regret for all of the components of regret

outlined in the proof of Theorem 3 with probability 1 − oT (1/T). Note that there is one
additional component of regret in this proof, as we are using the best infinite time controller
rather than the best Ts-step controller in round s. However, we can show that this only adds
at most ÕT (

√
T) extra cost, and therefore the total regret is with probability 1 − oT (1/T)

still ÕT (
√
T) (Lemma 16).

Truncated linear controllers satisfy assumptions in Theorem 2 In order to conclude
the second case in the same way as the proof sketch of Theorem 3 and 2, we must show
that the class of truncated linear controllers satisfies Assumptions 1–8. By construction,
Assumptions 1–6 are satisfied by this class of controllers. Therefore the key results that
need to be shown are that the class of truncated linear controllers satisfies Assumptions
7 and 8 (see Propositions 13 and 12, respectively). While both of these assumptions are
relatively easy to show for the class of linear controllers, proving them for the class of
truncated linear controllers is significantly more complicated. We first outline the proof of
Proposition 12, which is that truncated linear controllers satisfy Assumption 8. Assumption
8 compares the cost of two trajectories when using truncated linear controller Cθ

Kopt(θ,t)
, one

trajectory starting at position x and the other trajectory starting at position x + δ. In
the proof of Proposition 12, we show that the difference in positions of the two trajectories
will decrease at most (but not all) time steps. The difference does not decrease at all time
steps because the difference between θ̂ and θ∗ leads to low probability events where the
difference between the positions of the two trajectories increases (Lemma 34). We are able
to bound the probability of the event that the difference in position increases, and this leads
to Assumption 8 holding (Lemma 31). For Proposition 13, we first show that the truncated
linear controller Cθ

Kopt(θ,t)
under dynamics θ has only ÕT (∥θ − θ∗∥∞) more cost than the

truncatd linear controller Cθ∗

Kopt(θ∗,t)
under dynamics θ∗. We then show that for any K, the

truncated linear controller Cθ
K under dynamics θ∗ for t steps has only ÕT (∥θ − θ∗∥∞) more

cost than Cθ
K under dynamics θ for t steps. Combining these two results directly gives the

desired result of Assumption 7. For more details on these two proofs, see Section H.

22

5 Discussion

In this paper, we have presented new results for the safety-constrained LQR problem includ-
ing lower rates of regret with respect to stronger baselines than previous works. We conclude
by discussing some possible extensions of our work and remaining open questions.

While our results focus on positional constraints, we also expect that similar results would
hold for algorithms similar to Algorithms 3, 4, and 5 when there are also constraints on the
controls. While we leave the formal derivations of results for control constraints to future
work, we provide a brief discussion of how the algorithm and proofs would change. With
the addition of control constraints, the algorithms can no longer use usafeU

t or usafeL
t as these

constraints may not satisfy the control constraints. To address this, we believe that a slight
modification to the way the algorithm chooses the controller Calg

s will allow the algorithms
to satisfy both control and position constraints with high probability and achieve the same

regret results as in Theorems 1, 2, and 3. We propose choosing Calg
s = C θ̂s

K , where K is
chosen such that it satisfies positional constraints and control constraints Θ̃T (ϵs) tighter
than the actual constraints. As long as ∥θ̂s − θ∗∥∞ ≤ ÕT (ϵs), this will guarantee both types
of constraints are satisfied. The main additional result that needs to be assumed (and proven
in the case of Theorem 1) is that choosing this Calg

s will not have significantly more regret
than in the existing proofs. See Appendix N.1 for more discussion on the generalization of
our results to the setting with both position and control constraints.

Our results also focus on one-dimensional LQR, but we expect that many of the same
results will generalize to higher dimensions. In higher dimensions, a natural generalization
of our constraints is to consider a compact safe region that is defined as the intersection of
a finite number of half-planes. Therefore, the goal would be to choose controls such that
the expected position stays within this safe region. We expect that the uncertainty bounds
proven in this paper will generalize naturally to higher dimensions, as our bounds are based
on results in [AYS11] that hold for higher dimensions. Therefore, we expect that the result
of Theorem 3 will directly generalize to higher dimensions by replacing the controller Calg

s

with C θ̂s
K where K is chosen as the optimal control for constraints that are Θ̃T (ϵs) tighter

than the true constraints. Whether or not Theorems 1 and 2 generalize to higher dimensions
(and more broadly whether ÕT (

√
T) regret is always possible in higher dimensions) is an

open question we leave for future work, though in Appendix N.2, we discuss stylized settings
in which we expect that the ÕT (

√
T) regret bounds from Theorems 1 and 2 will generalize

to higher dimensions.
We also note that our algorithms require knowledge of T in advance, as the value of T

determines the length of time spent in the warm-up exploration period. We expect that
similar results will hold when T is not known in advance, however this would require periods
of exponentially growing length that alternate exploration versus exploitation (similar to as
done in, e.g. [LDSL21]). Because this greatly increases the complexity of the algorithm and
analysis, we state and prove our results for T known in advance.

Finally, because the algorithms assume infinite computational power, the results in this
paper are all information theoretical. Another interesting future direction is developing a
computationally efficient algorithm that is able to achieve the same regret results. Further-
more, while the class of truncated linear controllers is more powerful than just safe linear

23

controllers, the question of whether we can achieve ÕT (
√
T) (or even ÕT (T

2/3)) regret on
top of the cost of the best possible among all safe controllers is still open.

Acknowledgements

The authors would like to thank Na Li for helpful discussions. B.S. and L.J. received fund-
ing from NSF grant CBET-2112085 and B.S. received funding from the National Science
Foundation Graduate Research Fellowship grant DGE 2140743.

References

[AL17] Marc Abeille and Alessandro Lazaric. Thompson sampling for linear-quadratic
control problems. In Artificial intelligence and statistics, pages 1246–1254.
PMLR, 2017.

[AM07] Brian DO Anderson and John B Moore. Optimal control: linear quadratic meth-
ods. Courier Corporation, 2007.

[AMG+24] Archith Athrey, Othmane Mazhar, Meichen Guo, Bart De Schutter, and
Shengling Shi. Regret analysis of learning-based linear quadratic gaussian con-
trol with additive exploration. In 2024 European Control Conference (ECC),
pages 1795–1801. IEEE, 2024.

[AYS11] Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive
control of linear quadratic systems. In Proceedings of the 24th Annual Conference
on Learning Theory, pages 1–26. JMLR Workshop and Conference Proceedings,
2011.

[BM07] Alberto Bemporad and Manfred Morari. Robust model predictive control: A
survey. In Robustness in identification and control, pages 207–226. Springer,
2007.

[BMDP02] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N Pistikopoulos.
The explicit linear quadratic regulator for constrained systems. Automatica,
38(1):3–20, 2002.

[CKM19] Alon Cohen, Tomer Koren, and Yishay Mansour. Learning linear-quadratic
regulators efficiently with only sqrtt regret. pages 1300–1309, 2019.

[Com15] Richard Combes. An extension of mcdiarmid’s inequality. arXiv preprint
arXiv:1511.05240, 2015.

[COMB19] Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-
to-end safe reinforcement learning through barrier functions for safety-critical
continuous control tasks. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 3387–3395, 2019.

24

[CS99] Jae Weon Choi and Young Bong Seo. Lqr design with eigenstructure assignment
capability [and application to aircraft flight control]. IEEE Transactions on
Aerospace and Electronic Systems, 35(2):700–708, 1999.

[DMM+18] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu.
Regret bounds for robust adaptive control of the linear quadratic regulator.
Advances in Neural Information Processing Systems, 31, 2018.

[DTMR19] Sarah Dean, Stephen Tu, Nikolai Matni, and Benjamin Recht. Safely learning
to control the constrained linear quadratic regulator. In 2019 American Control
Conference (ACC), pages 5582–5588. IEEE, 2019.

[FAZ+18] Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama,
Jeremy Gillula, and Claire J Tomlin. A general safety framework for learning-
based control in uncertain robotic systems. IEEE Transactions on Automatic
Control, 64(7):2737–2752, 2018.

[FP18] Nathan Fulton and André Platzer. Safe reinforcement learning via formal meth-
ods: Toward safe control through proof and learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[FPRW21] Charles Fefferman, Bernat Guillén Pegueroles, Clarence W Rowley, and Melanie
Weber. Optimal control with learning on the fly: a toy problem. Revista
matemática iberoamericana, 38(1):175–187, 2021.

[FTM17] Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis.
Finite time analysis of optimal adaptive policies for linear-quadratic systems.
arXiv preprint arXiv:1711.07230, 2017.

[FTM18a] Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michai-
lidis. Input perturbations for adaptive regulation and learning. arXiv preprint
arXiv:1811.04258, 2018.

[FTM18b] Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michai-
lidis. On optimality of adaptive linear-quadratic regulators. arXiv preprint
arXiv:1806.10749, 2018.

[GGY+24] Milan Ganai, Zheng Gong, Chenning Yu, Sylvia Herbert, and Sicun Gao. Itera-
tive reachability estimation for safe reinforcement learning. Advances in Neural
Information Processing Systems, 36, 2024.

[GYD+22] Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang,
and Alois Knoll. A review of safe reinforcement learning: Methods, theory and
applications. arXiv preprint arXiv:2205.10330, 2022.

[GZS+24] Kunal Garg, Songyuan Zhang, Oswin So, Charles Dawson, and Chuchu Fan.
Learning safe control for multi-robot systems: Methods, verification, and open
challenges. Annual Reviews in Control, 57:100948, 2024.

25

[KAS+19] Johannes Köhler, Elisa Andina, Raffaele Soloperto, Matthias A Müller, and
Frank Allgöwer. Linear robust adaptive model predictive control: Computational
complexity and conservatism. In 2019 IEEE 58th Conference on Decision and
Control (CDC), pages 1383–1388. IEEE, 2019.

[KBTK18] Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause.
Learning-based model predictive control for safe exploration. In 2018 IEEE
conference on decision and control (CDC), pages 6059–6066. IEEE, 2018.

[KS20] Mohammad Khosravi and Roy S Smith. Nonlinear system identification with
prior knowledge on the region of attraction. IEEE Control Systems Letters,
5(3):1091–1096, 2020.

[KST+21] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A
Al Sallab, Senthil Yogamani, and Patrick Pérez. Deep reinforcement learning for
autonomous driving: A survey. IEEE Transactions on Intelligent Transportation
Systems, 23(6):4909–4926, 2021.

[LCA19] Matthias Lorenzen, Mark Cannon, and Frank Allgöwer. Robust mpc with re-
cursive model update. Automatica, 103:461–471, 2019.

[LCKR21] Xiaonan Lu, Mark Cannon, and Denis Koksal-Rivet. Robust adaptive model
predictive control: Performance and parameter estimation. International Jour-
nal of Robust and Nonlinear Control, 31(18):8703–8724, 2021.

[LDSL21] Yingying Li, Subhro Das, Jeff Shamma, and Na Li. Safe adaptive learning-based
control for constrained linear quadratic regulators with regret guarantees. arXiv
preprint arXiv:2111.00411, 2021.

[LFDA16] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. The Journal of Machine Learning Research,
17(1):1334–1373, 2016.

[LHP+15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[LRM24] Bruce Lee, Anders Rantzer, and Nikolai Matni. Nonasymptotic regret analysis
of adaptive linear quadratic control with model misspecification. In 6th Annual
Learning for Dynamics & Control Conference, pages 980–992. PMLR, 2024.

[LZD+23] Yingying Li, Tianpeng Zhang, Subhro Das, Jeff Shamma, and Na Li. Non-
asymptotic system identification for linear systems with nonlinear policies. arXiv
preprint arXiv:2306.10369, 2023.

[M+89] Colin McDiarmid et al. On the method of bounded differences. Surveys in
combinatorics, 141(1):148–188, 1989.

26

[MA12] Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in markov decision
processes. arXiv preprint arXiv:1205.4810, 2012.

[Mes16] Ali Mesbah. Stochastic model predictive control: An overview and perspectives
for future research. IEEE Control Systems Magazine, 36(6):30–44, 2016.

[MJR20] Horia Mania, Michael I Jordan, and Benjamin Recht. Active learning for non-
linear system identification with guarantees. arXiv preprint arXiv:2006.10277,
2020.

[MK21] Zahra Marvi and Bahare Kiumarsi. Safe reinforcement learning: A control bar-
rier function optimization approach. International Journal of Robust and Non-
linear Control, 31(6):1923–1940, 2021.

[MTR19] Horia Mania, Stephen Tu, and Benjamin Recht. Certainty equivalence is efficient
for linear quadratic control. Advances in Neural Information Processing Systems,
32, 2019.

[MYKK22] Deepan Muthirayan, Jianjun Yuan, Dileep Kalathil, and Pramod P Khar-
gonekar. Online learning for predictive control with provable regret guarantees.
In 2022 IEEE 61st Conference on Decision and Control (CDC), pages 6666–
6671. IEEE, 2022.

[OJM08] Frauke Oldewurtel, Colin N Jones, and Manfred Morari. A tractable approxima-
tion of chance constrained stochastic mpc based on affine disturbance feedback.
In 2008 47th IEEE conference on decision and control, pages 4731–4736. IEEE,
2008.

[OO19] Samet Oymak and Necmiye Ozay. Non-asymptotic identification of lti systems
from a single trajectory. In 2019 American control conference (ACC), pages
5655–5661. IEEE, 2019.

[PCC+14] M Cody Priess, Richard Conway, Jongeun Choi, John M Popovich, and Clark
Radcliffe. Solutions to the inverse lqr problem with application to biological
systems analysis. IEEE Transactions on control systems technology, 23(2):770–
777, 2014.

[RM12] J Rawlings and D Mayne. Postface to model predictive control: Theory and
design. Nob Hill Pub, 5:155–158, 2012.

[RSAM16] Alicia Arce Rubio, Alexandre Seuret, Yassine Ariba, and Alessio Mannisi. Op-
timal control strategies for load carrying drones. Delays and Networked Control
Systems, pages 183–197, 2016.

[SF20] Max Simchowitz and Dylan Foster. Naive exploration is optimal for online lqr. In
International Conference on Machine Learning, pages 8937–8948. PMLR, 2020.

27

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016.

[SJK03] Karam Shabaani and Mahdi Jalili-Kharaajoo. Application of adaptive lqr with
repetitive control for ups systems. In Proceedings of 2003 IEEE Conference on
Control Applications, 2003. CCA 2003., volume 2, pages 1124–1129. IEEE, 2003.

[SMT+18] Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin
Recht. Learning without mixing: Towards a sharp analysis of linear system
identification. In Conference On Learning Theory, pages 439–473. PMLR, 2018.

[SO22] Yahya Sattar and Samet Oymak. Non-asymptotic and accurate learning of
nonlinear dynamical systems. The Journal of Machine Learning Research,
23(1):6248–6296, 2022.

[SOF20] Yue Sun, Samet Oymak, and Maryam Fazel. Finite sample system identification:
Optimal rates and the role of regularization. In Learning for dynamics and
control, pages 16–25. PMLR, 2020.

[TM17] Ambuj Tewari and Susan A Murphy. From ads to interventions: Contextual ban-
dits in mobile health. Mobile health: sensors, analytic methods, and applications,
pages 495–517, 2017.

[WJ21] Feicheng Wang and Lucas Janson. Exact asymptotics for linear quadratic adap-
tive control. The Journal of Machine Learning Research, 22(1):12136–12247,
2021.

[WJ22] Feicheng Wang and Lucas Janson. Rate-matching the regret lower-bound
in the linear quadratic regulator with unknown dynamics. arXiv preprint
arXiv:2202.05799, 2022.

[WSS24] Akifumi Wachi, Xun Shen, and Yanan Sui. A survey of constraint formulations
in safe reinforcement learning. arXiv preprint arXiv:2402.02025, 2024.

[WSYO18] Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. Safe exploration
and optimization of constrained mdps using gaussian processes. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[YCLG24] Lintao Ye, Ming Chi, Zhi-Wei Liu, and Vijay Gupta. Online actuator selection
and controller design for linear quadratic regulation with unknown system model.
IEEE Transactions on Automatic Control, 2024.

[YLC+24] Yihang Yao, Zuxin Liu, Zhepeng Cen, Jiacheng Zhu, Wenhao Yu, Tingnan
Zhang, and Ding Zhao. Constraint-conditioned policy optimization for versa-
tile safe reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

28

[ZL20] Yang Zheng and Na Li. Non-asymptotic identification of linear dynamical sys-
tems using multiple trajectories. IEEE Control Systems Letters, 5(5):1693–1698,
2020.

[ZL22] Zichen Zhao and Qianxiao Li. Adaptive sampling methods for learning dynam-
ical systems. In Mathematical and Scientific Machine Learning, pages 335–350.
PMLR, 2022.

[ZS24] Ingvar Ziemann and Henrik Sandberg. Regret lower bounds for learning linear
quadratic gaussian systems. IEEE Transactions on Automatic Control, 2024.

A Notation

A.1 Big O Notation

Throughout this paper, we use notation such as oT (·), OT (·), ωT (·), ΩT (·).

• f(T) = OT (g(T)) if there exists T0 and M ∈ R such that for T ≥ T0, f(T) ≤M · g(T).

• f(T) = ΩT (g(T)) if there exists T0 and M ∈ R such that for T ≥ T0, f(T) ≥M · g(T).

• f(T) = oT (g(T)) if for every constant ϵ > 0 there exists T0 such that for all T ≥ T0,
f(T) ≤ ϵ · g(T).

• f(T) = ωT (g(T)) if for every constant ϵ > 0 there exists T0 such that for all T ≥ T0,
f(T) ≥ ϵ · g(T).

• f(T) = ÕT (g(T)) if there exists T0 and k,M ∈ R such that for T ≥ T0, f(T) ≤
M · g(T) · logk(T).

Note that Ω̃ is defined in the same way. While this is standard notation, we want to highlight
exactly how we are using this notation in our proofs. First, we note that the subscript T is
included to indicate that we will always be using this notation with respect to the variable T .
Furthermore, we note that the constantM that is “hidden” by the big-O notation will always
be a function of known problem specification parameters, such as q, r,Θ,D, D. Therefore, if
an expression includes an OT (1) term, this constant does not depend on any other variables
in the expression. For example, suppose we state that for all K,

f(K) ≤ OT (
√
T).

Then this means that there exists T0 and M (where M is a function of known problem
specification parameters) such that for all K and T ≥ T0,

f(K) ≤M ·
√
T .

Furthermore, we will use notation such as f(T) = OT (ϵ) to mean that there exists T0 and
M such that f(T) ≤M · ϵ for T ≥ T0, where M does not depend on ϵ and only depends on
the problem specification parameters {q, r,Θ,D, D}.

Finally, note that we will use the computer science notation of OT (), in that the functions
f(T) and g(t) will always be non-negative.

29

A.2 Miscellaneous Notation

Throughout the proofs, any inequalities or equations involving random variables will repre-
sent inequality or equality almost surely unless otherwise stated.

Throughout the paper, we will use the notation {xi}ni=1 to represent the unordered but
indexed set of x1, x2, ..., xn.

A.3 Problem Specifications

Note that the notation below will be used throughout the appendix, however the variables
may depend on the algorithm being studied within a section. For example, the event E is
defined slightly differently for each of the three algorithms, and therefore the reader should
note which algorithm each section addresses. The notation will never change within a single
section.

• q, r : coefficients for the cost at time t of qx2
t + ru2

t .

• W = {wt}T−1
t=0 : The noise random variables for the T -length trajectory.

• D : Distribution of wt

– BP : Upper bound on the density of D
– FD : Cumulative Density Function (CDF) of D
– w̄: the bound of D when the distribution is bounded.

• Θ = [a, ā] × [b, b̄] : The given initial set of dynamics such that θ∗ ∈ Θ and size(Θ) =
min(ā− a, b̄− b)

• θ∗ = (a∗, b∗) : The true (unknown) dynamics.

• C init : The initial safe controller satisfying Assumption 1.

• D = (DL, DU) : the expected-position boundary for the safety constraint.

• A set of controls {ut} are safe for dynamics {θt} if for all t, DL ≤ atxt + btut ≤ DU.

• Ht = (x0, u0, x1, u1, ..., ut−1, xt) and Ft = σ(Ht).

• J(θ, C, T, x,W) : The random variable cost of using controller C starting at position
x0 = x for T time steps under dynamics θ with noise random variables W .

• J∗(θ, C, T) = J∗(θ, C, T, 0) = E[J(θ, C, T, x,W) | θ, C, T, x] and J∗(θ, C, T) = J∗(θ, C, T, 0).

• J∗(θ, C) = J∗(θ, C, 0) = limT→∞ J∗(θ, C, T, 0).

• Cθ = {Cθ
K}K∈[Kθ

L,K
θ
U] : a class of controllers that are safe for dynamics θ that are

parameterized by K ∈ [Kθ
L, K

θ
U]

• Kopt(θ, T) : The K that maximizes J∗(θ, Cθ
K , T, 0) for K ∈ [Kθ

L, K
θ
U].

30

• Kopt(θ) : The K that maximizes J∗(θ, Cθ
K) for K ∈ [Kθ

L, K
θ
U].

• Cunc
K : The unconstrained linear controller with parameter K, i.e. such that Cunc

K (x) =
−Kx.

• Fopt(θ) : The K that maximizes J∗(θ, Cunc
K).

A.4 Algorithm Notation

• νT : Algorithm specific parameter that is either T−1/4 or T−1/3.

• se : The number of the last round of the safe exploitation phase.

• Ts =
2s

ν2T
: The length and starting time of round s of the safe exploitation phase. Note

that T0 = 1/ν2
T .

• ϵs : Uncertainty bound for θ∗ used throughout the algorithm.

• θ̂s : An estimate of θ∗ that is with high probability within ϵs distance of θ∗

• usafeU
t : Largest u such that max

∥θ−θ̂s∥∞≤ϵs

axt + bu ≤ DU

• usafeL
t : Smallest u such that max

∥θ−θ̂s∥∞≤ϵs

axt + bu ≥ DL.

• Calg
s (xt) : the controller that the algorithm uses in round s of the safe exploitation

phase with additional safety modifications, i.e. the algorithm in round s of the safe
exploitation phase uses control ut = max

(
min

(
Calg

s (xt), u
safeU
t

)
, usafeL

t

)
.

• Calg : The actual controller of the corresponding algorithm as described in the previous
point.

• P (θ,K, z) : See Assumption 9.

A.5 Proof Notation

• Ws = {wi}Ts+1−1
i=Ts

: Noise random variables in the round s of the safe exploitation phase.

•
(
Cθ∗

K∗ , {Cθ∗
K∗

s
}ses=0

)
: The expected cost minimizing set of controllers to use if the con-

troller Cθ∗
K∗ is used for the first T0 steps and for time t ≥ T0, the controller used is

Cθ∗
Ks
, where s = ⌊log2 (tν2

T)⌋. The sequence (x∗
0, x

∗
1, ...) are the corresponding positions

of using these controllers.

• (x′
0, x

′
1, ...) and (u′

0, u
′
1, ...): Unless otherwise specified, these are the positions and con-

trols of the algorithm being discussed in the current proof.

• (x̂T0 , x̂T0+1, ...) : Unless otherwise defined in the theorem/lemma statement, x̂T0 , x̂T0+1, ...

is the sequence of positions if the control at each time t ≥ T0 is C θ̂s
Kopt(θ̂s,Ts)

(xt) for

s = ⌊log2 (tν2
T)⌋ and starting at x̂T0 = x′

T0
.

31

• Esafe = {∀t < T : DL ≤ a∗x′
t + b∗u′

t ≤ DU} : The event that all of the controls satisfy
the safety constraints.

• E1 =
{
∀t < T : |wt| ≤ log2(T)

}
: Event that all noise values have magnitude less than

log2(T)

• E0 =
{
∀s ≤ se : ∥θ∗ − θ̂s∥∞ ≤ ϵs

}
: The event that all of the estimates of θ∗ are within

ϵs of θ
∗.

• E2 = E0

⋂{
maxs∈[0:se] ϵs ≤ ÕT (νT)

}
.

• Es
2 =

{
∥θ̂s − θ∗∥∞ ≤ ϵs ≤ cT · νT

}
, where cT is the coefficient in the ÕT (νT) of the

definition of event E2.

• E = Esafe ∩ E1 ∩ E2

• Bx = log3(T) : Used throughout the appendix to simplify notation.

• w̄ : The maximum magnitude of the noise distribution when the noise distribution is
bounded.

• Kθ
DU

: the value of K that satisfies the equation DU

a−bKθ
DU

−DU = w̄.

32

B Additional Related Work

The constrained LQR problem is closely related to the problem of model predict control
(MPC) with constraints. For example, there is a large body of work on robust model
predictive control with known dynamics ([BM07]). This is further extended to MPC with
model uncertainties in robust adaptive MPC (RAMPC) in works such as [KAS+19, LCKR21].
There have also been significant work on stochastic MPC with soft constraints, for example
[Mes16, OJM08], which are closely related to the expected position constraints we use in
this paper. In the context of constrained LQR with no noise, [BMDP02] derive the optimal
controller as a piece-wise affine function. In a different MPC setting with deterministic
dynamics and noisy observations, [MYKK22] provide an algorithm that also achieves O(T 2/3)
regret. Learning based MPC using an initial safe controller was also studied in [KBTK18].
MPC results on learning constraints include e.g. [LCA19, KAS+19]. While these works
provide algorithms to solve constrained optimization problems such as LQR, these works
do not compare the asymptotic performance of their results to the optimal algorithm. In
contrast, our work studies a similar problem but focuses on algorithmic regret analysis from
an RL perspective, comparing our algorithm to some baseline representation of the “best”
algorithm.

The results in this paper are also closely related to general system identification, the
idea of being able to (in any way) asymptotically estimate the unknown dynamics. There
have been multiple works in this area including [SMT+18, ZL22, MJR20]. A recent work
closely related to the results of this paper is [LZD+23], which describes learning rates for
non-linear controllers in a similar setting. The results in [LZD+23], however, require i.i.d.
noise excitation in every step, while our uncertainty bounds after the warm-up phase actually
require no such excitation. These works are most similar to our work in that our results rely
on identifying the system dynamics to a high accuracy. However our focus is not simply on
learning the system, but also on achieving provably low regret results. The new uncertainty
bounds we use to achieve our results also apply to nonlinear controllers as in [LZD+23], but
our uncertainty bounds apply specifically to the setting with safety constraints.

33

C Proof of Theorem 3

Before proving Theorem 3, we will extend Definition 1 to account for time-dependent dy-
namics.

Definition 2. A control ut and position xt are safe for dynamics θt if

DL ≤ atxt + btut ≤ DU.

Similarly, a (possibly time-dependent) controller Ct is safe for T steps for dynamics {θt} if
when the dynamics at time t is θt, the sequence of controls C0(H0), C1(H1), ..., CT−1(HT−1)
and the resulting positions x0, ..., xT−1 are safe for dynamics θt at all times t.

Note that in general, a controller being safe is a random event.
Theorem 3 makes two claims: the first is that Algorithm 3 is safe for dynamics θ∗ for

all T steps with high probability and the second bounds with high probability the regret of
Algorithm 3. In Appendix C.1 we will prove the result about the safety of Algorithm 3 and
in Appendix C.2 we will prove the result about the regret of Algorithm 3.

C.1 Proof of Safety of Algorithm 3

Lemma 1. Under Assumptions 1–8 , Algorithm 3 is safe for T steps for dynamics θ∗ with
probability 1− oT (1/T

2).

proof. We will first analyze the warm-up exploration phase (the first loop in Algorithm 3 in
Lines 2–4). If the control at time t− 1 was safe for dynamics θ∗ as in Definition 2, then with
probability at least 1−OT (

1
T 4), the next position satisfies

xt ∈
[
DL − F−1

D (1− 1

T 4
), DU + F−1

D (1− 1

T 4
)

]
.

By Assumption 2 on the controller C init, DL + b∗

log(T)
≤ a∗x + b∗C init(x) ≤ DU − b∗

log(T)
for

all x ∈
[
DL − F−1

D (1− 1
T 4), DU + F−1

D (1− 1
T 4)
]
. In Lines 2–4 of Algorithm 3 the control is

C init(xt) +
ϕt

log(T)
and |ϕt| = 1. Therefore, if at time t − 1 the algorithm’s control was safe,

then with probability 1− OT

(
1
T 4

)
the control at time t will satisfy DL ≤ a∗xt + b∗ut ≤ DU

and be safe. Furthermore, at time 0, the position is x0 = 0, therefore the first control is safe.
Using this as a base case in a proof by induction with a union bound over all 1/ν2

T time steps
t in this loop, with probability 1− OT (1/T

3), the first 1/ν2
T steps will be safe for dynamics

θ∗.
Now we will analyze the second loop in Algorithm 3 (Lines 5–13). Define se = log2(Tν

2
T)−

1. Define the event E0 as

E0 =
{
∀s ≤ se : ∥θ∗ − θ̂s∥∞ ≤ ϵs

}
. (16)

These ϵs are less than the right hand side of the equation in Lemma 23, and therefore by
Lemma 23, under Assumptions 3 and 1,

P(E0) ≥ 1− oT (1/T
2). (17)

34

Informally, the next event we define is the combination of event E0 and the event that the
ϵs (defined in Line 9 of Algorithm 3) are decreasing at a sufficiently fast rate, which we will
prove in Lemma 2. Define

E2 = E0

⋂{
max
s∈[0:se]

ϵs ≤ ÕT (νT)

}
. (18)

Lemma 2. Under Assumptions 1–8, with probability 1− oT (1/T
2)

max
s∈[0:se]

ϵs ≤ ÕT (νT).

The proof of Lemma 2 can be found in Appendix G.2. Combining Lemma 23 and Lemma
2 with a union bound gives that

P(E2) ≥ 1− oT (1/T
2). (19)

Define the event E1 as
E1 =

{
∀t < T : |wt| ≤ log2(T)

}
. (20)

By Assumption 3, the noise is sub-Gaussian, and therefore there exists a constant α such
that for any t and x, P(wt ≥ x) ≤ 2 exp(−x2/α). Taking x = log2(T) and a union bound
over all wt, we have that

P(E1) ≥ 1−
T−1∑
t=0

2 exp
(
− log4(T)/α

)
= 1− oT

(
1

T log(T)

)
. (21)

We need one last lemma before concluding the proof.

Lemma 3. Under Assumptions 1–8, conditional on E1 ∩ E2 and for sufficiently large T , if
uT0−1 is safe for dynamics θ∗, then for all t ∈ [T0, T],

usafeL
t ≤ usafeU

t .

The proof of Lemma 3 can be found in Appendix E.1.
Under event E0, θ̂s satisfies ∥θ∗ − θ̂s∥∞ ≤ ϵs for all s ∈ [0 : se] (which recall are the s in

the second for loop of Algorithm 3). Therefore, by the choice of usafeU
t and usafeL

t in Lines 11
and 12, it must be the case that a∗xt+b∗usafeU

t ≤ DU and a∗xt+b∗usafeL
t ≥ DL. By the choice

of ut in Line 13 of Algorithm 3, if usafeL
t ≤ usafeU

t then usafeL
t ≤ ut ≤ usafeU

t . This implies that

DL ≤ a∗xt + b∗ut ≤ DU. (22)

Therefore, by Lemma 3, under E1∩E2∩{uT0−1 is safe for dynamics θ∗}, all controls used in
the second for loop (Lines 5–13) in Algorithm 3 are safe for dynamics θ∗. By a union bound
combining Equations (19) and (21) and the first paragraph of this proof, we have that

P(E1 ∩ E2 ∩ {uT0−1 is safe for dynamics θ∗}) = 1− oT (1/T
2).

Because all of the steps in Algorithm 3 are part of either the first or second loop, and the
first loop steps are safe for dynamics θ∗ with probability 1− oT (1/T

2) and the second loop
steps are safe for dynamics θ∗ with probability 1− oT (1/T

2), a union bound gives that the
overall algorithm is safe for dynamics θ∗ with probability 1− oT (1/T

2).

35

C.2 Proof of Regret Bound of Algorithm 3

proof. Define the event Esafe as the event that the controls used by the algorithm are safe
at all times. If x′

0, x
′
1, ... and u′

0, u
′
1, ... are respectively the positions and controls of the

algorithm, we have that

Esafe = {∀t < T : DL ≤ a∗x′
t + b∗u′

t ≤ DU} , (23)

and by Lemma 1 we have that P(Esafe) = 1− oT (1/T
2). Now, define the event E as

E = Esafe ∩ E1 ∩ E2. (24)

A union bound combining Equations (21) and (19) gives that

P(E) = P(Esafe ∩ E1 ∩ E2) ≥ 1− oT (1/T
2). (25)

The rest of the proof of Theorem 3 will focus on proving that the regret of Algorithm 3
is ÕT (T

2/3) with conditional probability at least 1 − oT (1/T) given E. Let Calg be the
(time-dependent) controller of Algorithm 3. Then the total cost of using Algorithm 3 is
T · J(θ∗, Calg, T, 0,W), and the regret we are trying to bound is (as in Equation (7) using
the notation Kopt from Assumption 6),

T · J(θ∗, Calg, T, 0,W)− T · J∗(θ∗, Cθ∗

Kopt(θ∗,T), T). (26)

Define Ws as the noise random variables from time Ts to Ts+1 − 1, so

Ws = {wi}Ts+1−1
i=Ts

. (27)

For any tuple (K, {Ks}0≤s≤se) whereK,Ks ∈ (Kθ∗
L , Kθ∗

U), define x
(K,{Ks}0≤s≤se)
0 , x

(K,{Ks}0≤s≤se)
1 , ...

as the random variable sequence of positions that result from starting at x0 = 0 and using
the controller that at each time t < T0 uses controller Cθ∗

K and at each time t ≥ T0 uses the
controller Cθ∗

Ks
, where s = ⌊log2 (tν2

T)⌋. Define (K∗, {K∗
s}0≤s≤se) as follows:

(K∗, {K∗
s}0≤s≤se)

= argmin
(K,{Ks}0≤s≤se)

E

[
1

ν2
T

J

(
θ∗, Cθ∗

K ,
1

ν2
T

, 0, {wt}T0−1
t=0

)
+

se∑
s=0

TsJ(θ
∗, Cθ∗

Ks
, Ts, x

(K,{Ks}0≤s≤se)
Ts

,Ws)

]
.

Here the expectation is taken over both wt and Ws (and recall that xTs is a deterministic
function of the wt andWs because C

θ
K is non-random for allK, θ). We then define x∗

0, x
∗
1, ... as

the random variable sequence of positions such that x∗
t = x

(K∗,{K∗
s }0≤s≤se)

t . By construction,
we could choose K,Ks = Kopt(θ

∗, T) for every s, and therefore it must be the case that

E

[
1

ν2
T

J

(
θ∗, Cθ∗

K∗ ,
1

ν2
T

, 0, {wt}T0−1
t=0

)
+

se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
≤ T ·J∗

(
θ∗, Cθ∗

Kopt(θ∗,T), T
)
.

36

Therefore, upper bounding the cost of Algorithm 3 minus the cost of using K∗ for T0 steps
and then using the sequence of controllers {Cθ∗

K∗
s
} each for Ts steps is sufficient for upper

bounding the regret in Equation (26). Now we will bound

T ·J(θ∗, Calg, T, 0,W)−E

[
1

ν2
T

J

(
θ∗, Cθ∗

K∗ ,
1

ν2
T

, 0, {wt}T0−1
t=0

)
+

se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
.

(28)
Note that we will upper bound the cost in terms of the parameter νT = T−1/3 in Line 1.
In order to bound the quantity in Equation (28), we will break this component of regret
into four sources: the regret from the warm-up period (Lines 2–4), the regret from using the
estimates θ̂s instead of using θ∗, the regret induced by the randomness of the trajectory, and
the regret from enforcing safety.

The first source of regret is the regret incurred in the warm-up period of Algorithm 3
(Lines 2–4). Recall that Calg

s is the controller used in Algorithm 3 in the s iteration of the
second for loop. We will use Proposition 4 to bound the cost incurred during the warm-up
period.

Proposition 4 (Regret from Warm-up Period). Define x′
0, x

′
1, ... as the sequence of random

variables that are the positions of the controller Calg defined in Algorithm 3. Define R0 as
the cost of the first 1/ν2

T steps, i.e.

R0 = T · J(θ∗, Calg, T, 0,W)−
se∑
s=0

Ts · J(θ∗, Calg
s , Ts, x

′
Ts
,Ws). (29)

Then under Assumptions 1–8 and conditional on event E,

R0

a.s.

≤ ÕT

(
1

ν2
T

)
.

The proof of Propposition 4 can be found in Appendix D.1. The second source of regret

in Equation (28) is that Algorithm 3 uses a controller C θ̂s
Kopt(θ̂s,Ts)

instead of the controller

Cθ∗
K∗

s
. This source of regret (denoted R1) can be interpreted as the “estimation cost” of using

the estimated controller instead of the optimal controller, but without enforcing safety. We
will use Proposition 5 to bound this source of regret.

Proposition 5 (Regret from Non-optimal Controller). Define R1 as

R1 :=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
.

Note that Ws is independent of θ̂s by construction. Then under Assumptions 1–8 and con-
ditional on event E2,

R1

a.s.

≤ ÕT (TνT) . (30)

The proof of Proposition 5 can be found in Appendix D.2. It may appear odd that the
starting positions of the two terms do not match in the definition of R1 (or in the definition

37

of R2 below), but we do account for this difference in the proofs of Propositions 5 and 6. The
third source of regret (which we will denote R2) comes from the fact that in Equation (28)
we are comparing the random variable T · J(θ∗, Calg, T, 0,W) to an expectation. In order to
show that this source of regret is small, we need to show a concentration inequality for the

cost of repeatedly using controllers of the form C θ̂s
Kopt(θ̂s,Ts)

, which we do in Proposition 6.

Proposition 6 (Regret from Randomness). Define x̂T0 , x̂T0+1, ... as the sequence of ran-
dom variables representing the sequence of positions if the control at each time t ≥ T0 is

C θ̂s
Kopt(θ̂s,Ts)

(xt) for s = ⌊log2 (tν2
T)⌋ and starting at x̂T0 = x′

T0
. Define R2 as

R2 :=
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s

]
.

Then with conditional probability 1− oT (1/T) given event E,

R2 ≤ ÕT (
√
T). (31)

The proof of Proposition 6 can be found in Appendix D.3. The final source of regret in
Equation (28) is the extra cost incurred by enforcing safety in Algorithm 3 (Line 13) rather

than using the control given by C θ̂s
Kopt(θ̂s,Ts)

. Each time we enforce safety we potentially incur

an extra cost, but Proposition 7 bounds this extra cost.

Proposition 7 (Regret from Enforcing Safety). Define x̂T0 , x̂T0+1, ... as the sequence of
random variables representing the sequence of positions if the control at each time t ≥ T0

is C θ̂s
Kopt(θ̂s,Ts)

(xt) for s = ⌊log2 (tν2
T)⌋ and starting at x̂T0 = x′

T0
. Define R3 as (the random

variable)

R3 :=
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws).

Then under Assumptions 1–8, with conditional probability 1− oT (1/T) given event E,

R3 ≤ ÕT (νTT).

The proof of Proposition 7 can be found in Appendix D.4. Now we are ready to combine
all of the sources of regret. To summarize, we have bounded and broken down the regret

38

into

T · J(θ∗, Calg, T, 0,W)− T · J∗(θ∗, Cθ∗

Kopt(θ∗,T), T)

≤ T · J(θ∗, Calg, T, 0,W)− E

[
1

ν2
T

J

(
θ∗, Cθ∗

K∗ ,
1

ν2
T

, 0, {wt}
1/ν2T−1
t=0

)
+

se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]

≤ T · J(θ∗, Calg, T, 0,W)− E

[
se∑
s=0

TsJ
∗(θ∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]

=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
︸ ︷︷ ︸

R1

+
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]︸ ︷︷ ︸

R2

+
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)︸ ︷︷ ︸

R3

+ T · J(θ∗, Calg, T, 0,W)−
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)︸ ︷︷ ︸

R0

. (32)

Now we will use Propositions 4, 5, 6, and 7 to bound the above quantity. Conditional
on event E, Proposition 4 and Proposition 5 respectively imply that R0 ≤ ÕT (1/ν

2
T) and

R1 ≤ ÕT (νTT). Proposition 6 and Proposition 7 respectively imply that conditional on event
E with conditional probability 1− oT (1/T), R2 ≤ ÕT (

√
T) and R3 ≤ ÕT (νTT). Therefore,

applying a union bound gives that the bounds on R0, R1, R2, R3 all hold conditional on
event E with probability 1 − oT (1/T). Putting these bounds into Equation (32), we have
that conditional on event E with probability 1− oT (1/T),

T ·J(θ∗, Calg, T, 0,W)−T ·J∗(θ∗, Cθ∗

Kopt(θ∗,T), T) ≤ R1+R2+R3+R0 ≤ ÕT

(√
T +

1

ν2
T

+ TνT

)
.

Choosing νT = T−1/3 (as in Algorithm 3) will minimize this regret upper bound giving a
total regret upper bound of ÕT (T

2/3). Because the probability of event E is 1 − oT (1/T),
by a union bound the regret bound holds with unconditional probability 1− oT (1/T).

D Proofs of Propositions from Appendix C

D.1 Proof of Proposition 4 (Regret of Warm-up)

proof. To bound the cost of the warm-up phase, we need the following lemma. Informally,
Lemma 4 shows that when the noise is relatively small and the controller is “close” to being

39

safe with respect to dynamics θ∗, the position stays relatively small. Note that in this
lemma we define Bx := log3(T), which we will use throughout the proofs in the rest of the
appendices.

Lemma 4. Let |x0| ≤ 4 log2(T). Suppose for all t < T , the control used by controller Ct at
time t is safe for fixed dynamics θt and for all t ≤ T ,

∥θ∗ − θt∥∞ ≤
1

log(T)
. (33)

Then under Assumptions 1–8, for sufficiently large T and conditioned on event E1, using
this controller Ct with dynamics θ∗ for T steps starting at x0 will give positions (x0, ..., xT)
and controls (u0, ..., uT−1) satisfying the following equations.

|xt|
a.s.

≤ 4 log2(T) < log3(T) := Bx (34)

|ut|
a.s.

≤ OT (log
2(T)) < log3(T) := Bx. (35)

Furthermore, if x0 and the controller Ct are deterministic, then the positions (x0, ..., xT) and
controls (u0, ..., uT−1) satisfy

E[|xt|] ≤ 4 log2(T) < log3(T) := Bx (36)

E[|ut|] ≤ OT (log
2(T)) < log3(T) := Bx. (37)

The proof of Lemma 4 can be found in Appendix E.2.
Now we will use this lemma to bound the total cost of the warm-up phase of the algorithm.

The controller for the first 1/ν2
T steps is safe for dynamics θ∗ under event E as shown in

Lemma 1. This means by Lemma 4, conditional on event E, the position and controls during
this warm-up period are both bounded in magnitude by Bx (defined in Lemma 4) almost
surely for sufficiently large T . Because the cost at time t is qx2

t + ru2
t , this implies that the

total cost of the first 1/ν2
T steps is upper bounded by OT ((q + r)B

2
x

ν2T
) = ÕT (1/ν

2
T).

D.2 Proof of Proposition 5 (Regret of Non-optimal Controller)

proof. First, we will use Lemma 5 to rewrite the expression in Proposition 5 in a form
amenable to Assumption 7.

Lemma 5. Under Assumptions 1–8 , for every s ∈ [0 : se] the following hold.∣∣E [TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
− E

[
TsJ(θ

∗, Cθ∗

K∗
s
, Ts, 0,Ws)

]∣∣ ≤ ÕT (1) (38)

The proof of Lemma 5 can be found in Appendix E.3. By Lemma 2, there exists a
cT = ÕT (1) such that under event E2, maxs ϵs ≤ cT · νT . For s ∈ [0 : se], define

Es
2 =

{
∥θ̂s − θ∗∥∞ ≤ ϵs ≤ cT · νT

}
. (39)

Informally, the event Es
2 is the event that the bounds in event E2 hold at time s. Note that

because Es
2 ⊆ E2, by Equation (19),

P(Es
2) ≥ P(E2) ≥ 1− oT (1/T

2). (40)

40

We will also use the following application of Assumption 7 that holds under event Es
2.

Conditional on event Es
2,∣∣∣E [TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)− TsJ(θ
∗, Cθ∗

K∗
s
, Ts, 0,Ws)

∣∣∣ θ̂s]∣∣∣
=
∣∣∣TsJ

∗(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts)− TsJ
∗(θ∗, Cθ∗

K∗
s
, Ts)

∣∣∣
≤ ÕT

(
Tsϵs +

Ts

T 2

)
. Assumption 7 (41)

We can now use the triangle inequality with Equation (38) to rewrite the left side of Equation
(30) and apply Equation (41). Formally, conditional on event E2,

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]

=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− se∑

s=0

E
[
TsJ(θ

∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
≤ ÕT (1) +

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− se∑

s=0

E
[
TsJ(θ

∗, Cθ∗

K∗
s
, Ts, 0,Ws)

]
By Equation (38)

= ÕT (1) +
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)− TsJ(θ
∗, Cθ∗

K∗
s
, Ts, 0,Ws)

∣∣∣ θ̂s]
≤ ÕT (1) +

se∑
s=0

∣∣∣E [TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,Ws)− TsJ(θ

∗, Cθ∗

K∗
s
, Ts, 0,Ws)

∣∣∣ θ̂s]∣∣∣
≤ ÕT (1) + ÕT

(
se∑
s=0

Tsϵs +
Ts

T 2

)
By Equation (41)

≤ ÕT (TνT).

D.3 Proof of Proposition 6 (Concentration of Cost)

proof. The following lemma is a result of McDiarmid’s inequality and shows that the random

variable corresponding to TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,W) concentrates around a conditional ex-

pectation.

Lemma 6. Under Assumptions 1–8 , for every s ∈ [0 : se] there exists an event EM
s such

that EM
s depends only on the random variables in Ws and θ̂s, such that EM

s ⊆ {∀t ∈ [Ts :
Ts+1 − 1], |wt| ≤ log2(T)}, and such that conditional on Es

2, P(EM
s | θ̂s) ≥ 1− oT (1/T

8) and
for ϵ ≥ 1/T and for sufficiently large T ,

P
(∣∣∣TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)− E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]∣∣∣ ≥ ϵ
∣∣∣ θ̂s)

≤ 1

T 8
+ 2 exp

(
− ϵ2

2Tsc2

)

41

for some c = ÕT (1).

The proof of Lemma 6 can be found in Appendix E.4. We also want that taking expec-
tation conditional on EM

s does not significantly change the expected cost.

Lemma 7. Under Assumptions 1–8, if EM
s ⊆ {∀t ∈ [Ts : Ts+1 − 1], |wt| ≤ log2(T)} and

conditional on event Es
2 we have P(EM

s) ≥ 1− oT (1/T
8), then conditional on event Es

2,

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] a.s.

≥ E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
− ÕT (1),

(42)
where the term ÕT (1) does not depend on s.

The proof of Lemma 7 can be found in Appendix E.5. Combining Lemma 6 for ϵ =
c
√
Ts log(T) and Lemma 7 for sufficiently large T , we have the following conditional on

event Es
2:

P
(
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)− E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≥ c

√
Ts log(T) + ÕT (1)

∣∣∣ θ̂s)
≤ 1

T 8
+ 2 exp

(
− log2(T)

2

)
. (43)

Now applying a union bound over all s ∈ [0 : se] gives the following result:

P

(
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≥ se∑

s=0

(
c
√
Ts log(T) + ÕT (1)

))
≤ P

(
∃s ∈ [0 : se] : TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)− E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≥ c

√
Ts log(T) + ÕT (1)

)
≤

se∑
s=0

P
(
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)− E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≥ c

√
Ts log(T) + ÕT (1)

)
≤

se∑
s=0

(
1

T 8
+ 2 exp

(
− log2(T)

2

)
+ P(¬Es

2)

)
Equation (43)

≤ ÕT

(
1

T 2

)
. Equation (40) (44)

Note that
se∑
s=0

c
√
Ts log(T) = ÕT (

√
T), (45)

therefore combining Equations (45) and (44), we have that

P

(
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≥ ÕT (

√
T)

)

≤ ÕT

(
1

T 2

)
. (46)

Equation (46) differs from the desired result of Proposition 6 in that the first summation is
over trajectories starting at position 0 as opposed to x̂Ts . Therefore, the last part of this

42

proof is to bound∣∣∣∣∣
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,Ws)

∣∣∣∣∣ .
To do this, we will use the following lemma that is a consequence of Assumption 8.

Lemma 8. Under Assumptions 1–6 and 8, if ∥θ − θ∗∥∞ = ϵ ≤ ϵA8, then for any K ∈
(Kθ

L, K
θ
U), t ≤ T , and |x|, |y| ≤ 4 log2(T) and any noise random variables W ′, conditional

on event EA8(C
θ
K ,W

′),∣∣t · J(θ∗, Cθ
K , t, x,W

′)− t · J(θ∗, Cθ
K , t, y,W

′)
∣∣ = ÕT (|x− y|+ ϵ) .

The proof of Lemma 8 can be found in Appendix E.6.
In order to use Lemma 8, we must show that |x̂Ts | ≤ 4 log2(T). Recall that x̂Ts is the

position at time Ts if the position at time T0 is x̂T0 = x′
T0
, where x′

T0
is the position of the

controller Calg at time T0. Because Esafe ⊆ E, under event E we have that Calg is safe for
dynamics θ∗. Therefore by Lemma 4, |x′

T0
| ≤ 4 log2(T). Because E2 ⊆ E, under event E we

also have that ∥θ̂s − θ∗∥∞ ≤ ÕT (νT) for all s ∈ [0 : se] and sufficiently large T . Therefore,

since x̂T0 = x′
T0

and the control C θ̂s
Kopt(θ̂s,Ts)

(x) is safe with respect to θ̂s for any x, again by

Lemma 4 we have that under event E and for sufficiently large T , |x̂Ts| ≤ 4 log2(T). Now

we can apply Lemma 8 to get that, conditional on event E ∩
⋂se

s=0EA8(C
θ̂s
Kopt(θ̂s,Ts)

,Ws),∣∣∣∣∣
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,Ws)

∣∣∣∣∣
≤

se∑
s=0

∣∣∣TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)− TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣

≤
se∑
s=0

ÕT

(
x̂Ts + ∥θ̂s − θ∗∥∞

)
≤ ÕT (1). (47)

A union bound gives that P(
⋂se

s=0EA8(C
θ̂s
Kopt(θ̂s,Ts)

,Ws)) = 1 − oT (1/T
2). Combining Equa-

tion (46) with Equation (47) with a union bound gives that conditional on event E with
probability 1− oT (1/T),

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≤ ÕT (

√
T),

(48)
which is the desired result of Proposition 6.

43

D.4 Proof of Proposition 7 (Regret of Enforcing Safety)

proof. Intuitively, R3 is the regret caused by enforcing safety and deviating from the con-

troller C θ̂s
Kopt(θ̂s,Ts)

. Lemma 9 bounds the cost of deviating from C θ̂s
Kopt(θ̂s,Ts)

as a sum over all

times the algorithm deviates.

Lemma 9. Recall usafeU
t and usafeL

t defined in Algorithm 3 Lines 11 and 12. Let XU
t and XL

t be
the indicators for the events that at time t, Calg(x′

t) = usafeU
t or Calg(x′

t) = usafeL
t , respectively.

Under Assumptions 1–8 and conditional on event E, with probability 1− oT (1/T)

se∑
s=0

TsJ(θ
∗, Calg, Ts, x

′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)

≤ ÕT

(
se∑
s=0

ϵsTs

)
+

se∑
s=0

Ts+1−1∑
t=Ts

XU
t · ÕT

(∣∣∣usafeU
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)
∣∣∣)+XL

t · ÕT

(∣∣∣usafeL
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)
∣∣∣) .

The proof of Lemma 9 can be found in Appendix E.7. We also remind the reader that
the coefficients of the ÕT (·) terms in Lemma 9 do not depend on t or s, and are a function
of known problem parameters and log(T) factors. The next tool we need is to be able to
bound the difference in control when applying safety in Algorithm 3 compared to the control
when not applying safety. We can do that as follows.

Lemma 10. Under Assumptions 1–8 and conditional on event E, for any t such that 1/ν2
T ≤

t ≤ T , if s = ⌊log2 (tν2
T)⌋ and usafeU

t ≤ C θ̂s
Kopt(θ̂s,Ts)

(x′
t) (which is equivalent to Calg(x′

t) =

usafeU
t), then,

|usafeU
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)| ≤ ÕT (ϵs). (49)

Similarly, if usafeL
t ≥ C θ̂s

Kopt(θ̂s,Ts)
(x′

t), then conditional on event E,

|usafeL
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)| ≤ ÕT (ϵs). (50)

The proof of Lemma 10 can be found in section E.8. Combining Lemmas 9 and 10, we
have that conditional on event E, with probability 1− oT (1/T),

44

R3 =
se∑
s=0

TsJ(θ
∗, Calg, Ts, x

′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)

≤ ÕT

(
se∑
s=0

ϵsTs

)
+

se∑
s=0

Ts+1−1∑
t=Ts

(
XU

t · ÕT

(∣∣∣usafeU
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)
∣∣∣)

+XL
t · ÕT

(∣∣∣usafeL
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)
∣∣∣)) Lemma 9

≤ ÕT

(
se∑
s=0

ϵsTs

)
+

se∑
s=0

Ts+1−1∑
t=Ts

XU
t · ÕT (ϵs) +XL

t · ÕT (ϵs) Lemma 10

≤ ÕT (TνT) +
T−1∑

t=1/ν2T

XU
t · ÕT (νT) +XL

t · ÕT (νT) E2 ⊆ E

≤ ÕT (TνT) + ÕT (TνT)

= ÕT (TνT).

The key application of event E in the above result is that E2 ⊆ E implies that under event
E, maxs∈[0:se] ϵs = ÕT (νT).

45

E Proofs of Lemmas from Appendix D

E.1 Proof of Lemma 3

Recall the notation that x′
t is the position at time t when using the controller Calg. We will

prove the following. For sufficiently large T and any t ∈ [T0 : T], if Calg(x′
t−1) is safe for

dynamics θ∗, then conditional on E1 ∩ E2, we have that both usafeL
t ≤ usafeU

t and Calg(x′
t)

is safe for dynamics θ∗. Because we assume in this lemma that uT0−1 = Calg(x′
T0−1) is safe

with respect to dynamics θ∗, this will prove by induction the desired result that conditional
on E1 ∩ E2 and for sufficiently large T , usafeL

t ≤ usafeU
t for all t ∈ [T0 : T].

Fix a given t, and define s = ⌊log2(t/ν2
T)⌋. Assume Calg(x′

t−1) is safe for dynamics θ∗.

Then under event E1, we have that |x′
t| ≤ ∥D∥∞ + |wt−1| ≤ Bx. Let v =

DU−a∗x′
t−4ϵsBx

b∗
.

We will show that usafeU
t ≥ v. Note that a∗x′

t + b∗v = DU − 4ϵsBx. For sufficiently large T ,
because DU −DL ≥ 1

log(T)
(Assumption 3) and ϵs = ÕT (νT) = oT (1/ log(T)) under E1 ∩ E2,

this implies that
DL ≤ a∗x′

t + b∗v ≤ DU.

Therefore v is safe for dynamics θ∗, which implies by Lemma 4 that under event E1 and for
sufficiently large T ,

|v| ≤ Bx.

Under event E1 ∩ E2, ∥θ∗ − θ̂s∥∞ ≤ ϵs, therefore by the above results we have that under
E1 ∩ E2 and for sufficiently large T ,

max
∥θ̂s−θ∥∞≤ϵs

ax′
t + bv ≤ a∗x′

t + b∗v + 2ϵs|x′
t|+ 2ϵs|v|

≤ a∗x′
t + b∗v + 4ϵsBx |v| ≤ Bx, |x′

t| ≤ Bx

= DU. Def of v

This implies by the definition of usafeU
t that

usafeU
t ≥ v =

DU − a∗x′
t − 4ϵsBx

b∗
.

By the same logic, we also have that

usafeL
t ≤ DL − a∗x′

t + 4ϵsBx

b∗
.

For sufficiently large T under event E2,
8ϵsBx

b∗
= ÕT (νT) ≤ 1

log(T)
. Therefore, using that

DU ≥ DL+
1

log(T)
by Assumption 3, we can conclude that under event E1∩E2 for sufficiently

large T ,

usafeL
t ≤ DL − a∗x′

t + 4ϵsBx

b∗

≤ DU − a∗x′
t − 4ϵsBx

b∗

≤ usafeU
t .

46

This implies that usafeL
t ≤ Calg(x′

t) ≤ usafeU
t , which by construction under event E1 ∩ E2

implies that DL ≤ a∗x′
t + b∗Calg(x′

t) ≤ DU. Finally, this gives that Calg(x′
t) is safe for

dynamics θ∗. Therefore, we have shown the two desired results that usafeL
t ≤ usafeU

t and
Calg(x′

t) is safe for dynamics θ∗.
As mentioned above, this implies by induction the desired result that usafeL

t ≤ usafeU
t for

all t ∈ [T0, T] conditional on E1 ∩ E2 as long as Calg(x′
T0−1) is safe with respect to θ∗.

E.2 Proof of Lemma 4 (Bounded positions and controls)

proof. Define γT = maxt∈[T]∥θ∗ − θt∥∞, and we know that γT ≤ 1
log(T)

by assumption. At
time t, the control used by controller Ct is safe for dynamics θt by assumption of the lemma,
so by Definition 2, for all t, if ut = Ct(xt) then

DL ≤ atxt + btut ≤ DU. (51)

By definition of γT , this implies that

DL − γT |xt| − γT |ut| ≤ a∗xt + b∗ut ≤ DU + γT |xt|+ γT |ut|. (52)

The right inequality in Equation (52) implies that

b∗ut − γT |ut| ≤ DU + γT |xt| − a∗xt,

which for ut ≥ 0 implies that |ut| ≤ ∥D∥∞+a∗|xt|+γT |xt|
b∗−γT

. The left inequality in Equation (52)

implies the same for ut ≤ 0, and therefore we have that Equation (52) implies that

|ut| ≤
∥D∥∞ + a∗|xt|+ γT |xt|

b∗ − γT
. (53)

First we prove Equations (34) and (35) by induction.
Base Case: At time t = 0, we have by assumption that |x0| ≤ 4 log2(T). Furthermore,

Equation (53) implies that

|u0| ≤
∥D∥∞ + a∗|x0|+ γT |x0|

b∗ − γT
Equation (53)

≤ ∥D∥∞ + (a∗ + γT)4 log
2(T)

b∗ − 1
log(T)

Equation (33)

≤
log2(T) + (a∗ + 1

log(T)
)4 log2(T)

b∗ − 1
log(T)

Assumption 3

≤ log2(T) + (a∗ + b∗/2)4 log2(T)

b∗/2
Sufficiently large T

≤ 2(1 + 4a∗ + 2b∗) log2(T)

b∗
(54)

< Bx,

47

for T sufficiently large such that 2(1 + 4a∗ + 2b∗)/b∗ ≤ log(T) and 1/ log(T) ≤ b∗/2.
Induction Hypothesis: Assume Equations (34) and (35) are true for all times less than

or equal to t.
Induction Step: Now we will prove that Equations (34) and (35) hold at time t+ 1.

|xt+1| = |a∗xt + b∗ut + wt|
= |atxt + btut + wt + (a∗ − at)xt + (b∗ − bt)ut|
≤ |atxt + btut|+ |wt|+ |(a∗ − at)xt|+ |(b∗ − bt)ut| Triangle Inequality
a.s.

≤ ∥D∥∞ + log2(T) + γT |xt|+ γT |ut| Equation (33), Equation (51), event E1

≤ ∥D∥∞ +
1

log(T)
(|xt|+ |ut|) + log2(T) Equation (33)

≤ ∥D∥∞ +
2

log(T)
Bx + log2(T) Ind. Hyp.

≤ ∥D∥∞ + 3 log2(T)

≤ 4 log2(T) Assumption 3

< log3(T)

= Bx.

Above we need T large enough such that log(T) > 4. Since we showed that |xt+1| ≤
4 log2(T), this also implies by Equations (53) and (54) that for sufficiently large T ,

|ut+1| < Bx.

Therefore we have shown Equations (34) and (35) for time t + 1, completing the induction
proof.

Now we will prove Equations (36) and (37) with a similar proof by induction. If the
controller Ct is non-random and x0 is not random, this implies that E[|x0|] = |x0| ≤ 4 log2(T)

and E[|u0|] = |u0| ≤ 2(5+4a∗) log2(T)
b∗

by Equation (54). This proves the base case. For the
inductive step, we have that

E[|xt+1|]
= E[|a∗xt + b∗ut + wt|]
≤ E[|atxt + btut|] + E[|wt|] + E[|(a∗ − at)xt|] + E[|(b∗ − bt)ut|] Triangle Inequality

≤ ∥D∥∞ + log2(T) + γT E[|xt|] + γT E[|ut|] Equations (33), (51), wt sub-Gaussian

≤ ∥D∥∞ +
1

log(T)
(E[|xt|] + E[|ut|]) + log2(T) Equation (33)

≤ ∥D∥∞ +
2

log(T)
Bx + log2(T) Ind. Hyp.

≤ ∥D∥∞ + 3 log2(T)

≤ 4 log2(T) Assumption 3

< log3(T)

= Bx.

48

We have shown that E[|xt+1|] ≤ 4 log2(T), therefore by Equation (53) and the same algebraic
steps as used in Equation (54), we have that for sufficiently large T ,

E[|ut+1|] ≤
∥D∥∞ + a∗ E[|xt+1|] + γT E[|xt+1|]

b∗ − γT

≤ ∥D∥∞ + (a∗ + γT)4 log
2(T)

b∗ − 1
log(T)

≤ 2(1 + 4a∗ + 2b∗) log2(T)

b∗

< Bx.

This completes the second proof by induction, proving Equations (36) and (37).

E.3 Proof of Lemma 5

proof. For this proof, we need the following version of Lemma 8 that applies for expectations
rather than with high probability.

Lemma 11. Let x, y be two random variables independent of noises W ′ = {w′
i}t−1

i=0 such that
for some L = ÕT (1), both P(|x| ≥ L)E[x2 | |x| ≥ L] = oT

(
1

T 10

)
and P(|y| ≥ L)E[y2 | |y| ≥

L] = oT
(

1
T 10

)
and P(|x| ≤ 4 log2(T)) = 1−oT (1/T 11) and P(|y| ≤ 4 log2(T)) = 1−oT (1/T 11).

Then under Assumptions 1–6 and 8, if ∥θ − θ∗∥∞ = ϵ ≤ ϵA8, then for any K ∈ (Kθ
L, K

θ
U)

and t ≤ T ,∣∣E [t · J(θ∗, Cθ
K , t, x,W

′)− t · J(θ∗, Cθ
K , t, y,W

′)
]∣∣ = ÕT

(
E[|x− y|] + ϵ+

1

T 2

)
. (55)

The proof of Lemma 11 can be found in Appendix E.10. We also need the following
generalization of Lemma 4, which bounds the positions for any starting position x.

Lemma 12. Let x0, x1, ...xT be the sequences of positions when starting at position x0 = x
and using controller Ct at time t. Suppose that the control Ct(xt) is safe for dynamics θt
and ∥θt − θ∗∥ ≤ 1

log(T)
for all t < T . For sufficiently large T under Assumption 3,

∀t ≤ T, |xt| = OT (|x|+ ∥D∥∞ + max
i≤t−1

|wi|).

∀t < T, |Ct(xt)| = OT (|x|+ ∥D∥∞ + max
i≤t−1

|wi|).

The proof of Lemma 12 can be found in Appendix E.11.
Because Cθ∗

K∗ , {Cθ∗
K∗

s
}ses=0 are safe for dynamics θ∗, the sequence x∗

0, x
∗
1, ... starts at x

∗
0 = 0,

and ∥D∥∞ ≤ log2(T) by Assumption 3, Lemma 12 implies that

|x∗
Ts
| = OT

(
max
i≤Ts−1

|wi|+ log2(T)

)
. (56)

Lemma 13. Suppose wt for t < T are sub-Gaussian and F is an event such that P(F) =
1− oT (1/T

11). Then

E[max
i≤t

w2
i | ¬F]P(¬F) = oT

(
1

T 10

)
.

49

The proof of Lemma 13 can be found in Appendix E.12. Define F = {|x∗
Ts
| < log3(T)}.

Event E1 implies F by Lemma 4, and therefore P(F) ≥ P(E1) = 1− oT (1/T
11). Therefore,

we have by Equation (56) that

P(¬F)E[|x∗
Ts
|2 | ¬F]

= OT

(
P(¬F)E

[
max
i≤Ts−1

w2
i

∣∣∣∣ ¬F])+ ÕT (P(¬F)) [Eq. (56) and (a+ b)2 ≤ 2a2 + 2b2]

= oT

(
1

T 10

)
. Lemma 13, P(¬F) = oT (1/T

11) (57)

Also, note that Lemma 4 implies that P(x∗
Ts
≤ 4 log2(T)) ≥ P(E1) = 1− oT (1/T

11). We can
therefore apply Lemma 11 with x = x∗

Ts
, y = 0, L = log3(T), ϵ = 0. Applying Lemma 11

gives the following desired result.

E
[∣∣TsJ(θ

∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)− TsJ(θ

∗, Cθ∗

K∗
s
, Ts, 0,Ws)

∣∣]
= ÕT

(
E
[
|x∗

Ts
|
]
+

1

T 2

)
Lemma 11

= ÕT (1). Lemma 4 for sufficiently large T

Note that we can apply the expectation form of Lemma 4 in the second inequality above
because (Cθ∗

K∗ , {Cθ∗
K∗

s
}ses=0) are non-random controllers.

E.4 Proof of Lemma 6 (Concentration of Conditional Expected
Cost)

proof. We will use the following form of McDiarmid’s Inequality for high probability events.

Lemma 14 (McDiarmid’s Inequality [Com15]). Let f be a function such that f : X1×X2...×
Xn → R and let Y ∈ X1 × X2... × Xn be a subset of the domain such that for some c, if
(x1, ..., xn), (x

′
1, ..., x

′
n) ∈ Y, then

|f(x1, ..., xn)− f(x′
1, ..., x

′
n)| ≤

∑
i:xi ̸=x′

i

c.

Let X1, X2, ..., Xn be independent random variables and Xi ∈ Xi for all i. Define p =
1−P((X1, ..., Xn) ∈ Y) and let m = E[f(X1, ..., Xn) | (X1, ..., Xn) ∈ Y]. Then for any ϵ > 0,

P(|f(X1, ..., Xn)−m| ≥ ϵ) ≤ 2p+ 2 exp

(
−2max(0, ϵ− pnc)2

nc2

)
.

Define the function fθ̂s(Wm) as

fθ̂s(Wm) = TsJ
(
θ∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,Wm

)
.

We want to apply McDiarmid’s Inequality to fθ̂s conditional on θ̂s when Es
2 holds, which

requires the following bounded difference result.

50

Lemma 15. Under Assumptions 1–8, given θ̂s there exists a fixed Ys ∈ [− log2(T), log2(T)]Ts

such that the event EM
s := {Ws ∈ Ys} satisfies P(EM

s | θ̂s) ≥ 1− oT (1/T
8), and conditional

on θ̂s and Es
2, if E

M
s holds when Ws = {wi}Ts+1−1

i=Ts
and when W ′

s = {w′
i}

Ts+1−1
i=Ts

, then

∣∣fθ̂s(Ws)− fθ̂s(W
′
s)
∣∣ ≤ Ts+1−1∑

i=Ts,wi ̸=w′
i

c

for some c = ÕT (1).

The proof of Lemma 15 can be found in Appendix E.9. We will now apply Lemma 14
for the function fθ̂s conditional on θ̂s and Es

2 using Lemma 15. Conditional on Es
2 (where c

is from Lemma 15), the following holds for ϵ ≥ 1/T and T sufficiently large.

P
(∣∣fθ̂s(Ws)− E[fθ̂s(Ws) | EM

s]
∣∣ ≥ ϵ

∣∣∣ θ̂s)
≤ 2P(¬EM

s | θ̂s) + 2 exp

−2max
(
0, ϵ− cTsP(¬EM

s | θ̂s)
)2

Tsc2

= oT

(
1

T 8

)
+ 2 exp

(
− ϵ2

2Tsc2

)
[ϵ ≥ 1/T , P(¬EM

s |θ̂s) = oT (1/T
8), suff. large T]

≤ 1

T 8
+ 2 exp

(
− ϵ2

2Tsc2

)
. [Suff. large T]

E.5 Proof of Lemma 7 (Unconditional Cost vs Conditional Cost)

proof. By the Law of Total Expectation,

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]

= E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
P(EM

s | θ̂s) + E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ ¬EM

s , θ̂s

]
P(¬EM

s | θ̂s)

≥ E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
P(EM

s |θ̂s) Cost is non-negative

= E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
− E

[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
P(¬EM

s |θ̂s)

= E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
− oT

(
1

T

)
E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
= E

[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
− oT ((q + r)B2

x)

= E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
− ÕT (1).

To see the step from the 5th to the 6th line, note that EM
s ⊆ {∀t ∈ [Ts : Ts+1 − 1], |wt| ≤

log2(T)} by assumption and that Es
2 implies that for sufficiently large T , ∥θ∗ − θ̂s∥ ≤ 1

log(T)
,

therefore by Lemma 4 we have that the magnitudes of the positions and controls are all

51

bounded by Bx conditional on events Es
2 and EM

s . Therefore, the cost at each time step
conditional on these events is at most (q + r)B2

x, which gives that conditional on event Es
2,

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
≤ Ts(q + r)B2

x Es
2, E

M
s ⊆ {∀t ∈ [Ts : Ts+1 − 1], |wt| ≤ log2(T)}, Lemma 4

≤ T (q + r)B2
x.

E.6 Proof of Lemma 8

proof. If |x − y| ≤ δA8 then this follows directly from Assumption 8. Now for the rest of
this proof assume |x − y| > δA8 and WLOG assume x ≤ y. Choose δ to be the largest real

number satisfying δ ≤ δA8 such that |x−y|
δ

is an integer. Because δA8 < |x − y|, there must

exist an integer in the range
[
|x−y|
δA8

, 2|x−y|
δA8

]
. Therefore, δ ≥ δA8/2 = Ω̃T (1) by definition of

δA8 . Because |x|, |y| < 4 log2(T) and x ≤ y, we know that for all i ∈ [0 : |x−y|
δ

], we have

|x+ iδ| ≤ 4 log2(T). For i ∈ [0 : |x−y|
δ
− 1], by Assumption 8, under event EA8(C

θ
K ,W

′)

|t · J(θ∗, Cθ
K , t, x+ iδ,W ′)− t · J(θ∗, Cθ

K , t, x+ (i+ 1)δ,W ′)| = ÕT (δ + ϵ).

By the triangle inequality, this implies that conditional on event EA8(C
θ
K ,W

′),∣∣t · J(θ∗, Cθ
K , t, x,W

′)− t · J(θ∗, Cθ
K , t, y,W

′)
∣∣

≤

|x−y|
δ

−1∑
i=0

∣∣t · J(θ∗, Cθ
K , t, x+ iδ,W ′)− t · J(θ∗, Cθ

K , t, x+ (i+ 1)δ,W ′)
∣∣

= ÕT

(
|x− y|

δ
(δ + ϵ)

)
= ÕT

(
|x− y|+ 8 log2(T)

δ
ϵ

)
|x|, |y| < 4 log2(T)

= ÕT (|x− y|+ ϵ) . δ = Ω̃T (1)

E.7 Proof of Lemma 9 (Cost of safety controls)

proof. The first tool for this proof is the following lemma, which informally states that being
off by a small amount of control has a small impact on the overall cost.

Lemma 16. Under Assumptions 1–8, with conditional probability 1 − oT (1/T) given event
E, for all s ∈ [0 : se],

52

|Ts · J(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, x
′
Ts
,Ws)− Ts · J(θ∗, Calg

s , Ts, x
′
Ts
,Ws)|

= ÕT

(
Ts+1−1∑
t=Ts

|C θ̂s
Kopt(θ̂s,Ts)

(x′
t)− Calg

s (x′
t)|

)
+ ÕT (Tsϵs).

The proof of Lemma 16 can be found in Appendix E.13.

The control C θ̂s
Kopt(θ̂s,Ts)

(x′
t) is safe for dynamics θ̂s and conditional on event E, ∥θ̂s −

θ∗∥∞ ≤ ÕT (νT) ≤ 1/ log(T) for sufficiently large T . The controller Calg
s is safe for dynamics

θ∗ for all T steps conditional on event E by definition of E. These together imply by Lemma
4 that, conditional on event E and for sufficiently large T , for all t ∈ [Ts, Ts+1 − 1],

|x′
t|, |x̂t| ≤ 4 log2(T) ≤ Bx. (58)

By Lemma 8 and 16, we have that conditional on event E, with probability 1− oT (1/T),

se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)

= ÕT (1) +
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x

′
Ts
,Ws) Eq. (58), Lemma 8

= ÕT (1) +
se∑
s=0

(
TsJ(θ

∗, Calg
s , Ts, x

′
Ts
,Ws)− TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, x
′
Ts
,Ws)

)
= ÕT (1) + ÕT

(
se∑
s=0

(
Tsϵs +

Ts+1−1∑
t=Ts

|Calg
s (x′

t)− C θ̂s
Kopt(θ̂s,Ts)

(x′
t)|

))
Lemma 16

= ÕT

(
se∑
s=0

ϵsTs

)
+ ÕT

(
se∑
s=0

Ts+1−1∑
t=Ts

XU
t ·
∣∣∣usafeU

t − C θ̂s
Kopt(θ̂s,Ts)

(x′
t)
∣∣∣+XL

t ·
∣∣∣usafeL

t − C θ̂s
Kopt(θ̂s,Ts)

(x′
t)
∣∣∣) .

We applied Lemma 8 for every s ∈ [0 : se], so ÕT (1) times. Since Lemma 8 holds with
probability 1 − oT (1/T

10), a union bound gives the first inequality holds with probability
1− ot(1/T

9). Another union bound combining this with the single application of Lemma 16
gives that the probability of the above result is 1− oT (1/T). The final line simplified using
the fact that the two controls are equal if XL

t = XU
t = 0.

E.8 Proof of Lemma 10 (Difference in Safety Controls)

proof. By symmetry, it is sufficient to show the first part of the lemma statement for usafeU
t .

Because Calg is safe for dynamics θ∗ under event E and E ⊆ E1, we have by Lemma 4
that under event E,

|x′
t| ≤ 4 log2(T). (59)

Under event E and for sufficiently large T , ∥θ∗ − θ̂s∥∞ ≤ ϵs ≤ 1
log(T)

. This implies by

construction of usafeU
t that under event E and for sufficiently large T , a∗x′

t + b∗usafeU
t ≤ DU.

53

By Lemma 3, we also have that under event E and for sufficiently large T , usafeU
t ≥ usafeL

t .
Therefore, by construction of usafeL

t we have that under event E and for sufficiently large T ,
a∗x′

t + b∗usafeU
t ≥ a∗x′

t + b∗usafeL
t ≥ DL. Together, this shows that u

safeU
t is safe for dynamics

θ∗. By Lemma 4 and Equation (59), this gives that under event E and for sufficiently large
T ,

|usafeU
t | ≤ Bx. (60)

Because any control used by controller C θ̂s
Kopt(θ̂s,Ts)

is safe for dynamics θ̂s, by Lemma 4 we

also have that under event E for sufficiently large T ,

|C θ̂s
Kopt(θ̂s,Ts)

(x′
t)| ≤ Bx. (61)

Also, note that by Algorithm 3 Line 11, usafeU
t satisfies, for some θ such that ∥θ− θ̂s∥∞ ≤ ϵs,

ax′
t + busafeU

t = DU. (62)

Under event E, ∥θ∗ − θ̂s∥∞ ≤ ϵs, which implies that ∥θ∗ − θ∥∞ ≤ 2ϵs ≤ ÕT (νT) ≤ 1/ log(T)
for sufficiently large T . Therefore, applying Lemma 4 gives that under event E and for
sufficiently large T ,

DU ≥ a∗x′
t + b∗usafeU

t usafeU
t safe for θ∗

≥ ax′
t + busafeU

t − |usafeU
t |2ϵs − |x′

t|2ϵs ∥θ∗ − θ∥∞ ≤ 2ϵs

≥ DU − 4Bxϵs. Equations (59),(60), and (62) (63)

If usafeU
t ≤ C θ̂s

Kopt(θ̂s,Ts)
(x′

t), then there must exist some θ such that ∥θ̂s − θ∥∞ ≤ ϵs and

ax′
t + bC θ̂s

Kopt(θ̂s,Ts)
(x′

t) ≥ DU. (64)

Under event E, ∥θ∗ − θ∥∞ ≤ 2ϵs ≤ ÕT (νT) ≤ 1/ log(T) for sufficiently large T , therefore
under event E and for sufficiently large T ,

a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t)

≥ ax′
t + bC θ̂s

Kopt(θ̂s,Ts)
(x′

t)− 2ϵs|x′
t| − 2ϵs

∣∣∣C θ̂s
Kopt(θ̂s,Ts)

(x′
t)
∣∣∣

≥ DU − 4Bxϵs. Equations (59),(61), and (64)
(65)

Finally, because C θ̂s
Kopt(θ̂s,Ts)

(x′
t) is safe for dynamics θ̂s,

âsx
′
t + b̂sC

θ̂s
Kopt(θ̂s,Ts)

(x′
t) ≤ DU. (66)

Using that under event E, ∥θ∗ − θ̂s∥∞ ≤ ϵs ≤ ÕT (νT) ≤ 1/ log(T) for sufficiently large T ,
Equations 59, 61, and (66) imply that under event E and for sufficiently large T ,

a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t) ≤ DU + 2Bxϵs. (67)

54

Combining Equations (65) and (67), if usafeU
t ≤ C θ̂s

Kopt(θ̂s,Ts)
(x′

t) then under event E and for

sufficiently large T ,

DU − 4Bxϵs ≤ a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t) ≤ DU + 2Bxϵs.

Combining this with Equation (63) gives that under event E and for sufficiently large T ,

|(a∗x′
t + b∗usafeU

t)− (a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t))| = 6Bxϵs.

This implies the desired result that under event E and for sufficiently large T ,

|usafeU
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)| = 6Bxϵs/b
∗.

E.9 Proof of Lemma 15 (McDiarmid’s Condition)

proof. First, we will construct the event EM
s . Define

EM
s = {∀t ∈ [Ts : Ts+1 − 1], |wt| ≤ log2(T)} ∩

Ts+1−1⋂
i=Ts

EA8

(
C θ̂s

Kopt(θ̂s,Ts)
, {wt}Ts+1−1

t=i

)
.

Note because P({∀t ∈ [Ts : Ts+1− 1], |wt| ≤ log2(T)}) ≥ P(E1) = 1− oT (1/T
10) and because

under event Es
2, P

(
EA8

(
C θ̂s

Kopt(θ̂s,Ts)
, {wt}Ts+1−1

t=i

) ∣∣∣ θ̂s) = 1− oT (1/T
10) we have by a union

bound that P(EM
s | θ̂s) = 1−oT (1/T

9). Suppose EM
s holds for Ws and W ′

s. For i ∈ [Ts, Ts+1],
define W i as follows.

W i = {wTs , wTs+1, ..., wi−1, w
′
i, w

′
i+1, w

′
i+2, ...w

′
Ts+1−1}.

In other words, W i includes noise wt for t < i and includes w′
t for t ≥ i. For i ∈ [Ts, Ts+1−1],

we will first bound ∣∣fθ̂s(W i)− fθ̂s(W
i+1)
∣∣ .

First, note that if wi = w′
i, then W i = W i+1 and therefore fθ̂s(W

i) = fθ̂s(W
i+1). Now,

assume wi ̸= w′
i. Let xi

0, .., x
i
Ts

be the series of positions when the noise random variables

are W i, xi
0 = 0, and the controller used is C θ̂s

Kopt(θ̂s,Ts)
. Conditional on Es

2, ∥θ̂s − θ∗∥∞ ≤
Õ(νT) ≤ 1/ log(T) for sufficiently large T . Because EM

s holds for Ws,W
′
s, we have that E1

holds for W i for all i. Therefore by Lemma 4 for sufficiently large T , |xi
t| ≤ 4 log2(T) for

all i, t. For any t ≤ i, xi
t = xi+1

t . Therefore, the difference in the two trajectories {xi
t} and

{xi+1
t } only occurs at and after time i + 1. The first difference occurs at time i + 1 when

xi
i+1 = xi+1

i+1 − wi + w′
i. For the next Ts+1 − i − 1 steps, the difference in cost of the two

55

trajectories {xi
t} and {xi+1

t } is
(Ts+1 − i− 1)J(θ∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts+1 − i− 1, xi+1

i+1, {w
′
t}

Ts+1−1
t=i+1)

− (Ts+1 − i− 1)J(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts+1 − i− 1, xi
i+1, {w′

t}
Ts+1−1
t=i+1)

= ÕT

(
|xi+1

i+1 − xi
i+1|+ |θ̂s − θ∗|

)
Lemma 8, |xi

t| ≤ 4 log2(T)

= ÕT

(
|xi+1

i+1 − xi+1
i+1 + wi − w′

i|+ νT
)

Event Es
2 , x

i
i+1 = xi+1

i+1 − wi + w′
i

= ÕT (|wi − w′
i|+ νT)

= ÕT

(
2 log2(T) + νT

)
W,W ′ satisfy event EM

s

= ÕT (1). (68)

We have therefore shown that for some c = ÕT (1),

|fθ̂s(W
i)− fθ̂s(W

i+1)| ≤ c.

Because Ws = W Ts+1 and W ′
s = W Ts , we have by the triangle inequality that

|fθ̂s(Ws)− fθ̂s(W
′
s)| = |fθ̂s(W

Ts+1)− fθ̂s(W
Ts)|

≤
Ts+1−1∑
i=Ts

|fθ̂s(W
i)− fθ̂s(W

i+1)|

=

Ts+1−1∑
i=Ts,wi ̸=w′

i

|fθ̂s(W
i)− fθ̂s(W

i+1)|

≤
Ts+1−1∑

i=Ts,wi ̸=w′
i

c.

E.10 Proof of Lemma 11

proof. Define E∗ = {|x|, |y| ≤ 4 log2(T)} ∩ EA8(C
θ
K ,W

′). By assumption of the lemma,
we have that P(|x| ≤ 4 log2(T)) = 1 − oT (1/T

11) and P(|y| ≤ 4 log2(T)) = 1 − oT (1/T
11).

Because ∥θ − θ∗∥∞ ≤ ϵA8, P(EA8(C
θ
K ,W

′)) = 1 − oT (1/T
10). Therefore, by a union bound

we have that P(E∗) = 1− oT (1/T
10). By the Law of Total Expectation,

E[
∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣]

= E
[∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ ∣∣ E∗]P(E∗)

+ E
[∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ ∣∣ ¬E∗]P(¬E∗)

= E
[
ÕT (|x− y|+ ϵ)

∣∣∣ E∗
]
P(E∗)

+ E
[∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ ∣∣ ¬E∗]P(¬E∗) Lemma 8

= ÕT

(
E [|x− y| | E∗]P (E∗) + ϵ

)
+ E

[∣∣t · J(θ∗, Cθ
K , t, x,W

′)− t · J(θ∗, Cθ
K , t, y,W

′)
∣∣ ∣∣ ¬E∗]P(¬E∗)

= ÕT

(
E [|x− y|] + ϵ

)
+ E

[∣∣t · J(θ∗, Cθ
K , t, x,W

′)− t · J(θ∗, Cθ
K , t, y,W

′)
∣∣ ∣∣ ¬E∗]P(¬E∗) LoTE

56

Therefore, all we must show is that

E
[∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ ∣∣ ¬E∗]P(¬E∗) = ÕT (T

−2).

Define wm = maxw∈W ′ |w|. By Lemma 12, we can bound the position and controls at every
time step in terms of wm to get that∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣

= T (q + r)OT

(
(wm + x+ ∥D∥∞)2 + (wm + y + ∥D∥∞)2

)
Triangle Inequality, Lemma 12

= OT

(
T
(
(wm + x+ ∥D∥∞)2 + (wm + y + ∥D∥∞)2

))
= ÕT

(
T
(
w2

m + wm|x|+ |x|2 + wm|y|+ |y|2 + wm + |x|+ |y|+ 1
))

. Assum 3 (∥D∥∞ ≤ log2(T))

Therefore, we have that

E
[∣∣t · J(θ∗, Cθ

K , t, x,W ′)− t · J(θ∗, Cθ
K , t, y,W ′)

∣∣ | ¬E∗]P(¬E∗)

= ÕT

(
T
(
E[w2

m | ¬E∗]P(¬E∗) + E[wm | ¬E∗]P(¬E∗) + E[|y|wm | ¬E∗]P(¬E∗) + E[|y|2 | ¬E∗]P(¬E∗)

+ E[|x|wm | ¬E∗]P(¬E∗) + E[|x|2 | ¬E∗]P(¬E∗) + E[|x| | ¬E∗]P(¬E∗) + E[|y| | ¬E∗]P(¬E∗) + P(¬E∗)
))

.

(69)

Therefore, it is sufficient to show that E[wm | ¬E∗]P(¬E∗), E[w2
m | ¬E∗]P(¬E∗), E[|x| |

¬E∗]P(¬E∗), E[x2 | ¬E∗]P(¬E∗) , E[|y| | ¬E∗]P(¬E∗), E[y2 | ¬E∗]P(¬E∗), E[|x|wm |
¬E∗]P(¬E∗), E[|y|wm | ¬E∗]P(¬E∗) are all ÕT (

1
T 3). We will use the following probability

result.

Lemma 17. Suppose X is a non-negative random variable. Then for any L ≥ 0 and any
event E, we have that

E [X | E]P(E) ≤ P(E)L+ P(X ≥ L)E [X | X ≥ L]

proof. For any events A,B such that A ⊆ B, we have that

E[X | B]P(B) = E[X | A,B]P(A | B)P(B) + E[X | ¬A,B]P(¬A | B)P(B)

= E[X | A]P(A) + E[X | ¬A,B]P(¬A | B)P(B) A ⊆ B

≥ E[X | A]P(A). (70)

Therefore, we can conclude that

E [X | E]P(E)

= E [X | E,X ≤ L]P(X ≤ L | E)P(E) + E [X | E,X ≥ L]P(X ≥ L | E)P(E)

≤ P(E)L+ E [X | E,X ≥ L]P(X ≥ L | E)P(E)

≤ P(E)L+ E [X | E,X ≥ L]P(E,X ≥ L)

≤ P(E)L+ E [X | X ≥ L]P(X ≥ L). Eq (70)

57

Now, note that by the assumption on x and definition of E∗ (where L is from the lemma
statement),

E[x2 | ¬E∗]P(¬E∗) ≤ P(¬E∗)L2 + P(|x| ≥ L)E[|x|2 | |x| ≥ L] Lemma 17

= ÕT

(
1

T 10

)
+ ÕT

(
1

T 10

)
= ÕT

(
1

T 10

)
.

This also implies by the Cauchy–Schwarz inequality that

E[|x| | ¬E∗]P(¬E∗) ≤
√

E[x2 | ¬E∗]P(¬E∗)

=
√
E[x2 | ¬E∗]P(¬E∗)

√
P(¬E∗)

= ÕT

(
1

T 5

)
.

By Lemma 13, because P(E∗) = 1− oT (1/T
11) we have that

E[w2
m | ¬E∗]P(¬E∗) = ÕT

(
1

T 10

)
.

Once again, by the Cauchy-Schwarz inequality this implies that E[wm | ¬E∗] = ÕT

(
1
T 5

)
.

By the subgaussian assumption on D and a union bound, we have that

P(wm ≥ log3(T)) ≤
∑
w∈W ′

P(|w| ≥ log3(T))

≤ t · 2e−ΩT (log6(T))

≤ oT (1/T
11). (71)

Finally, we have by the independence of x and wm and the assumption on x that

E[|x|wm | ¬E∗]P(¬E∗)

≤ P(¬E∗)L log3(T)

+ P(|x| ≥ L,wm ≥ log3(T))E
[
|x|wm

∣∣ |x| ≥ L,wm ≥ log3(T)
]

+ P(|x| ≤ L,wm ≥ log3(T))E[|x|wm | |x| ≤ L,wm ≥ log3(T)]

+ P(|x| ≥ L,wm ≤ log3(T))E[|x|wm | |x| ≥ L,wm ≤ log3(T)] Lemma 17

≤ P(¬E∗)L log3(T)

+ P(|x| ≥ L)P(wm ≥ log3(T))E [|x| | |x| ≥ L]E [wm | wm ≥ log(T)]

+ LP(wm ≥ log3(T))E[wm | wm ≥ log3(T)]

+ log3(T)P(|x| ≥ L)E [|x| | |x| ≥ L] [Ind of x and wm]

= ÕT

(
1

T 10

)
+ ÕT

(
1

T 20

)
+ ÕT

(
1

T 10

)
+ ÕT

(
1

T 10

)
[Def of E∗, Lemma 13, Eq (71), Assum on x]

= ÕT

(
1

T 10

)
.

58

Note that by symmetry, all of the above results also hold for y. Returning to Equation (69),
we have that

E
[∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ | ¬E∗]P(¬E∗) = ÕT

(
1

T 2

)
.

This completes the proof that

E
[∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣] = ÕT

(
E[|x− y|] + ϵ+

1

T 2

)
.

E.11 Proof of Lemma 12

proof. Define γT = maxt≤T−1∥θt − θ∗∥∞ ≤ 1
log(T)

. Because the control at time t is safe for
dynamics θt, we have DL ≤ atxt + btut ≤ DU for all t. By the triangle inequality,

|xt+1| = |a∗xt + b∗ut + wt| ≤ |wt|+ ∥D∥∞ + γT (|xt|+ |ut|).

As in Equation (53),

|ut| ≤
∥D∥∞ + a∗|xt|+ γT |xt|

b∗ − γT
=
∥D∥∞ + (a∗ + γT)|xt|

b∗ − γT
.

For sufficiently large T , γT ≤ b∗/2, and therefore for sufficiently large T ,

|xt+1| ≤ |wt|+ ∥D∥∞ + γT

(
|xt|+

∥D∥∞ + a∗|xt|+ γT |xt|
b∗ − γT

)
= OT (|wt|+ ∥D∥∞ + γT |xt|).

Using x0 = x as the base-case, this recursive relationship implies that for all t,

|xt| ≤ OT

(
t−1∑
i=0

(|wi|+ ∥D∥∞ + |x|)γt−1−i
T

)

≤ OT

((
max
i≤t−1

|wi|+ ∥D∥∞ + |x|
) t−1∑

i=0

γi
T

)

≤ OT

((
max
i≤t−1

|wi|+ ∥D∥∞ + |x|
) t−1∑

i=0

(
1

log(T)

)i
)

= OT

((
max
i≤t−1

|wi|+ ∥D∥∞ + |x|
)

1

1− 1
log(T)

)
.

This implies that for sufficiently large T ,

|xt| = OT (max
i≤t−1

|wi|+ ∥D∥∞ + |x|)

and

|ut| ≤
∥D∥∞ + (a∗ + γT)OT (maxi≤t−1 |wi|+ ∥D∥∞ + |x|)

b∗ − γT
= OT (max

i≤t−1
|wi|+ ∥D∥∞ + |x|),

which are exactly the desired bounds.

59

E.12 Proof of Lemma 13

proof. Define wm = maxi≤t |wi|. Because wt is sub-Gaussian, there exists α > 0 such that
for any w ≥ 0, P(|wt| ≥ w) ≤ 2e−w2/(2α). Therefore, we have for any w ≥ 0,

P(w2
m ≥ w) = 1− P

(
∀i ≤ t, |wi| ≤

√
w
)

≤ 1−
(
1− 2e−w/(2α)

)t
= OT (te

−w/(2α)).

This implies by the Law of Total Expectation that

E[w2
m | ¬F]P(¬F) ≤ P(¬F) log6(T) + P(wm ≥ log3(T))E[w2

m | wm ≥ log3(T)] Lemma 17

= oT

(
1

T 10

)
+

∫ ∞

log6(T)

P(w2
m ≥ w)dw

= oT

(
1

T 10

)
+OT

(∫ ∞

log6(T)

te−w/(2α)dw

)
= oT

(
1

T 10

)
+OT

(
2tαe− log6(T)/(2α)

)
= oT

(
1

T 10

)
.

E.13 Proof of Lemma 16

proof. Fix a value of s. For i ∈ [0 : Ts], define the controller C
i
t as the controller that at time

t < i uses controller Calg
s and at time t ≥ i uses controller C θ̂s

Kopt(θ̂s,Ts)
. We will compare the

cost of controller Ci
t versus controller C

i+1
t over Ts steps starting at position x′

Ts
. Note that

the cost of the first i steps is the same, as Ci
t = Ci+1

t = Calg
s for t < i. Therefore

|i · J(θ∗, Ci+1
t , i, x′

Ts
, {wj}Ts+i−1

j=Ts
)− i · J(θ∗, Ci

t , i, x
′
Ts
, {wj}Ts+i−1

j=Ts
)| = 0.

The position at time i when using either Ci
t or Ci+1

t is x′
Ts+i. Conditional on event E and

for sufficiently large T , by Lemma 4 we have that |Calg
s (x′

Ts+i)|, |C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)| ≤ Bx.

Therefore conditional on event E and for sufficiently large T ,

r
(
Calg

s (x′
Ts+i)

2 − C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)

2
)

≤ 2r|Calg
s (x′

Ts+i)− C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)|+ r

(
Calg

s (x′
Ts+i)− C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i)
)2

≤ r(2 + 2Bx)|Calg
s (x′

Ts+i)− C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)|. (72)

60

The difference in the next position when at position x′
Ts+i and using control Calg

s (x′
Ts+i)

versus C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i) is∣∣∣a∗x′

Ts+i + b∗Calg
s (x′

Ts+i) + wTs+i − (a∗x′
Ts+i + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i) + wTs+i)
∣∣∣

= b∗|Calg
s (x′

Ts+i)− C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)|. (73)

Under event E, the controls C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i) and Calg

s (x′
Ts+i) are safe for dynamics θ̂s and

θ∗, respectively and ∥θ∗ − θ̂s∥∞ ≤ ϵs ≤ ÕT (νT). Therefore, by Lemma 4, conditional on
event E and for sufficiently large T , we have that |x′

Ts+i| ≤ 4 log2(T) and that

|a∗x′
Ts+i + b∗Calg

s (x′
Ts+i) + wTs+i|, |a∗x′

Ts+i + b∗C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i) + wTs+i| ≤ 4 log2(T).

Conditional on event E and for sufficiently large T , we therefore have by Lemma 8 that

conditional on EA8(C
θ̂s
Kopt(θ̂s,Ts)

, {wj}Ts+1−1
j=Ts+i+1), we can bound the difference in future cost of

the next Ts − i − 1 steps starting at time Ts + i + 1 when using control Calg
s (x′

Ts+i) versus

C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i) as follows.

(Ts − i− 1)
∣∣∣J(θ∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts − i− 1, a∗x′

Ts+i + b∗Calg
s (x′

Ts+i) + wTs+i, {wj}Ts+1−1
j=Ts+i+1)

− J(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts − i− 1, a∗x′
Ts+i + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i) + wTs+i, {wj}Ts+1−1
j=Ts+i+1)

∣∣∣
= ÕT

(
b∗|Calg

s (x′
Ts+i)− C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i)|+ ϵs

)
. [Eq (73), Lemma 8] (74)

Therefore, the difference in total cost between Ci
t and Ci+1

t conditional on event E with

probability P(EA8(C
θ̂s
Kopt(θ̂sTs)

, {wj}Ts+1−1
j=Ts+i+1)) = 1− oT (1/T

10) is

|Ts · J(θ∗, Ci+1
t , Ts, x

′
Ts
,Ws)− Ts · J(θ∗, Ci

t , Ts, x
′
Ts
,Ws)

≤
∣∣∣i · J(θ∗, Ci+1

t , i, x′
Ts
, {wj}Ts+i

j=Ts
)− i · J(θ∗, Ci

t , i, x
′
Ts
, {wj}Ts+i

j=Ts
)
∣∣∣+ r

(
Calg

s (x′
Ts+i)

2 − C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)

2
)

+ (Ts − i− 1)
∣∣∣J(θ∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts − i− 1, a∗x′

Ts+i + b∗Calg
s (x′

Ts+i) + wTs+i, {wj}Ts+1−1
j=Ts+i+1)

− J(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts − i− 1, a∗x′
Ts+i + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i) + wTs+i, {wj}Ts+1−1
j=Ts+i+1)

∣∣∣
≤ 0 + r(2 + 2Bx)|Calg

s (x′
Ts+i)− C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i)|

+ ÕT

(
b∗|Calg

s (x′
Ts+i)− C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i)|+ ϵs

)
Eq. (72), (74)

= ÕT

(
|Calg

s (x′
Ts+i)− C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i)|+ ϵs

)
. (75)

61

We can use Equation (75) for all i ∈ [0 : Ts− 1], the triangle inequality, and a union bound
to get that conditional on event E, with probability 1− oT (1/T

9)

|Ts · J(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, x
′
Ts
,Ws)− Ts · J(θ∗, Calg

s , Ts, x
′
Ts
,Ws)|

≤
Ts−1∑
i=0

|Ts · J(θ∗, Ci+1
t , Ts, x

′
Ts
,Ws)− Ts · J(θ∗, Ci

t , Ts, x
′
Ts
,Ws)|

= ÕT

(
Ts−1∑
i=0

|Calg
s (x′

Ts+i)− C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)|+ Tsϵs

)
. (76)

The above was for a fixed value of s. Taking a union bound over all s ∈ [0 : se], we have
that with conditional probability 1− oT (1/T) given event E, the desired result holds for all
s ∈ [0 : se].

62

F Proofs of Sufficiently Large Noise Case

F.1 Proof of Theorem 2

First, we present the algorithm which is used to prove Theorem 2.

Algorithm 5 Safe LQR for Large Noise

proof. Input: D,D,Θ, C init, {Cθ}θ∈Θ, T, λ
1: νT ← T−1/4

2: for t← 0 to 1
ν2T
− 1 do ▷ Safe warm-up exploration phase

3: ϕt ∼ Rademacher(0.5)
4: Use control ut = C init(xt) +

ϕt

log(T)

5: for s← 0 to log2(Tν
2
T)− 1 do ▷ Safe certainty equivalence phase

6: Ts ← 2s

ν2T

7: ϵs ← BTs

√
max(V 22

Ts
,V 11

Ts)
V 11
Ts

V 22
Ts

−(V 12
Ts

)2

8: θ̂pres ← (Z⊤
Ts
ZTs + λI)−1Z⊤

Ts
XTs

9: θ̂s ← argmin∥θ′−θ̂pres ∥∞≤ϵs
min∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ
′, Ts), DU)

10: Calg
s ← C θ̂s

Kopt(θ̂s,Ts)

11: for t← Ts to 2Ts − 1 do

12: usafeU
t ← max

{
u : max

∥θ−θ̂pres ∥∞≤ϵs

axt + bu ≤ DU

}
13: usafeL

t ← min

{
u : min

∥θ−θ̂pres ∥∞≤ϵs

axt + bu ≥ DL

}
14: Use control ut = max

(
min

(
Calg

s (xt), u
safeU
t

)
, usafeL

t

)
Importantly, we note that Algorithm 5 fundamentally only differs from Algorithm 3 in

two ways. The first is that νT changes from T−1/3 (in Algorithm 3) to T−1/4 (in Algorithm
5), which changes Ts as well. The second is that the definition of θ̂s changes between the
two algorithms. Note that the definition of θ̂pres in Algorithm 5 is equivalent to the definition
of θ̂s in Algorithm 3. This means that the definitions of usafeU

t and usafeL
t are the same in

both Algorithm 3 and Algorithm 5. Of course, the changes in νT and the definition of θ̂s
change the entire trajectory of the algorithm, which affects all of the other variables as well.
However, all other differences in the algorithm trajectory can be derived from these two
changes.

For the rest of Appendix F, let Calg be the controller of Algorithm 5. Because Algorithm 5
and Algorithm 3 differ, we will now redefine the important events and lemmas from Appendix
C with respect to Algorithm 5 (and the corresponding θ̂s), and use this notation for the rest
of Appendix F. Define se = log2(Tν

2
T)− 1, and let

E0 :=
{
∀s ≤ se : ∥θ∗ − θ̂pres ∥∞ ≤ ϵs

}
. (77)

63

By Lemma 23 we have that with probability 1− oT (1/T
2), ∥θ∗ − θ̂pres ∥∞ ≤ ϵs. Therefore,

P(E0) = 1− oT (1/T
2).

Also note that because ∥θ̂s− θ̂pres ∥∞ ≤ ϵs by construction, we have by the triangle inequality
that under event E0, ∥θ∗ − θ̂s∥∞ ≤ 2ϵs.

For the rest of this section, define

E2 := E0

⋂{
max
s∈[0:se]

ϵs = ÕT (νT)

}
. (78)

We also have the following equivalent result to Lemma 2, but with respect to the ϵs in
Algorithm 5.

Lemma 18. Under Assumptions 1–8, with probability 1− oT (1/T
2)

max
s∈[0:se]

ϵs = ÕT (νT).

The proof of Lemma 2 relies only on the first νT steps and is written agnostic to the
choice of νT , and therefore the result of Lemma 18 follows directly from that proof. Lemma
18 implies that we have

P(E2) = 1− oT (1/T
2).

For this section, E1 will still refer to the same event as in Equation (20). We also define
the event Esafe the same way as in Equation (23) except with respect to the positions and
controls of Algorithm 5, and finally we define the event E = E1 ∩E2 ∩Esafe (the same as in
Appendix C.2). Therefore by a union bound we still have that P(E) = 1− oT (1/T

2). Using
this new notation and Lemma 18, we can proceed to the main proof.

The safety of Calg follows from an equivalent version of Lemma 1, except stated for
Algorithm 5 instead of Algorithm 3. The proof follows as in the proof of Lemma 1 except
using Lemma 18 instead of Lemma 2, and using the above definitions of E0, E1 and E2 with
respect to Algorithm 5. An equivalent statement of Lemma 3 holds except for the usafeU

t

and usafeL
t coming from Algorithm 5. Note that the only place that the proof of Lemma 3

relies on νT is that it requires that ϵs = ÕT (νT) and that ÕT (νT) = oT (1/ log(T)) at multiple
points in the proof, which still holds under the new definitions of E2 and νT . Finally, as
noted above, the usafeU

t and usafeL
t are constructed in the same way for both algorithms, and

therefore the rest of the proof of Lemma 1 follows directly.
The rest of this section will focus on bounding the regret of Algorithm 5 to be ÕT (

√
T)

with probability 1−oT (1/T). Informally, the key idea behind the regret bound of Algorithm
5 is that with high probability, the uncertainty upper bound ϵs will decrease at a rate
proportional to 1/

√
Ts. This is formalized in Lemma 19.

Lemma 19. Under Assumptions 1–9, given event E with conditional probability 1−oT (1/T),

max
s∈[0:se]

ϵs
√
Ts = ÕT (1).

64

The proof of Lemma 19 can be found in Appendix F.2.
Define event E3 as the event

E3 =

{
max
s∈[0:se]

ϵs
√

Ts = ÕT (1)

}
.

By Lemma 19, P(E3) = 1− oT (1/T). We can decompose the regret of Algorithm 5 into the
same components of regret as in Appendix C.2. The first two propositions stated below are
exactly equivalent to their counterparts in Appendix C.2.

Proposition 8 (Regret from Warm-up Period). Define x′
0, x

′
1, ... as the sequence of random

variables that are the positions of the controller Calg defined in Algorithm 5. Define R0 as
the cost of the first 1/ν2

T steps, i.e.

R0 = T · J(θ∗, Calg, T, 0,W)−
se∑
s=0

Ts · J(θ∗, Calg
s , Ts, x

′
Ts
,Ws). (79)

Then under Assumptions 1–8 and conditional on event E,

R0

a.s.

≤ ÕT

(
1

ν2
T

)
.

The proof of Proposition 8 can be found in Appendix F.3.

Proposition 9 (Regret from Randomness). Define x̂T0 , x̂T0+1, ... as the sequence of ran-
dom variables representing the sequence of positions if the control at each time t ≥ T0 is

C θ̂s
Kopt(θ̂s,Ts)

(xt) for s = ⌊log2 (tν2
T)⌋ and starting at x̂T0 = x′

T0
. Define R2 as

R2 :=
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s

]
.

Then with conditional probability 1− oT (1/T) given event E,

R2 ≤ ÕT (
√
T). (80)

The proof of Proposition 9 can be found in Appendix F.4. The next two propositions
have different regret bounds than their counterparts in Appendix C.2.

Proposition 10 (Regret from Non-optimal Controller with Sufficiently Large Noise). Define
R1 as

R1 :=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
.

Note that Ws is independent of θ̂s by construction. Then under Assumptions 1–9 and con-
ditional on event E2 ∩ E3,

R1

a.s.

≤ ÕT

(√
T
)
. (81)

65

The proof of Proposition 10 can be found in Appendix F.5.

Proposition 11 (Regret from Enforcing Safety with Sufficiently Large Noise). Define x̂T0 , x̂T0+1, ...
as the sequence of random variables representing the sequence of positions if the control at

each time t ≥ T0 is C θ̂s
Kopt(θ̂s,Ts)

(x̂t) for s = ⌊log2 (tν2
T)⌋ and starting at x̂T0 = x′

T0
. Define R3

as (the random variable)

R3 :=
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws).

Then under Assumptions 1–9, with conditional probability 1− oT (1/T) given event E ∩ E3,

R3 ≤ ÕT (
√
T).

The proof of Proposition 11 can be found in Appendix F.6.
Using Equation (32) combined with Propositions 8, 9, 10 and 11, the total regret is

upper bounded by the following conditioned on event E ∩ E3, with conditional probability
1− oT (1/T)

T · J(θ∗, Calg, T)− T · J∗(θ∗, Cθ∗

Kopt(θ∗,T), T) ≤ R0 +R1 +R2 +R3 = ÕT

(
1

ν2
T

+
√
T

)
.

Because νT = T−1/4 in Algorithm 5, this gives total regret of ÕT (
√
T) conditional on E3∩E.

Since P(E3) = 1− oT (1/T) and P(E) = 1− oT (1/T), a union bound gives that the regret of
Algorithm 5 is ÕT (

√
T) with unconditional probability 1− oT (1/T).

F.2 Proof of Lemma 19(Uncertainty bounds using boundary times)

proof. To prove this lemma, we will show that the controller Calg uses the control usafeU
i

“sufficiently frequently”. Let St be the set of times i < t when the control used by Algorithm
5 is usafeU

i . Formally, if u′
0, u

′
1, ...u

′
T−1 are the sequence of controls used by Calg, then

St = {i < t : u′
i = usafeU

i }. (82)

Lemma 20. Under Assumptions 1–9 and conditional on event E with conditional probability
1− oT (1/T),

min
s∈[1:se]

|STs|
Ts

= ΩT (1).

The proof of Lemma 20 can be found in Appendix F.8. Equipped with the fact that |St|
scales linearly with t from Lemma 20, we need the following result that will lower the upper
bound for ϵs.

Lemma 21. Under Assumptions 1–9 and conditional on event E with conditional probability
1− oT (1/T),

max
s∈[0:se]

ϵs
√
|STs| = ÕT (1).

66

The proof of Lemma 21 can be found in Appendix G.3. To see that ϵ0
√
T0 = ÕT (1),

note that
√
T0 = 1/νT and Lemma 18 imply that conditional on event E, ϵ0 = ÕT (νT). For

s > 0, a union bound combining Lemma 20 with Lemma 21 gives the desired result that
conditioned on event E with conditional probability 1− oT (1/T),

max
s∈[0:se]

ϵs
√
Ts = ÕT (1).

F.3 Proof of Proposition 8

proof. The proof of Proposition 8 follows the same as the proof of Proposition 4. The proof
of Proposition 4 relies on the fact that the controller is safe for dynamics θ∗ conditional
on event E. This is still true by construction of event E, and therefore the result follows
directly.

F.4 Proof of Proposition 9

proof. Note that this statement is exactly the same as the statement of Proposition 6 except
for Algorithm 5. The proof of Proposition 6 relies on Lemmas 6 and 7. Define the event Es

2

as
Es

2 =
{
∥θ̂s − θ∗∥∞ ≤ 2 · ϵs ≤ 2cT · νT

}
, (83)

where the cT = ÕT (1) from Lemma 18. Note that we still have P(Es
2) ≥ P(E2) ≥ 1 −

oT (1/T
2). An analogous version of Lemma 6 holds with this new definition of Es

2 for Algo-
rithm 5. Examining Lemma 6, the proof relies on θ̂s and νT through Lemma 15. A version
of Lemma 15 holds with the exact same statement with the new definition of Es

2. Exam-
ining the proof of Lemma 15, we must have that under event Es

2, ∥θ̂s − θ∗∥∞ ≤ ÕT (νT) ≤
min(ϵA8,

1
log(T)

) in order to apply Lemmas 8 and 4, and this holds for νT = T−1/4. Therefore,
we have shown the equivalent version of Lemma 6 for Algorithm 5.

Similarly, an analogous version of Lemma 7 holds for Algorithm 5. Lemma 7 depends on
θ̂s and νT only in that it uses ∥θ∗ − θ̂s∥∞ ≤ 1/ log(T) conditional on event Es

2, which still
holds by construction of Es

2 for νT = T−1/4 and sufficiently large T .
Now that we have shown that equivalent versions of Lemmas 6 and 7 still hold, we can

return to the proof of Proposition 6. Outside of the two lemmas discussed above, the only
places in the proof that depend on the choice of νT and θ̂s is that se = ÕT (1) is still true in
Equation (45) and that conditional on event E, ∥θ̂s − θ∗∥∞ ≤ ÕT (νT) ≤ min(ϵA8,

1
log(T)

) in
order to apply Lemmas 4 and 8. As both of these still hold for the new definition of E and
for νT = T−1/4, we are done.

F.5 Proof of Proposition 10

proof. The proof of Proposition 10 will mostly follow as in the proof of Proposition 5. The
proof of Proposition 5 relies on Lemma 5. An equivalent version of Lemma 5 holds for
Algorithm 5, where the only difference is that the Ts are now defined differently. To see

67

this, note that the proof of Lemma 5 works for any Ts ≤ T , and therefore the proof follows
exactly the same.

Returning to the proof of Proposition 5, we can still apply Assumption 7 under the event
Es

2 as defined in Equation (83). Looking at the last block of equations in Proposition 5, we
can follow the logic exactly and pick up from the second to last line. Applying Lemma 19,
conditional on E ∩ E3,

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]

≤ ÕT (1) + ÕT

(
se∑
s=0

Tsϵs +
Ts

T 2

)

= ÕT (1) + ÕT

(
se∑
s=0

TsÕT

(
1√
Ts

)
+

Ts

T 2

)
Lemma 19

= ÕT (
√
T).

F.6 Proof of Proposition 11

proof. The proof of Proposition 11 will mostly follow as in the proof of Proposition 7. The
proof of Proposition 7 relies on Lemmas 9 and 10. We will show that equivalent versions of
these lemmas hold for Algorithm 5.

Starting with Lemma 9, an equivalent version holds for the usafeU
t and usafeL

t defined in
Algorithm 5 and Calg as the controller of Algorithm 5. Looking at the proof of Lemma 9,
the main tool is Lemma 16. An equivalent version of Lemma 16 holds for Algorithm 5.
Looking at the proof of Lemma 16, the dependency on θ̂s and νT is that we must have that
conditional on event E, ∥θ̂s− θ∗∥∞ ≤ ÕT (νT) ≤ min(ϵA8,

1
log(T)

) in order to apply Lemmas 4

and 8. The union bound at the end of the proof also relies on se = ÕT (1), which also does
still hold. Returning to the proof of the equivalent of Lemma 9 for Algorithm 5, we again
need that conditional on event E, ∥θ̂s − θ∗∥∞ ≤ ÕT (νT) ≤ min(ϵA8,

1
log(T)

) in order to apply

Lemmas 4 and 8. Once again using that se = ÕT (1), the rest of the proof of Lemma 9 can
be directly applied.

An equivalent version of Lemma 10 also holds when Calg is the controller of Algorithm 5
with νT = T−1/4. We defer the proof of this to Appendix F.7.

Now we can return to the proof of Proposition 7 and show that a slight modification
gives the desired result. Looking at the last set of equations, we can pick up from the third

68

line and apply Lemma 19 to get that, conditional on event E ∩ E3,

R3 ≤ ÕT

(
se∑
s=0

Tsϵs

)
+

se∑
s=0

Ts+1−1∑
t=Ts

XU
t · ÕT (ϵs) +XL

t · ÕT (ϵs)

≤ ÕT

(
se∑
s=0

Tsϵs

)

≤
se∑
s=0

Ts · ÕT

(
1√
Ts

)
Lemma 19

= ÕT (
√
T).

The last line follows from the fact that for all s, Ts ≤ T and that se = ÕT (1).

F.7 Proof of Equivalent Version of Lemma 10 for Algorithm 5

Examining the proof of Lemma 10, the main change when using Algorithm 5 is that we now
have that under event E and for sufficiently large T , ∥θ∗− θ̂s∥∞ ≤ 2ϵs (while for Algorithm 3
there was no factor of 2). Because νT = T−1/4, this still allows us to apply Lemma 4. Picking
up the proof of Lemma 10 directly before Equation (62), the extra factor of 2 mentioned
above will result in the following changes.

By the construction of Algorithm 5, usafeU
t satisfies, for some θ such that ∥θ− θ̂pres ∥∞ ≤ ϵs,

ax′
t + busafeU

t = DU. (84)

Under event E, ∥θ∗ − θ̂s∥∞ ≤ 2ϵs and ∥θ̂s − θ̂pres ∥∞ ≤ ϵs, which implies that ∥θ∗ − θ∥∞ ≤
4ϵs ≤ ÕT (νT) ≤ 1/ log(T) for sufficiently large T . Therefore, applying Lemma 4 gives that
under event E and for sufficiently large T ,

DU ≥ a∗x′
t + b∗usafeU

t usafeU
t safe for θ∗

≥ ax′
t + busafeU

t − |usafeU
t |4ϵs − |x′

t|4ϵs ∥θ∗ − θ∥∞ ≤ 4ϵs

≥ DU − 8Bxϵs. Equations (59),(60), and (84) (85)

If usafeU
t ≤ C θ̂s

Kopt(θ̂s,Ts)
(x′

t), then there must exist some θ such that ∥θ̂pres − θ∥∞ ≤ ϵs and

ax′
t + bC θ̂s

Kopt(θ̂s,Ts)
(x′

t) ≥ DU. (86)

By the same logic as above, under event E, ∥θ∗ − θ∥∞ ≤ 4ϵs ≤ ÕT (νT) ≤ 1/ log(T) for
sufficiently large T , therefore under event E and for sufficiently large T ,

a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t)

≥ ax′
t + bC θ̂s

Kopt(θ̂s,Ts)
(x′

t)− 4ϵs|x′
t| − 4ϵs

∣∣∣C θ̂s
Kopt(θ̂s,Ts)

(x′
t)
∣∣∣

≥ DU − 8Bxϵs. Eqs (59),(61), and (86) (87)

69

Finally, because C θ̂s
Kopt(θ̂s,Ts)

(x′
t) is safe for dynamics θ̂s,

âsx
′
t + b̂sC

θ̂s
Kopt(θ̂s,Ts)

(x′
t) ≤ DU. (88)

Using that under event E, ∥θ∗ − θ̂s∥∞ ≤ 2ϵs ≤ ÕT (νT) ≤ 1/ log(T) for sufficiently large T ,
Equations (59), (61), and (88) imply that under event E and for sufficiently large T ,

a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t) ≤ DU + 4Bxϵs. (89)

Combining Equations (87) and (89), if usafeU
t ≤ C θ̂s

Kopt(θ̂s,Ts)
(x′

t) then under event E and for

sufficiently large T ,

DU − 8Bxϵs ≤ a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t) ≤ DU + 4Bxϵs.

Combining this with Equation (85) gives that under event E and for sufficiently large T ,

|(a∗x′
t + b∗usafeU

t)− (a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t))| ≤ 12Bxϵs.

This implies the desired result that under event E and for sufficiently large T ,

|usafeU
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)| ≤ 12Bxϵs/b
∗.

F.8 Proof of Lemma 20

proof. In this proof, we will use the following result about the times the algorithm chooses
control usafeU

t .

Lemma 22. Let x′
t, u

′
t be the positions and controls of controller Calg at time t. For t ≥ T0,

let st = ⌊log2(tνT)⌋. Then under Assumptions 1–9, there exists a Pst(θ̂st , ϵst) such that

{x′
t ≥ Pst(θ̂st , ϵst)} ⊆ {u′

t = usafeU
t },

and such that conditional on event E, we have Pst(θ̂st , ϵst) ≤ P (θ∗, Kopt(θ
∗, Tst), DU).

The proof of Lemma 22 can be found in Appendix F.9. Recall that {i ∈ STs} = {u′
i =

usafeU
i }. Therefore, for i ∈ [Ts : Ts+1 − 1], Lemma 22 implies that

{x′
i ≥ P (θ∗, Kopt(θ

∗, Ts), DU)} ∩ E ⊆ {x′
i ≥ Pst(θ̂st , ϵst)} ∩ E

⊆ {u′
i = usafeU

i } ∩ E

= {i ∈ STs} ∩ E. (90)

By Assumption 9, for any x′
i−1, u

′
i−1 satisfying a∗x′

i−1 + b∗u′
i−1 ∈ [DL, DU], we have that

P
(
x′
i ≥ P (θ∗, Kopt(θ

∗, Tst), DU)
∣∣ x′

i−1, u
′
i−1

)
≥ P (wi ≥ P (θ∗, Kopt(θ

∗, Tst), DU)−DL)

≥ ϵA9. Assumption 9 (91)

70

Because P(E) ≥ 1 − oT (1/T), this implies for sufficiently large T and for any x′
i−1, u

′
i−1

satisfying a∗x′
i−1 + b∗u′

i−1 ∈ [DL, DU],

P
(
x′
i ≥ P (θ∗, Kopt(θ

∗, Tst), DU)
∣∣ x′

i−1, u
′
i−1, E

)
≥ ϵA9 − P(¬E)

≥ ϵA9 − oT (1/T)

≥ ϵA9

2
. (92)

Also, recall that conditional on event E, Calg is safe for dynamics θ∗ for all T steps, therefore
conditional on event E, for all i ≥ 1, DL ≤ a∗x′

i−1+ b∗u′
i−1 ≤ DU. Therefore, for T1 ≤ i < Ts

and sufficiently large T ,

P
(
i ∈ STs

∣∣x′
0, x

′
1, ..., x

′
i−1, u

′
0, u

′
1, ..., u

′
i−1, E

)
≥ P

(
x′
i ≥ P (θ∗, Kopt(θ

∗, Ts), DU)
∣∣x′

0, x
′
1, ..., x

′
i−1, u

′
0, u

′
1, ..., u

′
i−1, E

)
Equation (90)

≥ P
(
x′
i ≥ P (θ∗, Kopt(θ

∗, Ts), DU)
∣∣x′

i−1, u
′
i−1, E

)
≥ ϵA9

2
. Equation (92) (93)

Defining Xi = 1i∈STs
, the above equation is equivalent to

E
[
Xi

∣∣ x′
0, x

′
1, ..., x

′
i−1, u

′
0, u

′
1, ..., u

′
i−1, E

]
≥ ϵA9

2
.

Therefore, we can conclude that conditional on event E,
∑Ts−1

i=T0
Xi is stochastically domi-

nated by
∑Ts−1

i=T0
Yi, where Yi are i.i.d. Bernoulli random variables that are equal to 1 with

probability ϵA9/2. By this coupling argument and Hoeffding’s inequality, for s ≥ 1, condi-
tional on event E with conditional probability 1− oT (1/T

2),

|STs| =
Ts−1∑
i=T0

Xi ≥
Ts−1∑
i=T0

Yi ≥
ϵA9

2
(Ts−T0)− log(T)

√
Ts − T0 ≥

ϵA9

4
· (Ts−T0) ≥

ϵA9

8
·Ts, (94)

where the second to last inequality comes from for sufficiently large T and s ≥ 1, Ts −
T0 ≥

√
T and therefore

√
Ts − T0 ≥ 4 log(T)

ϵA9
. The last inequality comes from the fact that

Ts − T0 ≥ Ts

2
by the definition of Ts for s ≥ 1. A union bound over all s ∈ [1 : se] gives that

conditional on event E with conditional probability 1− oT (1/T),

min
s∈[1:se]

|STs|
Ts

≥ ϵA9

8
.

F.9 Proof of Lemma 22

proof. Defining Ps(θ̂s, ϵs) as

Ps(θ̂s, ϵs) = min
∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ̂s, Ts), DU),

71

we have by definition of usafeU
t in Algorithm (5) that

{x′
t ≥ Ps(θ̂s, ϵs)} =

{
x′
t ≥ min

∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ̂s, Ts), DU)

}
⊆ {u′

t = usafeU
t }. (95)

Under event E, ∥θ∗ − θ̂pres ∥∞ ≤ ϵs, therefore

min
∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ
∗, Ts), DU) ≤ P (θ∗, Kopt(θ

∗, Ts), DU). (96)

Therefore, we can conclude that conditional on event E,

Ps(θ̂s, ϵs) = min
∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ̂s, Ts), DU)

≤ min
∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ
∗, Ts), DU) Choice of θ̂s

≤ P (θ∗, Kopt(θ
∗, Ts), DU). Equation (96)

72

G Uncertainty Bounds

G.1 Tools for Uncertainty Bounds

The proofs of uncertainty bounds will rely on the following result from [AYS11].

Lemma 23 (Derived from Theorem 1 in [AYS11]). Suppose xt and ut are respectively the
position and control at time t when using an arbitrary controller C starting at position
x0 = 0. Define zt = (xt, ut) and let λ > 0. Let Zt ∈ Rt×2 where the ith row is zi−1, let
Xt ∈ Rt×1 where the ith element is xi, and let I ∈ R2×2 be the identity matrix. Then under
Assumptions 1–3, with probability 1− oT

(
1
T 2

)
the following holds for all 1 ≤ t ≤ T − 1 and

for any S ⊆ [0 : t− 1]:

∥θ∗ − (Z⊤
t Zt + λI)−1Z⊤

t Xt∥∞ ≤

√
max((V S

t)11, (V S
t)22)

det(V S
t)

Bt, (97)

where V S
t = λI +

∑t−1
s=0 zsz

⊤
s 1s∈S, Bt = α

√
log
(
det
(
V

[0:t−1]
t

))
+ log(λ2) + 2 log(T 2) +

√
λ(ā2 + b̄2), and α is from the subgaussian assumption on the noise distribution D, which

implies that there exists an α such that Ew∼D[exp(γw)] ≤ exp(γ2α2/2) for any γ ∈ R.

Lemma 23 can be directly derived from Theorem 1 in [AYS11] as shown in Appendix G.5.
The other tool that will be shared by the proofs in the following sections is the following
anti-concentration inequality of the sum of non-negative random variables.

Lemma 24. For p ∈ (0, 1] and 1 ≤ n ≤ T , suppose X0, ..., Xn−1 are non-negative random
variables such that (X0, ..., Xi−1) is a deterministic function of the random variable set Fi

for all i ∈ [1 : n] and Fi ⊆ Fi+1. Let the set Sn ⊆ [0 : n − 1] be a random variable such
that the event {i ∈ Sn} is a deterministic function of Fi+1. For i ∈ [0 : n − 1], define
Si = {k < i : k ∈ Sn}, therefore Si is a deterministic function of Fi. Let E∗ be an event
such that for all i ∈ [0 : n− 1],

E [Xi | Fi, E
∗, i ∈ Sn] ≥ c · |Si|, (98)

where c > 0 is non-random. Furthermore, assume that conditional on E∗:

0
a.s.

≤ Xi

a.s.

≤ c|Si|
2p

. (99)

Then conditional on event E∗, with conditional probability 1− oT (1/T
2),

n−1∑
i=0

Xi ≥
c

4

(
max(⌊p|Sn| − log(T)

√
|Sn|⌋, 1)

)(
max(⌊p|Sn| − log(T)

√
|Sn|⌋, 1)− 1

)
.

The proof of Lemma 24 can be found in Appendix G.6.

73

G.2 Proof of Lemma 2

proof. For the rest of this proof, xt and ut are respectively the position and control at time
t of controller Calg that corresponds to Algorithm 3 starting at x0 = 0. Recall that Lemma
2 was stated and used in Appendix C with respect to Algorithm 3, therefore all events and
variables in this subsection refer to those defined with respect to Algorithm 3. To prove
Lemma 2, we will use Lemma 23 applied to S = [0 : 1

ν2T
− 1]. The goal will be to bound the

right side of Equation (97) for this choice of S. Consider any fixed arbitrary s ∈ [0 : se] and
the corresponding matrix V S

Ts
. Define N as the event that for all i < 1/ν2

T , the control ui is
safe for dynamics θ∗. Note that we showed in Lemma 1 that P(N) ≥ P(Esafe) = 1− oT (

1
T 2).

Under event N ∩ E1, we can apply Lemma 4 to get the following equations for sufficiently
large T :

(V S
Ts
)11 = λ+

1

ν2
T

−1∑
i=0

x2
i ≤ λ+

1

ν2
T

B2
x (100)

(V S
Ts
)22 = λ+

1

ν2
T

−1∑
i=0

u2
i ≤ λ+

1

ν2
T

B2
x (101)

(V S
Ts
)212 =

1

ν2
T

−1∑
i=0

uixi

2

. (102)

We can now compute (V S
Ts
)22(V

S
Ts
)11−(V S

Ts
)212. Recall that for the first 1/ν

2
T steps of Algorithm

3, the control is ui = C init(xi) +
ϕi

log(T)
where ϕi is i.i.d. from the Rademacher distribution

and independent from the noise random variables.

(V S
Ts
)22(V

S
Ts
)11 − (V S

Ts
)212

=

λ+

1

ν2
T

−1∑
i=0

u2
i

λ+

1

ν2
T

−1∑
i=0

x2
i

−

1

ν2
T

−1∑
i=0

uixi

2

Equations (100) (101) (102)

≥

1

ν2
T

−1∑
i=0

u2
i

1

ν2
T

−1∑
i=0

x2
i

−

1

ν2
T

−1∑
i=0

uixi

2

=

1

ν2
T

−1∑
i<j

(uixj − ujxi)
2

=

1

ν2
T

−1∑
i<j

(
uixj − C init(xj)xi +

ϕj

log(T)
xi

)2

. (103)

74

Conditional on N ∩ E1, for all i < 1/ν2
T , we have |ui|, |xi| ≤ Bx by Lemma 4. Define the

random variable Xj as

Xj =

j−1∑
i=0

(uixj − ujxi)
2

=

j−1∑
i=0

(
uixj − C init(xj)xi +

(
ϕj

log(T)

)
xi

)2

≤ 4jB4
x. Conditional on N ∩ E1 by Lemma 4

(104)

We will use the following lemma to lower bound the conditional expectation of Xj.

Lemma 25. Under Assumptions 1–3, let x0, x1, ..., xT be the positions of the controller Calg

starting at x0 = 0. Then there exists an event EL25 such that P(EL25) = 1 − oT (1/T
2) and

for sufficiently large T conditional on EL25, for all j ≥ log8(T),

j−1∑
i=0

x2
i ≥

j

2 log2(T)
. (105)

The proof of Lemma 25 can be found in Appendix G.7. Now define E∗ = N ∩E1 ∩EL25.
Note that P(E∗) = 1 − oT (1/T

2) by a union bound. Because ϕj is a Rademacher random
variable, we therefore have that P(ϕj = 1 | E∗) = 1/2 − oT (1/T

2) and P(ϕj = −1 | E∗) =
1/2 − oT (1/T

2). This implies that |E[ϕj | E∗]| = oT (1/T
2), and therefore for sufficiently

large T , we have Var [ϕj | E∗] ≥ 1/2. Then we can bound the conditional expectation
of Xj under event E∗ as follows for all j ≥ log8(T) and for sufficiently large T . Define
Fj = {x0, u0, ..., xj−1, uj−1, xj}. Then we have

E[Xj | Fj, E
∗] =

j−1∑
i=0

E

[(
uixj − C init(xj)xi +

(
ϕj

log(T)

)
xi

)2
∣∣∣∣∣ Fj, E

∗

]

≥
j−1∑
i=0

Var

[
uixj − C init(xj)xi +

(
ϕj

log(T)

)
xi

∣∣∣∣ Fj, E
∗
]

=

j−1∑
i=0

x2
i Var

[
ϕj

log(T)

∣∣∣∣ Fj, E
∗
]

=

j−1∑
i=0

x2
i Var

[
ϕj

log(T)

∣∣∣∣ E∗
]

ϕj is ind. of Fj

=
Var [ϕj | E∗]

log2(T)

j−1∑
i=0

x2
i

≥ 1

2 log2(T)

j−1∑
i=0

x2
i

≥ j

4 log4(T)
. E∗ ⊆ EL25 (106)

75

Therefore, we can apply Lemma 24 toXlog8(T), Xlog8(T)+1, ..., X1/ν2T−1 with n = 1/ν2
T−log

8(T),

p = 1
32B4

x log4(T)
, Fi = {x0, u0, ..., ui−1, xi}, Sn = [0 : n − 1], and c = 1

4 log4(T)
. Note that this

choice of p is less than 1 for sufficiently large T .
We will also use that for sufficiently large T , n = 1/ν2

T − log8(T) = T 2/3 − log8(T) ≥
4 log2(T)/p2. This implies that for sufficiently large T ,

pn− log(T)
√
n ≥ pn/2 =

1/ν2
T − log8(T)

64B4
x log

4(T)
≥ 1. (107)

Recall by Equation (104) that under event E∗, the Xj are bounded by 0 ≤ Xj ≤ 4jB4
x =

c
2p
· j. Lemma 24 gives that for sufficiently large T and conditional on event E∗ with condi-

tional probability 1− oT (1/T
2),

(V S
Ts
)22(V

S
Ts
)11 − (V S

Ts
)212

≥

1

ν2
T

−1∑
j=0

Xj Equation (103)

≥

1

ν2
T

−1∑
j=log8(T)

Xj Xi ≥ 0

≥ 1

16 log4(T)

(
max(⌊pn− log(T)

√
n⌋, 1)− 1

) (
max(⌊pn− log(T)

√
n⌋, 1)

)
Lemma 24

≥ 1

16 log4(T)

(⌊
1/ν2

T − log8(T)

64B4
x log

4(T)

⌋
− 1

)(⌊
1/ν2

T − log8(T)

64B4
x log

4(T)

⌋)
Equation (107)

= ΩT

(1
ν4T

B8
x log

12(T)

)
. (108)

Finally, we need to bound the quantity BTs from Lemma 23. The only non-constant term in

BTs is
√

log(det(λI +
∑Ts−1

i=0 ziz⊤i)) + 2 log(T 2). Define VTs = λI +
∑Ts−1

i=0 ziz
⊤
i . Conditional

on event N ∩ E1, we have by Lemma 4 that (VTs)22 ≤ λ + TB2
x and (VTs)11 ≤ λ + TB2

x.
Therefore, conditional on event N ∩ E1,√√√√log

(
det

(
λI +

Ts−1∑
i=0

ziz⊤i

))
+ 2 log(T 2) ≤

√
log((VTs)11(VTs)22) + 2 log(T 2)

≤
√
log
(
(λ+ TB2

x)
2)+ 2 log(T 2)

= ÕT (1). (109)

Now, combining Lemma 23 and Equations (100), (101), (108), and (109) gives that condi-

76

tional on event E∗ with conditional probability 1− oT (1/T
2), for all s ∈ [0 : se],

ϵ2s ≤
max((V S

Ts
)11, (V

S
Ts
)22)

det(V S
Ts
)

B2
Ts

=
(λ+

(
1
ν2T

)
B2

x)ÕT (1)

ΩT

 (
1

ν2
T

)2

B8
x log12(T)

 = ÕT

(
ν2
T

)
.

Because P(E∗) = 1 − oT (1/T
2), this gives the desired result with unconditional probability

1− oT (1/T
2).

G.3 Proof of Lemma 21

proof. Recall that Lemma 21 was stated and used in Appendix F with respect to Algorithm
5, therefore all events and variables in this subsection refer to those defined with respect to
Algorithm 5. We will prove a more general result in Lemma 26.

Lemma 26. Let xt, ut respectively be the position and control of Calg (the controller of
Algorithm 5) at time t starting at x0 = 0. Define Gi = (x0, u0, ..., xi−1, ui−1). For constant
γ > 0, define S ′

t as

S ′
t =

{
i < t : ui = usafeU

i and P(ui = usafeU
i | Gi, E) ≥ γ

}
, (110)

where E is the event defined in Appendix F. Then under Assumptions 1–8 and for sufficiently
large T , with probability 1− oT (1/T),

max
s∈[0:se]

ϵs

√
|S ′

Ts
| = ÕT (1) ,

where ϵs is from Algorithm 5.

The proof of Lemma 26 can be found in Appendix G.4. We will now prove that Lemma
21 is a direct consequence of Lemma 26. By Equation (93), we have that for all i,

P
(
ui = usafeU

i

∣∣ Gi, E
)
≥ ϵA9

2
.

Therefore, we have that{
i < t : ui = usafeU

i and P(ui = usafeU
i | Gi, E) ≥ ϵA9

2

}
=
{
i < t : ui = usafeU

i

}
. (111)

Lemma 26 for γ = ϵA9

2
gives that with probability 1− oT (1/T),

max
s∈[0:se]

ϵs ·
√∣∣∣{i < t : ui = usafeU

i and P(ui = usafeU
i | Gi, E) ≥ ϵA9

2

}∣∣∣ = ÕT (1) . (112)

Combining Equation (111) and Equation (112) gives that with probability 1− oT (1/T),

max
s∈[0:se]

ϵs

√∣∣{i < t : ui = usafeU
i

}∣∣ = ÕT (1) ,

which is the desired result of Lemma 21.

77

G.4 Proof of Lemma 26

Lemma 26 is stated above to be used in Appendix F with respect to Algorithm 5, therefore
all events and variables in this subsection refer to those defined with respect to Algorithm 5.

proof. The first step of the proof will be to prove that conditional on event E for all i ≥ T0,

usafeU
i = −a∗

b∗
xi +

DU + ei
b∗

, (113)

where |ei| = ÕT (νT). Let si = ⌊log2(iν2
T)⌋. Recall that usafeU

i is the largest u such that

max
∥θ−θ̂si∥∞≤ϵsi

axi + bu ≤ DU.

For sufficiently large T and conditional on event E,

ϵsi = ÕT (νT) ≤ min(a∗, b∗)− ϵsi ≤ min(âsi , b̂si).

This implies that âsi − ϵsi ≥ 0, giving the following equations of casework for usafeU
i :

usafeU
i =

DU−(âsi+ϵsi)xi

b̂si−ϵsi
, if xi ≥ 0 and (âsi + ϵsi)xi ≥ DU

DU−(âsi+ϵsi)xi

b̂si+ϵsi
, if xi ≥ 0 and (âsi + ϵsi)xi ≤ DU

DU−(âsi−ϵsi)xi

b̂si+ϵsi
, if xi ≤ 0

(114)

which implies

usafeU
i =

DU−a∗xi

b∗
b∗

b̂si−ϵsi
+

a∗xi−(âsi+ϵsi)xi

b̂si−ϵsi
, if xi ≥ 0 and (âsi + ϵsi)xi ≥ DU

DU−a∗xi

b∗
b∗

b̂si+ϵsi
+

a∗xi−(âsi+ϵsi)xi

b̂si+ϵsi
, if xi ≥ 0 and (âsi + ϵsi)xi ≤ DU

DU−a∗xi

b∗
b∗

b̂si+ϵsi
+

a∗xi−(âsi−ϵsi)xi

b̂si+ϵsi
, if xi ≤ 0

(115)

which implies

usafeU
i =

DU−a∗xi

b∗
+

b∗−b̂si+ϵsi
b̂si−ϵsi

DU−a∗xi

b∗
+

(a∗−âsi−ϵsi)xi

b̂si−ϵsi
, if xi ≥ 0 and (âsi + ϵsi)xi ≥ DU

DU−a∗xi

b∗
+

b∗−b̂si−ϵsi
b̂si+ϵsi

DU−a∗xi

b∗
+

(a∗−âsi−ϵsi)xi

b̂si+ϵsi
, if xi ≥ 0 and (âsi + ϵsi)xi ≤ DU

DU−a∗xi

b∗
+

b∗−b̂si−ϵsi
b̂si+ϵsi

DU−a∗xi

b∗
+

(a∗−âsi+ϵsi)xi

b̂si+ϵsi
. if xi ≤ 0.

(116)
Under event E, |a∗ − âsi| ≤ ϵsi , |b∗ − b̂si | ≤ ϵsi , and |xi| = ÕT (1), therefore in all three cases
we have that

usafeU
i = −a∗

b∗
xi +

DU + ei
b∗

, (117)

for some ei satisfying

|ei| = ÕT (ϵsi) = ÕT (νT). (118)

We now define

S ′′
t =

{
i < t : ui = usafeU

i and P(ui = usafeU
i | Gi, E) ≥ γ and P(E | Gi) ≥

1

2

}
.

78

Lemma 27. Using the same notation and assumptions as in the proof of Lemma 26, for
any constant c < 1,

P
(
∀i ∈ [0 : t− 1],P(E | Gi) ≥ c

)
= 1− oT (1/T).

proof. Consider any fixed i ∈ [0 : t−1]. We will show that P
(
P(E | Gi) ≥ c

)
= 1−oT (1/T 2).

Suppose this is not true, i.e. suppose that P
(
P(E | Gi) ≥ c

)
= 1−ΩT (1/T

2), or equivalently

that P
(
P(¬E | Gi) ≥ 1− c

)
= ΩT (1/T

2). Note that by the law of total expectation,

P
(
¬E | P(¬E | Gi) ≥ 1− c

)
= E

[
P
(
¬E | Gi,P(¬E | Gi) ≥ 1− c

)
| P(¬E | Gi) ≥ 1− c

]
≥ E [1− c]

= 1− c.

This implies that

P(¬E) = P
(
¬E | P(¬E | Gi) ≥ 1− c

)
P
(
P(¬E | Gi) ≥ 1− c

)
= (1− c)ΩT (1/T

2).

This would then imply that P(E) = 1 − P(¬E) = 1 − ΩT (1/T
2), which is a contradiction

with the fact that P(E) = 1− oT (1/T
2). Therefore, we must have that for all fixed i,

P
(
P(E | Gi) ≥ c

)
= 1− oT (1/T

2).

Taking a union bound gives that

P
(
∀i ∈ [0 : t− 1],P(E | Gi) ≥ c

)
≥ 1−

t−1∑
i=0

(1− P(P(E | Gi) ≥ c))

= 1− oT (1/T),

which is exactly what we want to show.

If ∀i ∈ [0 : t− 1], P(E | Gi) ≥ 1/2, then |S ′
t| = |S ′′

t |. Using Lemma 27 with c = 1/2, this
means

P (|S ′
t| = |S ′′

t |) ≥ P(∀i ∈ [0 : t− 1],P(E | Gi) ≥ 1/2) = 1− oT (1/T). (119)

Therefore, if we can show that with probability 1− oT (1/T),

max
s∈[0:se]

ϵs

√
|S ′′

Ts
| = ÕT (1) , (120)

then a union bound combining Equation (120) with Equation (119) gives that with proba-
bility 1− oT (1/T),

max
s∈[0:se]

ϵs

√
|S ′

Ts
| = ÕT (1) ,

79

which is our desired result. Therefore, the rest of this proof will focus on proving Equation
(120).

Fix any s ∈ [0 : se]. We will use Lemma 23 with S = S ′′
Ts
. Under event E, we have by

Lemma 4 the following three equations:

(V
S′′
Ts

Ts
)11 = λ+

Ts−1∑
i=0

x2
i 1i∈S′′

Ts
≤ λ+ |S ′′

Ts
|B2

x (121)

(V
S′′
Ts

Ts
)22 = λ+

Ts−1∑
i=0

u2
i 1i∈S′′

Ts
≤ λ+ |S ′′

Ts
|B2

x (122)

(V
S′′
Ts

Ts
)212 =

(
Ts−1∑
i=0

uixi1i∈S′′
Ts

)2

. (123)

We can now lower bound (V
S′′
Ts

Ts
)22(V

S′′
Ts

Ts
)11 − (V

S′′
Ts

Ts
)212 for sufficiently large T conditional on

event E.

(V
S′′
Ts

Ts
)22(V

S′′
Ts

Ts
)11 − (V

S′′
Ts

Ts
)212

=

(
λ+

Ts−1∑
i=0

u2
i 1i∈S′′

Ts

)(
λ+

Ts−1∑
i=0

x2
i 1i∈S′′

Ts

)
−

(Ts−1∑
i=0

uixi1i∈S′′
Ts

)2

≥

(
Ts−1∑
i=0

u2
i 1i∈S′′

Ts

)(
Ts−1∑
i=0

x2
i 1i∈S′′

Ts

)
−

(Ts−1∑
i=0

uixi1i∈S′′
Ts

)2

=
Ts−1∑
i<j

(uixj − ujxi)
21i,j∈S′′

Ts

=
Ts−1∑
i<j

((
−a∗

b∗
xi +

DU + ei
b∗

)
xj −

(
−a∗

b∗
xj +

DU + ej
b∗

)
xi

)2

1i,j∈S′′
Ts

Equation (113)

=
1

(b∗)2

Ts−1∑
i<j

(DUxj + eixj −DUxi − ejxi)
2 1i,j∈S′′

Ts

=
1

(b∗)2

Ts−1∑
i<j

(xj(DU + ei)− (DU + ej)xi)
2 1i,j∈S′′

Ts

=
1

(b∗)2

Ts−1∑
j=0

Xj1j∈S′′
Ts
. (124)

Above we defined the random variable Xj as

Xj =

j−1∑
i=0

((DU + ej)xi1i∈S′′
Ts
− (DU + ei)xj1i∈S′′

Ts
)2

≤ |S ′′
j |4(DU + 1)2B2

x, Equation (118) (125)

80

where the last inequality holds by Lemma 4 and because ej ≤ 1 under event E for sufficiently
large T by Equation (118). We need one last lemma to help lower bound the conditional
expectation of Xj.

Lemma 28. Using the same notation and assumptions as in the proof of Lemma 26 (and
recall that BP is the upper bound on the density of the noise random variables), if P(uj =
usafeU
j | Gj, E) ≥ γ and P(E | Gj) ≥ 1/2, then

Var
(
wj−1

∣∣ Gj, E, uj = usafeU
j

)
≥ γ2

64BP

.

The proof of Lemma 28 can be found in Appendix G.8. By definition, j ∈ S ′′
Ts

implies
three events: {uj = usafeU

j }, {P(uj = usafeU
j | Gj, E) ≥ γ}, and {P(E | Gj) ≥ 1/2}. Note

that the second and third events are deterministic functions of Gj. Therefore in the algebra
below, the information in {j ∈ S ′′

Ts
} that tells us that P(uj = usafeU

j | Gj, E) ≥ γ and
P(E | Gj) ≥ 1/2 will be absorbed into the conditioning on Gj in the first equality, i.e.,
starting in the second line below, the Gj being conditioned on should be understood to be
one for which P(uj = usafeU

j | Gj, E) ≥ γ and P(E | Gj) ≥ 1/2. For sufficiently large T ,

E[Xj | Gj , E, j ∈ S′′
Ts
]

= E[Xj | Gj , E, uj = usafeU
j]

= E

[
j−1∑
i=0

((DU + ej)xi1i∈S′′
Ts
− (DU + ei)xj1i∈S′′

Ts
)2 | Gj , E, uj = usafeU

j

]

=

j−1∑
i=0

E[((DU + ej)xi1i∈S′′
Ts
− (DU + ei)(axj−1 + buj−1)1i∈S′′

Ts
− (DU + ei)wj−11i∈S′′

Ts
)2 | Gj , E, uj = usafeU

j]

≥
j−1∑
i=0

Var
(
(DU + ej)xi1i∈S′′

Ts
− (DU + ei)(axj−1 + buj−1)1i∈S′′

Ts
− (DU + ei)wj−11i∈S′′

Ts
| Gj , E, uj = usafeU

j

)
=

j−1∑
i=0

Var
(
(DU + ei)wj−1 − ejxi|Gj , E, uj = usafeU

j

)
1i∈S′′

Ts

=

j−1∑
i=0

(DU + ei)
2 Var

(
wj−1 −

ejxi

DU + ei

∣∣∣∣ Gj , E, uj = usafeU
j

)
1i∈S′′

Ts

≥
j−1∑
i=0

(DU + ei)
2

(
Var

(
wj−1

∣∣ Gj , E, uj = usafeU
j

)
−
∣∣∣∣2Cov(ejxi

DU + ei
, wj−1

∣∣∣∣ Gj , E, uj = usafeU
j

)∣∣∣∣) 1i∈S′′
Ts

≥
j−1∑
i=0

(DU + ei)
2

(
Var

(
wj−1

∣∣ Gj , E, uj = usafeU
j

)
− 1

log(T)

)
1i∈S′′

Ts
Suff large T (see below)

≥ (DU − ÕT (νT))
2 · |S′′

j | ·
(
Var

(
wj−1

∣∣ Gj , E, uj = usafeU
j

)
− 1

log(T)

)
Equation (118)

= (DU − ÕT (νT))
2 · |S′′

j | ·
(

γ2

64BP
− 1

log(T)

)
P(uj = usafeU

j | Gj , E) ≥ γ, Lemma 28

≥
D2

U|S′′
j |γ2

128BP
. Suff large T (126)

Note that we are able to divide by DU + ei for sufficiently large T by Equation (118).
The for-sufficiently-large-T bound on the covariance comes from the fact that under event

81

E, we have |wj−1| = ÕT (1) and
ejxi

DU+ei
= ÕT (νT), and therefore for sufficiently large T the

covariance has magnitude less than 1
2 log(T)

.

We can now apply Lemma 24 to {Xi}Ts−1
i=0 with n = Ts, Sn = S ′′

Ts
, p =

D2
Uγ2

1024BP (DU+1)2B2
x
,

Fi = Gi, E
∗ = E, and c =

D2
Uγ2

128BP
(where Equations (125) and (126) imply Equations (98)

and (99)). Because DU ≤ log2(T), Bx = log3(T), and γ is a constant, this choice of p is less
than 1 for sufficiently large T .

Applying Lemma 24 gives that for sufficiently large T , conditional on event E with
conditional probability 1− oT (1/T

2),

(V
S′′
Ts

Ts
)22(V

S′′
Ts

Ts
)11 − (V

S′′
Ts

Ts
)212

≥ 1

(b∗)2

Ts−1∑
j=0

Xj Equation (124)

≥ 1

(b∗)2
D2

Uγ
2

512BP

(
max(

⌊
p|S ′′

Ts
| −
√
|S ′′

Ts
| log(T)

⌋
, 1)− 1

)
×
(
max(

⌊
p|S ′′

Ts
| −
√
|S ′′

Ts
| log(T)

⌋
, 1)
)

Lemma 24 (127)

Define E ′
s as the event that Equation (127) holds (therefore P(E ′

s | E) = 1 − oT (1/T
2)). If

|S ′′
Ts
| ≥ 4 log2(T)/p2, then

p|S′′
Ts

|
2
≥ log(T)

√
|S ′′

Ts
|, and therefore

p|S ′′
Ts
| − log(T)

√
|S ′′

Ts
| ≥

p|S ′′
Ts
|

2
≥ 1. (128)

Therefore, conditional on E ∩ E ′
s ∩ {|S ′′

Ts
| ≥ 4 log2(T)/p2},

(V
S′′
Ts

Ts
)22(V

S′′
Ts

Ts
)11 − (V

S′′
Ts

Ts
)212

≥ 1

(b∗)2
D2

Uγ
2

512BP

(
max(

⌊
p|S ′′

Ts
| −
√
|S ′′

Ts
| log(T)

⌋
, 1)− 1

)
×
(
max(

⌊
p|S ′′

Ts
| −
√
|S ′′

Ts
| log(T)

⌋
, 1)
)

Equation (127)

≥ 1

(b∗)2
D2

Uγ
2

512BP

(⌊
p|S ′′

Ts
|/2
⌋
− 1
) (⌊

p|S ′′
Ts
|/2
⌋)

Equation (128)

= Ω̃T

(
|S ′′

Ts
|2
)
. (129)

Because E ⊆ E1, we have by Equation (109) that BTs = ÕT (1) conditional on event E ∩N .
Therefore, by Lemma 23 and Equations (121), (122), (129), and (109), we have conditional
on event E ∩ E ′

s ∩N ∩ {|S ′′
Ts
| ≥ 4 log2(T)/p2} and for sufficiently large T ,

ϵ2s ≤
λ+ |S ′′

Ts
|B2

xÕT (1)

Ω̃(|S ′′
Ts
|2)

≤ ÕT

(
1

|S ′′
Ts
|

)
. (130)

Taking E ′ = ∩s∈[0:se]E ′
s, Equation (130) implies that conditional on E ∩ E ′ ∩ N ∩ {|S ′′

Ts
| ≥

4 log2(T)/p2},
ϵ2s|S ′′

Ts
| ≤ ÕT (1). (131)

82

Under event E, because E2 ⊆ E, ϵs = ÕT (νT). Therefore, conditional on E∩E ′∩N∩{|S ′′
Ts
| <

4 log2(T)/p2},
ϵ2s|S ′′

Ts
| ≤ ϵ2s · 4 log2(T)/p2 = ÕT (ν

2
T) = ÕT (1). (132)

Because Equations (131) and (132) hold for all s ∈ [0 : se], the right hand sides do not
depend on s, and the equations hold almost surely, these two equations together imply that
conditional on E ∩ E ′ ∩N ,

max
s∈[0:se]

ϵ2s|S ′′
Ts
| = ÕT (1).

Because P(E) ≥ 1− oT (1/T), P(N) ≥ 1− oT (1/T), and P(E ′ | E) ≥ 1−
∑se

s=0 P(E ′
s | E) =

1− oT (1/T), by a union bound we can conclude that with probability 1− oT (1/T),

max
s∈[0:se]

ϵ2s|S ′′
Ts
| = ÕT (1).

This completes the proof of Equation (120), and therefore completes the proof of this lemma.

G.5 Proof of Lemma 23

Recall that Lemma 23 applies to all algorithms as defined in the lemma statement, and
therefore this lemma is not specific to a previous appendix section.

proof. First, we restate the theorem from [AYS11] in the notation and setup of this paper.

Lemma 29 (Restatement of Theorem 1 in [AYS11]). Let θ∗ ∈ R2 and C be a controller.
For t ∈ [0 : T − 1], define zt = (xt, C(xt)) and xt+1 = θ∗ · zt + wt where wt ∼i.i.d. D and
D a subgaussian distribution with mean 0 and variance 1, and ∥θ∗∥2 ≤ ā2 + b̄2. Define
Vt = λI +

∑t−1
s=0 zsz

⊤
s , Zt as the matrix where row i ∈ [1 : t] is z⊤i−1, and Xt as the matrix

where row i ∈ [1 : t] is xi. Finally, let θ̂t = (Z⊤
t Zt +λI)−1Z⊤

t Xt and ∆t = θ̂− θ∗. Then with
probability 1− oT (1/T

2), for all 1 ≤ t ≤ T .

Tr(∆⊤
t Vt∆t) ≤ B2

t , (133)

where Bt = α
√

log(det(Vt)) + log(λ2) + 2 log(T 2)+
√
λ(ā2+b̄2) and α satisfies Ew∼D[exp(γw)] ≤

exp(γ2α2/2) for any γ ∈ R.

Now define V Sc

t = λI +
∑t−1

s=0 zsz
⊤
s 1s ̸∈S. Then by Lemma 29,

Bt ≥ Tr(∆⊤
t Vt∆t) = Tr(∆⊤

t (V
S
t + V Sc

t)∆t) = Tr(∆⊤
t V

S
t ∆t) + Tr(∆⊤

t V
Sc

t ∆t).

Because both traces are non-negative, this implies that

Tr(∆⊤
t V

S
t ∆t) ≤ B2

t .

Suppose ∆t = (∆ta,∆tb). Then expanding the trace gives that

(V S
t)11∆

2
ta + (V S

t)22∆
2
tb + 2∆ta∆tb(V

S
t)12 ≤ B2

t .

83

The left side of the above equation is a quadratic in ∆tb, with minimum occurring at ∆tb =
−∆ta(V S

t)12
(V S

t)22
. Therefore, plugging this in gives the following inequality.

(V S
t)11∆

2
ta −

∆2
ta(V

S
t)212

(V S
t)22

≤ B2
t .

Simplifying, we have the desired result that

∆2
ta ≤

(V S
t)22

(V S
t)11(V S

t)22 − (V S
t)212

B2
t .

The proof follows symmetrically for ∆tb.

G.6 Proof of Lemma 24

proof. By the law of total expectation, for all k ∈ [0, n− 1],

c|Sk| ≤ E [Xk | Fk, E
∗, k ∈ Sn] Eq (98)

= E
[
Xk

∣∣∣∣ Fk, E
∗, k ∈ Sn, Xk ≤

c|Sk|
2

]
P
(
Xk ≤

c|Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn

)
+ E

[
Xk

∣∣∣∣ Xk >
c|Sk|
2

, Fk, E
∗, k ∈ Sn

]
P
(
Xk >

c|Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn

)
≤ c|Sk|

2
+

c|Sk|
2p

P
(
X >

c|Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn

)
. Eq (99)

For i ∈ [0 : |Sn| − 1], define κi as the (i+ 1)th smallest index in the set Sn. This implies
that |Sκi

| = i and κi ∈ Sn. By Equation (99), for all k,

P
(
Xk ≥

c|Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn, κ|Sk| = k

)
= P

(
Xk ≥

c|Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn

)
≥ c|Sk|/2

c|Sk|/2p
= p.

(134)
Note that the first equality comes from the fact that by definition, κ|Sk| = k if k ∈ Sn, and
|Sk| is a deterministic function of Fk.

Let A0, A1, ..., An−1 be a sequence of i.i.d. Bernoulli random variables with probability
p of being 1 that are independent of all other random variables in this lemma, including
E∗, Sn, Xi, Fi for all i. For i ∈ [0 : n− 1], define the random variable A′

i as

A′
i =

{
1Xκi≥

c·i
2

if i ≤ |Sn| − 1

Ai otherwise.

84

Define FA
i := Fκmin(i,|Sn|−1)

∪ {A0, ..., Ai−1}. By Equation (134), we have that for all i,

P
(
A′

i = 1
∣∣ FA

i , E∗, i ≤ |Sn| − 1
)

=

n−1∑
k=0

P
(
A′

i = 1
∣∣ FA

i , E∗, i ≤ |Sn| − 1, κi = k
)
P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
LoTE

=

n−1∑
k=0

P
(
Xκi
≥ c · i

2

∣∣∣∣ FA
i , E∗, i ≤ |Sn| − 1, κi = k

)
P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
=

n−1∑
k=0

P
(
Xκi
≥ c · |Sκi

|
2

∣∣∣∣ FA
i , E∗, i ≤ |Sn| − 1, κi = k

)
P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
=

n−1∑
k=0

P
(
Xκi
≥ c · |Sκi

|
2

∣∣∣∣ Fκi
, E∗, κi ∈ Sn, κi = k

)
P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
=

n−1∑
k=0

P
(
Xk ≥

c · |Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn, κi = k

)
P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
=

n−1∑
k=0

P
(
Xk ≥

c · |Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn, κ|Sk| = k

)
P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
i = |Sκi

| = |Sk|

≥
n−1∑
k=0

p · P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
Eq (134)

= p, (135)

and

P
(
A′

i = 1
∣∣ FA

i , E
∗, i > |Sn| − 1

)
= P

(
Ai = 1

∣∣ FA
i , E

∗, i > |Sn| − 1
)

Independence of Ai

= p. (136)

Putting together Equations (135) and (136) and the Law of Total Probability,

P
(
A′

i = 1
∣∣ FA

i , E
∗)

= P
(
A′

i = 1
∣∣ FA

i , E
∗, i ≤ |Sn| − 1

)
P
(
i ≤ |Sn| − 1

∣∣ FA
i , E

∗)
+ P

(
A′

i = 1
∣∣ FA

i , E
∗, i > |Sn| − 1

)
P
(
i > |Sn| − 1

∣∣ FA
i , E

∗)
≥ p. Eqs (135) and (136).

(137)

Because A′
i is a deterministic function of FA

i+1 and FA
i ⊆ FA

i+1, Equation (137) implies

that Mk =
∑k−1

i=0 (A
′
i − p) is a submartingale conditional on E∗ with increments bounded in

magnitude by 1. For any non-random m ∈ [1 : n], the Azuma–Hoeffding Inequality therefore
gives that

P

(
m−1∑
i=0

(A′
i − p) ≥ − log(T)

√
m

∣∣∣∣∣ E∗

)
≥ 1− e− log2(T)m/(2m) = 1− oT (1/T

3).

Taking a union bound over all m ∈ [1 : n] (because n ≤ T), we have that

P

(
∀m ∈ [1 : n],

m−1∑
i=0

A′
i ≥ pm− log(T)

√
m

∣∣∣∣∣ E∗

)
≥ 1− oT (1/T

2).

85

Define E ′ as the event that for all m ∈ [1 : n],
∑m−1

i=0 A′
i ≥ pm − log(T)

√
m. Because

|Sn| ∈ [0, n], we must have that conditional on event E ′,

|Sn|−1∑
i=0

A′
i ≥ p|Sn| − log(T)

√
|Sn|. (138)

Therefore, conditional on event E ′, we have

n−1∑
j=0

Xj

≥
n−1∑

j=0,j∈Sn

Xj Xj ≥ 0

≥
|Sn|−1∑
i=0

c · i
2
· A′

i Def of A′
i

≥ c

2

max(⌊p|Sn|−log(T)
√

|Sn|⌋,1)−1∑
k=0

k. Eq (138)

=
c

4

(
max(⌊p|Sn| − log(T)

√
|Sn|⌋, 1)

)(
max(⌊p|Sn| − log(T)

√
|Sn|⌋, 1)− 1

)
Because we already showed that P(E ′ | E∗) ≥ 1 − oT (1/T

2), this is exactly the desired
result.

G.7 Proof of Lemma 25

Recall that Lemma 25 was stated to be used in Appendix C with respect to Algorithm 3,
therefore all events and variables in this subsection refer to those defined with respect to
Algorithm 3.

proof. Define Ai = 1|xi|≤ 1
log(T)

. Recall that xi = a∗xi−1 + b∗ui−1 + wi−1, where xi−1 and ui−1

are respectively the position and control at time t = i− 1. The probability that Ai is equal
to 1 is the probability that wi−1 ∈ [−(a∗xi−1 + b∗ui−1) − 1

log(T)
,−(a∗xi−1 + b∗ui−1) +

1
log(T)

].

Because D has a bounded density function (bounded by BP) as assumed in Assumption 3,
the conditional probability given Gi is at most 2BP

log(T)
. Therefore, we have that

P(Ai = 1 | Gi) ≤
2BP

log(T)
.

Therefore, Mj =
∑j−1

i=0 (Ai − 2BP

log(T)
) is a submartingale with differences bounded in magni-

tude by max(1, 2BP

log(T)
) ≤ 1 for sufficiently large T . By Azuma–Hoeffding’s inequality, with

probability 1− oT (1/T
3),

Mj ≤ log(T)
√
j.

86

Define Ej
L25 as the event that this bound on Mj holds. By construction of Mj, under event

Ej
L25, ∣∣∣∣{i < j : |xi| ≤

1

log(T)

}∣∣∣∣ = j−1∑
i=0

Ai ≤
2jBP

log(T)
+ log(T)

√
j ≤ 4jBP

log(T)

for j ≥ log8(T) assuming T is large enough that log2(T) ≥ 1
2BP

. As long as log(T) ≥ 8BP ,

this implies that under event Ej
L25,∣∣∣∣{i < j : |xi|2 ≥

1

log2(T)

}∣∣∣∣ ≥ j − 4jBP

log(T)
≥ j

2
.

Finally, we can conclude that under event Ej
L25,

j−1∑
i=0

x2
i ≥

j

2 log2(T)
.

We have shown that Equation (105) holds for any fixed j under event Ej
L25 for sufficiently

large T . Therefore, the same result holds for all j ≥ log8(T) under eventEL25 = ∩j≥log8(T)E
j
L25.

By a union bound and because P(Ej
L25) = 1 − oT (1/T

3) for all j, we have that P(EL25) =
1− oT (1/T

2).

G.8 Proof of Lemma 28

Recall that Lemma 28 is defined to be used in Appendix F with respect to Algorithm 5,
therefore all events and variables in this subsection refer to those defined with respect to
Algorithm 5.

proof. By assumption of this lemma,

P(uj = usafeU
j , E | Gj) = P(uj = usafeU

j | Gj, E)P(E | Gj)

≥ γ

2
. (139)

We also note the following result:

Lemma 30. For any event E∗ such that P(E∗) > 0,

Var
w∼D

(w | E∗) ≥ P(E∗)2

16B2
P

proof. First, we will show that any continuous distribution D′ with density function bounded
by B must have variance at least 1

16B2 . Let fD′ be the probability density function of D′.
First, we can assume WLOG that D′ has mean 0 (this is without loss of generality because
variance is invariant to shifts in mean). If D′ has mean 0, then by the law of total expectation

E
x∼D′

[x | x ≥ 0]Px∼D′(x ≥ 0) = − E
x∼D′

[x | x ≤ 0]Px∼D′(x ≤ 0).

87

Note that we can have non-strict inequalities because D′ is continuous. Furthermore, either
Px∼D′(x ≤ 0) ≥ 1/2 or Px∼D′(x ≥ 0) ≥ 1/2. Because variance is invariant to multiplying
by −1, we can assume WLOG that Px∼D′(x ≥ 0) ≥ 1/2. If Px∼D′(x ≥ 0) ≥ 1/2 then∫∞
0

fD′(x)dx ≥ 1/2. Define f ∗(x) = 1
2B

for x ∈ [0, B] and f ∗(x) = 0 otherwise. Note that
f = f ∗ achieves the minimum possible value of

∫∞
0

x · f(x)dx subject to the constraints∫∞
0

f(x)dx ≥ 1/2 and 0 ≤ f(x) ≤ B for all x. This is because f ∗ puts as much weight as
possible close to 0 without violating the bounded by B constraint. Furthermore, any f such
that

∫∞
1/2B

f(x)dx > 0 puts non-0 weight on values of x greater than B and therefore has a

larger value of
∫∞
0

x · f(x)dx than f ∗. Using this, we have that

E
x∼D′

[x | x ≥ 0]Px∼D′(x ≥ 0) =

∫ ∞

0

x · fD′(x)dx ≥
∫ 1/2B

0

x ·Bdx =
1

8B
.

Therefore, we must have (again by the law of total expectation) that

E
x∼D′

[|x|] = E
x∼D′

[x | x ≥ 0]Px∼D′(x ≥ 0)− E
x∼D′

[x | x ≤ 0]Px∼D′(x ≤ 0) ≥ 1

4B
.

By Jensen’s inequality,

Varx∼D′(x) = E
x∼D′

[x2] = E
x∼D′

[|x|2] ≥ E
x∼D′

[|x|]2 ≥ 1

16B2
.

We have therefore shown that any continuous distribution D′ with probability density func-
tion f such that f(x) ≤ B for all x must have variance at least 1

16B2 .
We know that the conditional distribution of w given E∗ has a probability density function

that is bounded by BP

P(E∗)
. Therefore, we must have that

Var(w | E∗) ≥ P(E∗)2

16B2
P

.

Recall that wj−1 is independent of Gj. Therefore, Var
(
wj−1

∣∣ Gj, E, uj = usafeU
j

)
is simply

the variance of wj−1 conditional on an event that has probability P(E, uj = usafeU
j | Gj).

Therefore, we can apply Lemma 30 and Equation (139) to get that for some event E ′ such
that P(E ′) ≥ γ/2,

Var
(
wj−1

∣∣ Gj, E, uj = usafeU
j

)
= Var (wj−1 | E ′)

≥ γ2

64B2
P

.

88

H Truncated Linear Controller Satisfaction of Assump-

tion 7 (Proposition 13) and Assumption 8 (Propo-

sition 12)

In this section, we prove that the class of truncated linear controllers satisfies Assumptions
7 and 8. Therefore, unless otherwise noted Cθ

K will refer to a truncated linear controller
as defined in Equation (8). Recall that for this class of controllers, we defined (Kθ

L, K
θ
U) =

(a−1
b
, a
b
).

H.1 Satisfaction of Assumption 8

Proposition 12. In the setting of Problem 1, the class of truncated linear controllers Cθtr
satisfies Assumption 8 with δA8 = 1

log10(T)
and ϵA8 = 1

log46(T)
. In other words, for any θ

satisfying ∥θ − θ∗∥∞ ≤ ϵA8, t ≤ T , W ′ = {wi}t−1
i=0, K ∈ (a−1

b
, a
b
), there exists a YA8 ∈ Rt

that only depends on K and θ such that the event EA8 (K, θ,W ′) := {W ′ ∈ YA8} satisfies
the following. P(EA8 (K, θ,W ′)) = 1 − oT (1/T

10) and for any |x|, |y| ≤ 4 log2(T) such that
|x− y| < δA8 and, conditional on event EA8 (K, θ,W ′),∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ = ÕT (|x− y|+ ∥θ − θ∗∥∞). (140)

proof. Define ϵ = ∥θ−θ∗∥∞ and δ = |x−y|. In order to bound the cost difference in Equation
(140), we will first bound the differences in positions and controls of the two trajectories. We
begin with the following lemma bounding the difference in future positions when starting at
two different initial positions.

Lemma 31. In the setting of Problem 1, for any θ ∈ Θ such that ϵ := ∥θ− θ∗∥∞ ≤ 1
log46(T)

,

t ≤ T , W ′ = {wi}t−1
i=0, and any K ∈ [a−1

b
, a
b
], there exists YL31 ∈ Rt that only depends on

K and θ such that the event EL31(K, θ,W ′) := {W ′ ∈ YL31} satisfies P(EL31(K, θ,W ′)) =
1 − oT (1/T

10) and the following holds. Suppose that |x|, |y| ≤ 4 log2(T) and d := |x − y| ≤
1

log10(T)
. Define di as the difference in position at time i when starting at x0 = x versus

starting at x0 = y and using controller Cθ
K ∈ Cθtr with noise variables W ′. Then there exists

an L = ÕT (1) such that for sufficiently large T , conditional on EL31(K, θ,W ′),

di ≤

{
2ξi · d, for L < i ≤ t

4d+ ÕT (ϵ) for 0 ≤ i ≤ L,
(141)

where ξ :=
(
1− 1

log10(T)

)
.

The proof of Lemma 31 can be found in Appendix H.2.
We can also bound the difference in control in terms of the difference in position.

Lemma 32. In the setting of Problem 1, for any θ ∈ Θ such that ∥θ − θ∗∥∞ ≤ 1
log46(T)

, any

K ∈ [a−1
b
, a
b
], and any x, y such that d := |y − x| ≤ 1

log10(T)
,

|Cθ
K(x)− Cθ

K(y)| = OT (d). (142)

89

The proof of Lemma 32 can be found in Appendix H.4.
We also will need the following event, which is a subset of the event E1 applied only to

times i < t.

Definition 3. Define the event Et
1 as the event that for all i ≤ t− 1, |wi| ≤ log2(T).

We can proceed by bounding the difference in total costs conditional on the event
EL31(K, θ,W ′) ∩ Et

1. Let d0, d1, ..., dt and du0 , ..., d
u
t−1 respectively be the absolute difference

in positions and controls when starting at x0 = x versus starting at x0 = x + δ and using
controller Cθ

K with noise W ′. Let x0, ..., xt and u0, ..., ut−1 be the positions and controls when
using controller Cθ

K starting at x0 = x with noise W ′. Then we have the following result
conditional on EL31(K, θ,W ′) ∩ Et

1 for sufficiently large T :∣∣t · J(θ∗, Cθ
K , t, x,W

′)− t · J(θ∗, Cθ
K , t, x+ δ,W ′)

∣∣
≤ 2qdt|xt|+ qd2t +

t−1∑
i=0

2qdi|xi|+ qd2i + 2r|ui|dui + r (dui)
2

≤ 2qdt|xt|+ qd2t +
t−1∑
i=0

2qdi|xi|+ qd2i + 2r|ui|OT (di) + rOT (di)
2 Lemma 32

= OT

(
t∑

i=0

(di + d2i)

(
|x|+ ∥D∥∞ + max

w∈W ′
|w|
))

Lemma 12

= ÕT

(
t∑

i=0

(di + d2i)

)
[Event Et

1, ∥D∥∞ ≤ log2(T), |x| ≤ 4 log2(T)]

= ÕT

(
L∑
i=0

(
(4δ + ÕT (ϵ)) + (4δ + ÕT (ϵ))

2
)
+

t∑
i=L+1

(
2ξiδ + 4ξ2iδ2

))
Eq (141)

= ÕT

(
δ + ϵ+ δ

t∑
i=0

ξi + δ2
t∑

i=0

ξ2i

)
= ÕT (δ + ϵ).

The last line comes from the fact that ξ = 1− 1
log10(T)

and the formula for the sum of a geomet-

ric series. The above result holds conditional on event EA8(K, θ,W ′) := EL31(K, θ,W ′)∩Et
1,

and by a union bound and Equation (21),

P(EA8(K, θ,W ′)) = P(EL31(K, θ,W ′) ∩ Et
1) = 1− oT (1/T

10).

H.2 Proof of Lemma 31

In order to prove Lemma 31, we will use the following lemma that has a similar result but
holds conditional on an event that depends on x.

90

Lemma 33. There exists an L = ÕT (1) such that the following holds. Suppose that |x|, |y| ≤
4 log2(T) and d := |x − y| ≤ 1

log10(T)
. In the setting of Problem 1, for any θ ∈ Θ such that

ϵ := ∥θ− θ∗∥∞ ≤ 1
log46(T)

, t ≤ T , W ′ = {wi}t−1
i=0, and any K ∈ [a−1

b
, a
b
], there exists YL33 ∈ Rt

that only depends on x, K and θ such that the event EL33(x,K, θ,W ′) := {W ′ ∈ YL33}
satisfies P(EL33(x,K, θ,W ′)) = 1 − oT (1/T

20) and the following holds. Define di as the
difference in position at time i ≤ t when starting at x0 = x versus starting at x0 = y and
using controller Cθ

K with noise variables W ′. Then for sufficiently large T , conditional on
EL33(x,K, θ,W ′),

di ≤

(
1− 1

log10(T)

)i
· d, if i > L

2d+ ÕT (ϵ) if i ≤ L.
(143)

The proof of Lemma 33 can be found in Appendix H.3.
Now we need to find a single event EL31(K, θ,W ′) such that Equation (141) holds for all

|x|, |y| ≤ 4 log2(T) under this event. Define the set

G :=

{
−4 log2(T) + i

log10(T)

}
i∈[0:8 log12(T)]

,

i.e. G is a grid of points evenly spaced 1
log10(T)

apart. Note that |G| = ÕT (1). Now, take

EL31(K, θ,W ′) =
⋂
g∈G

EL33(g,K, θ,W ′).

First, we note that because P(EL33(g,K, θ,W ′)) = 1 − oT (1/T
20) for all g and because

|G| = ÕT (1), by a union bound P(EL31) = 1− oT (1/T
10).

Now, consider any |x|, |y| ≤ 4 log2(T) such that |x− y| ≤ 1
log10(T)

. Then there must exist

some g ∈ G such that max (|x− g|, |y − g|) ≤ 1
log10(T)

. For this g, let dx0 , d
x
1 , ... be the sequence

of differences of positions when starting at position g versus x and using controller Cθ
K with

noise W ′, and likewise let dy0, d
y
1, ..., be the sequence of absolute differences of positions when

starting at position g versus y and using controller Cθ
K with noise W ′. Conditional on event

EL31(K, θ,W ′), we have by Lemma 33 that {dxi } and {d
y
i } both satisfy Equation (143). Since

{dxi } and {d
y
i } are both distances comparing to the same set of positions starting at position

g, we have by the triangle inequality that

di ≤ dxi + dyi .

Therefore, for i ≤ t we have the following, where L is from Lemma 33:

di ≤

2
(
1− 1

log10(T)

)i
· d, if i > L

4d+ ÕT (ϵ) if i ≤ L.
(144)

This is exactly the desired result, and therefore we are done.

91

H.3 Proof of Lemma 33

proof. The main tool we will use for this proof is the following lemma that bounds the
difference in future positions in three different cases.

Lemma 34. For any x, y, define d = |y−x|. In the setting of Problem 1 and for sufficiently
large T , suppose θ ∈ Θ, K ∈

[
a−1
b
, a
b

]
, and ∥θ − θ∗∥∞ = ϵ ≤ 1

log46(T)
. Then for some

ρ := |a∗ − b∗K|+OT (ϵ),

|a∗x+b∗Cθ
K(x)−a∗y−b∗Cθ

K(y)| ≤

min (2ρd, ρd+OT (ϵ)(|x|+ ∥D∥∞)) if Z
OT (ϵ)d if W
ρd otherwise

(145)

Z :=

{
min(x, y) ≤ DL

a− bK
≤ max(x, y) ≤ DU

a− bK
or

DL

a− bK
≤ min(x, y) ≤ DU

a− bK
≤ max(x, y)

}
W :=

{
max(x, y) ≤ DL

a− bK
or

DU

a− bK
≤ min(x, y)

}
.

The proof of Lemma 34 can be found in Appendix H.4.
The rest of this proof will be structured as follows. First, we will introduce some addi-

tional definitions that we will use to construct event EL33(x,K, θ,W ′). Then, we will prove
Lemma 33 in two cases.

Define x0, x1, ..., xT as the sequence of positions when starting at position x0 = x and
using controller Cθ

K with noise W ′. For i ≤ t, define the event

X(i, x,K, θ,W ′) :=

{
min

(∣∣∣∣xi −
DL

a− bK

∣∣∣∣ , ∣∣∣∣xi −
DU

a− bK

∣∣∣∣) ≤ 3

log10(T)

}
.

Note that whether the event X(i, x,K, θ,W ′) occurs depends on w0, ..., wi−1. For 0 ≤ j ≤ t
and x ∈ R, define the event H(j, x,K, θ,W ′) as

H(j, x,K, θ,W ′) :=

{
|{0 ≤ i ≤ j : X(i, x,Kθ,W ′)}| ≤ log23(T) +

24BP j

log10(T)

}
.

Define
E∗(x,K, θ,W ′) :=

⋂
0≤j≤t

H(j, x,K, θ,W ′).

Now we will show that P(E∗(x,K, θ,W ′)) = 1 − oT
(

1
T 20

)
. Fix any j ≤ t. If j ≤ log23(T),

then H(j, x,K, θ,W ′) holds with probability 1 by definition. Now suppose j > log23(T).
Because D has a density bounded by BP and xi = a∗xi−1 + b∗ui−1 + wi−1, we must have
that P(X(i, x,K, θ,W ′)) ≤ 12BP

log10(T)
for all i. Define Mk =

∑k−1
i=0 1X(i,x,K,θ,W ′) − 12BP

log10(T)
. For

sufficiently large T , Mk is a supermartingale with differences bounded in magnitude by 1.
Therefore, by the Azuma–Hoeffding inequality, with probability 1− oT (1/T

21),

|{0 ≤ i ≤ j : X(i, x,K, θ,W ′)}| ≤ 12BP (j + 1)

log10(T)
+ log(T)

√
j ≤ 24BP j

log10(T)
,

92

where the last inequality holds for sufficiently large T and j > log23(T). Therefore, P(H(j, x,K, θ,W ′)) ≥
1−oT (1/T 21). Taking a union bound over all log23(T) < j ≤ t gives that P(E∗(x,K, θ,W ′)) =
1− oT (1/T

20).

To prove Lemma 33, will split the range of potentialK into two parts,K ∈
[
a∗−1+ 1

log9(T)

b∗
, a
b

]
and K ∈

[
a−1
b
,
a∗−1+ 1

log9(T)

b∗

]
. We will also use the following bounds.

Lemma 35. For any θ ∈ Θ such that ∥θ − θ∗∥∞ ≤ 1
log10(T)

,

a− 1

b
=

a∗ − 1−OT

(
1

log10(T)

)
b∗

and

a

b
=

a∗ +OT

(
1

log10(T)

)
b∗

.

The proof of Lemma 35 can be found in Appendix H.5.
Now we are ready to proceed with the two cases for K.

Case 1: K ∈
[
a∗−1+ 1

log9(T)

b∗
, a
b

]
For i ≤ t, define

Zi :=

{
min(xi, yi) ≤

DL

a− bK
≤ max(xi, yi) ≤

DU

a− bK
or

DL

a− bK
≤ min(xi, yi) ≤

DU

a− bK
≤ max(xi, yi)

}
and define

κ(j) = |{0 ≤ i ≤ j : Zi}| .

Because Lemma 35 implies that a
b
= a∗

b∗
+OT

(
1

log10(T)

)
, we have forK ∈

[
a∗−1+ 1

log9(T)

b∗
, a
b

]
that

|a∗−b∗K| ≤ 1− 1
log9(T)

. Because ϵ ≤ 1
log46(T)

, this implies that |a∗−b∗K|+OT (ϵ) ≤ 1− 1
2 log9(T)

.

This will allow us to bound the ρ in Lemma 34 by 1− 2
log9(T)

. Combining this with Lemma

34, we have the following piece-wise upper bound (note that we combined the W and the
“otherwise” case using that OT (ϵ) ≤ 1− 1

2 log9(T)
for suff large T),

dj+1 ≤

min
(
2
(
1− 1

2 log9(T)

)
dj, dj +OT (ϵ)(|xj|+ ∥D∥∞)

)
if Zj(

1− 1
2 log9(T)

)
dj otherwise.

(146)

Conditional on event Et
1, for all j ≤ t, |xj| ≤ OT (log

2(T)) by Lemma 12 because ∥D∥∞ ≤
log2(T) and |x| ≤ 4 log2(T). Starting with the base case that d0 = d, this with Equation
(146) implies the following two relationships both hold for dj+1 conditional on event Et

1 for

sufficiently large T . Equation (147) holds because
(
1− 1

2 log9(T)

)
≤ 1 for sufficiently large

T and using the second term in the min of Equation (146). Equation (148) holds using the
first term in the min of Equation (146).

dj+1 ≤ d+ κ(j) ·OT (ϵ log
2(T)) (147)

93

and

dj+1 ≤

((
1− 1

2 log9(T)

)j+1

2κ(j)

)
· d. (148)

Equations (147) and (148) look almost like the desired result, and the remaining step is to
show that κ(j) is sufficiently “small”.

Next, define the event Aj as

Aj :=
{
∀i ≤ min(j, log33(T)) : di ≤ 2d+ϵ log36(T)

}⋂{
∀ log33(T) < i ≤ j : di ≤

(
1− 1

log10(T)

)i

d

}
.

By this construction, At is exactly what we are trying to show in Lemma 33 with L =
log33(T). We will now prove thatAt holds for sufficiently large T conditional on E∗(x,K, θ,W ′)∩
Et

1.
For sufficiently large T and any j ≤ t, by construction of Aj and because d ≤ 1

log10(T)
and

ϵ ≤ 1
log46(T)

, we have that

Aj ⊆
{
∀0 ≤ i ≤ j : di ≤

3

log10(T)

}
. (149)

Note that for event Zi to hold, it must be the case that xi is within di of either
DU

a−bK
or

DL

a−bK
. Therefore, conditional on E∗(x,K, θ,W ′) ∩ Aj, we have for j ≥ log33(T),

κ(j) = |{0 ≤ i ≤ j : Zi}|

≤
∣∣∣∣{0 ≤ i ≤ j : min

(∣∣∣∣xi −
DU

a− bK

∣∣∣∣ , ∣∣∣∣xi −
DL

a− bK

∣∣∣∣) ≤ di

}∣∣∣∣
≤
∣∣∣∣{0 ≤ i ≤ j : min

(∣∣∣∣xi −
DU

a− bK

∣∣∣∣ , ∣∣∣∣xi −
DL

a− bK

∣∣∣∣) ≤ 3

log10(T)

}∣∣∣∣ Equation (149)

= |{0 ≤ i ≤ j : X(i, x,K, θ,W ′)}|

≤ log23(T) +
24BP j

log10(T)
. E∗(x,K, θ,W ′)

= OT

(
j + 1

log10(T)

)
(150)

We will now use Equations (147) and (148) to show that Aj+1 holds conditional on
Et

1∩E∗(x,K, θ,W ′)∩Aj. In order to show that Aj+1 holds conditional on Aj, we must show
that dj+1 satisfies the necessary inequality in the definition of Aj+1. Consider the following
two cases for j ≥ 0.

If j + 1 ≤ log33(T), for sufficiently large T conditional on Aj ∩ Et
1 ∩ E∗(x,K, θ,W ′),

dj+1 ≤ d+ κ(j) ·OT (ϵ log
2(T)) Equation (147)

= d+OT (jϵ log
2(T)) κ(j) ≤ j + 1

≤ d+OT (ϵ log
35(T))

≤ d+ log36(T)ϵ

≤ 2d+ log36(T)ϵ. (151)

94

This is the necessary inequality that needs to be shown in order for Aj+1 to hold given that
Aj holds if j + 1 ≤ log33(T).

If j + 1 > log33(T), for sufficiently large T conditional on Aj ∩ Et
1 ∩ E∗(x,K, θ,W ′),

dj+1

≤
(
1− 1

2 log9(T)

)j+1

2κ(j) · d Equation (148)

≤
(
1− 1

2 log9(T)

)j+1

2
OT (j+1

log10(T)
) · d Equation (150)

=

(
1− 1

2 log9(T)

)j+1

e
OT (j+1

log10(T)
) · d

≤
(
1− 1

2 log9(T)

)j+1(
1 +OT

(
1

log10(T)

)
+OT

(
1

log20(T)

))j+1

· d [ex ≤ 1 + x+ x2 for x ≤ 1]

=

(
1− 1

2 log9(T)

)j+1(
1 +OT

(
1

log10(T)

))j+1

· d

=

(
1− 1

2 log9(T)
+OT

(
1

log10(T)

)
− 1

2 log9(T)
·OT

(
1

log10(T)

))j+1

· d

≤
(
1− 1

2 log9(T)
+OT

(
1

log10(T)

))j+1

· d

≤
(
1− 1

log10(T)

)j+1

· d. for sufficiently large T

(152)

This is the necessary inequality that needs to be shown in order for Aj+1 to hold given that
Aj holds if j + 1 ≥ log33(T).

Equations (151) and (152) together imply that for sufficiently large T , Aj+1 holds con-
ditional on Aj ∩ Et

1 ∩ E∗(x,K, θ,W ′). Note that A0 always holds by definition because
d0 = d. Therefore, we can conclude by induction that At must hold conditional on Et

1 ∩
E∗(x,K, θ,W ′) for sufficiently large T . Finally, by definition of At, this implies that condi-
tional on E∗(x,K, θ,W ′) ∩ Et

1 for sufficiently large T , for all 0 ≤ j ≤ t,

dj ≤

(
1− 1

log10(T)

)j
· d, if j > log33(T)

d+ ÕT (ϵ), if j ≤ log33(T).
(153)

Taking EL33(x,K, θ,W ′) = E∗(x,K, θ,W ′)∩Et
1, by a union bound we have that P(EL33(x,K, θ,W ′) ≥

1− oT (1/T
20). This completes the proof of Lemma 33 for Case 1.

Case 2: K ∈
[
a−1
b
,
a∗−1+ 1

log9(T)

b∗

]
95

Define

Wj :=

{
min(xj, yj) ≥

DU

a− bK
or max(xj, yj) ≤

DL

a− bK

}
and

λ(j) := |{0 ≤ i ≤ j :Wi}|.

For any K ∈
[
a−1
b
,
a∗−1+ 1

log9(T)

b∗

]
, we have that |a∗ − b∗K| − 1 ≤ OT

(
1

log10(T)

)
by Lemma 35.

This with the fact that ϵ ≤ 1
log46(T)

implies that (a∗ − b∗K) +OT (ϵ) ≤ |a∗ − b∗K|+OT (ϵ) ≤

1 + OT

(
1

log10(T)

)
. This allows us to bound the ρ in Lemma 34 to be 1 + OT

(
1

log10(T)

)
. By

Lemma 34 and plugging this bound in for ρ, this gives the following bound.

dj+1 ≤

OT (ϵ)

(
1 +OT

(
1

log10(T)

))
dj If Wj

min
(
2
(
1 +OT

(
1

log10(T)

))
dj ,
(
1 +OT

(
1

log10(T)

))
(dj +OT (ϵ)(|xj |+ ∥D∥∞))

)
If Zj(

1 +OT

(
1

log10(T)

))
dj Otherwise

(154)

Similar to in the proof of Case 1 above, by Lemma 12 and the assumption that ∥D∥∞ ≤
log2(T), we have that conditional on event Et

1, Equation (154) implies the following two
relationships. The first relationship comes from using the first term in the min of Equation
(154) and recursing.

dj+1 ≤
(
1 +OT

(
1

log10(T)

))j+1

· 2κ(j) ·OT (ϵ)
λ(j) · d. (155)

The second relationship comes from using the second term in the min of Equation (154) and

bounding
(
1 +OT

(
1

log10(T)

))
(|xj| + ∥D∥∞) = OT (log

2(T)) under event Et
1. This gives the

recursive relationship of

dj+1 ≤
(
1 +OT

(
1

log10(T)

))
(OT (ϵ))

1Wj · dj +OT (ϵ log
2(T))1Zj

. (156)

In other words, at every step there is a multiplicative factor of
(
1 +OT

(
1

log10(T)

))
. When

Wj holds, there is an additional multiplicative factor of OT (ϵ). When Zj holds, there is an
additive factor of OT (ϵ log

2(T)). Unwrapping Equation (156) gives that, at time j+1, any ad-

ditive factor contributed at time i ≤ j will be scaled by OT (ϵ)
λ(j)−λ(i)

(
1 +OT

(
1

log10(T)

))j−i

.

This gives that

dj+1 ≤
(
1 +OT

(
1

log10(T)

))j+1

OT (ϵ)
λ(j)·d+OT (ϵ log

2(T))·
j∑

i=0

1ZiOT (ϵ)
λ(j)−λ(i)

(
1 +OT

(
1

log10(T)

))j−i

.

(157)

Again this almost looks like the desired result, except we need to show that the additional
terms involving κ(j) and λ(j) are not “too large”. We will use the following lemma that
lower bounds λ(j) using the same event Aj as defined above in the first case. Similar to
Case 1, we will then use this to show that for sufficiently large T , At holds conditional on
Et

1 ∩ EL36(x,K, θ,W ′) ∩ E∗(x,K, θ,W ′).

96

Lemma 36. Suppose |1 − (a∗ − b∗K)| = OT

(
1

log9(T)

)
. Then in the setting of Problem

1 and using the notation and assumptions of Lemma 33, there exists a YL36 ∈ Rt that
only depends on x,K, θ such that the event EL36(x,K, θ,W ′) := {W ′ ∈ YL36} satisfies
P(EL36(x,K, θ,W ′)) = 1− oT (1/T

20) and that for all t1 < t2 ≤ t satisfying t2− t1 ≥ log8(T),
the following is true conditional on event At2 ∩ EL36(x,K, θ,W ′) for sufficiently large T :(

1 +OT

(
1

log10(T)

))t2+1−t1

OT (ϵ)
λ(t2)−λ(t1) ≤

(
1− 1

2 log9(T)

)t2+1−t1

.

The proof of Lemma 36 can be found in Appendix H.6.
We will now show that the eventAj+1 holds conditional onEL36(x,K, θ,W ′)∩E∗(x,K, θ,W ′)∩

Et
1 ∩ Aj.
For j < log8(T), conditional on Et

1 ∩ EL36(x,K, θ,W ′) ∩ E∗(x,K, θ,W ′) ∩ Aj and for
sufficiently large T ,

dj+1

≤
(
1 +OT

(
1

log10(T)

))j+1

OT (ϵ)
λ(j) · d

+OT (ϵ log
2(T)) ·

j∑
i=0

1Zj
OT (ϵ)

λ(j)−λ(i)

(
1 +OT

(
1

log10(T)

))j−i

Eq. (157)

≤
(
1 +OT

(
1

log10(T)

))log8(T)+1

· d+OT (ϵ log
2(T)) ·

j∑
i=0

(
1 +OT

(
1

log10(T)

))j

ϵ ≤ OT (1)

≤
(
1 +OT

(
1

log2(T)

))
· d+OT (ϵ log

2(T)) · (j + 1) ·
(
1 +OT

(
1

log10(T)

))j

Lemma 37

≤
(
1 +OT

(
1

log2(T)

))
· d+OT (ϵ log

2(T)) · (log8(T) + 1) ·
(
1 +OT

(
1

log10(T)

))log8(T)

≤
(
1 +OT

(
1

log2(T)

))(
d+OT

(
ϵ log10(T)

))
Lemma 37

≤ 2d+OT (ϵ log
10(T)) Suff. large T

≤ 2d+ ϵ log36(T). Suff. large T

(158)

Above, we used the following result:

Lemma 37. Suppose g(T) is a non-negative function of T such that g(T) > 1 for sufficiently
large T . Furthermore, suppose f(T) is a non-negative function of T that satisfies f(T)g(T) ≤
1/2 for sufficiently large T . Then we have that

1 + f(T)g(T) ≤ (1 + f(T))g(T) ≤ 1 + 2f(T)g(T).

This implies that
(1 + f(T))g(T) = 1 + ΘT (f(t) · g(T)).

proof. First, we note that for any x ≥ 0 and r > 1, (1 + x)r ≥ 1 + rx. This implies that for
sufficiently large T , we have that

(1 + f(T))g(T) ≥ 1 + f(T)g(T).

97

This proves one direction of the desired equation. For the other direction, note that for r > 0
and x ∈ [0, 1/r), we have (1 + x)r ≤ 1

1−rx
. This implies that

(1 + f(T))g(T) ≤ 1

1− f(T)g(T)

= 1 +
f(T)g(T)

1− f(T)g(T)

≤ 1 + 2f(T)g(T).

This proves the other direction of the desired equation. Therefore we have that (1 +
f(T))g(T) = 1 + Θ(f(T)g(T)).

For log8(T) ≤ j < log33(T), conditional on event Et
1∩EL36(x,K, θ,W ′)∩E∗(x,K, θ,W ′)∩

98

Aj and for sufficiently large T ,

dj+1

≤
(
1 +OT

(
1

log10(T)

))j+1

OT (ϵ)
λ(j) · d

+OT (ϵ log
2(T)) ·

j∑
i=0

1Zj
OT (ϵ)

λ(j)−λ(i)

(
1 +OT

(
1

log10(T)

))j−i

Eq (157)

≤
(
1 +OT

(
1

log10(T)

))j+1−0

OT (ϵ)
λ(j)−λ(0) · d

+OT (ϵ log
2(T)) ·

j∑
i=0

1ZjOT (ϵ)
λ(j)−λ(i)

(
1 +OT

(
1

log10(T)

))j−i

≤
(
1− 1

2 log9(T)

)j+1

d

+OT (ϵ log
2(T)) ·

j∑
i=0

1Zj
OT (ϵ)

λ(j)−λ(i)

(
1 +OT

(
1

log10(T)

))j−i

Lemma 36

≤ d+OT (ϵ log
2(T))

⌈j−log8(T)⌉−1∑
i=0

1ZjOT (ϵ)
λ(j)−λ(i)

(
1 +OT

(
1

log10(T)

))j+1−i

+OT (ϵ log
2(T))

j∑
i=⌈j−log8(T)⌉

(
1 +OT

(
1

log10(T)

))j−i

≤ d+OT (ϵ log
2(T)) ·

⌈j−log8(T)⌉−1∑
i=0

(
1Zj
·
(
1− 1

2 log9(T)

)j+1−i
)

+OT (ϵ log
2(T)) ·

j∑
i=⌈j−log8(T)⌉

(
1 +OT

(
1

log10(T)

))j−i

Lemma 36

≤ d+OT (ϵ log
2(T)) ·

⌈j−log8(T)⌉−1∑
i=0

(
1Zj
·OT (1)

)
+OT (ϵ log

2(T)) ·
j∑

i=⌈j−log8(T)⌉

(
1 +OT

(
1

log10(T)

))j−i

≤ d+OT (ϵ log
2(T)) ·

⌈j−log8(T)⌉−1∑
i=0

(
1Zj ·OT (1)

)
+OT (ϵ log

2(T)) ·
j∑

i=⌈j−log8(T)⌉

(
1 +OT

(
1

log10(T)

))log8(T)

≤ d+OT (ϵ log
2(T)) ·

⌈j−log8(T)⌉−1∑
i=0

(
1Zj
·OT (1)

)
+OT (ϵ log

2(T)) ·
j∑

i=⌈j−log8(T)⌉

(
1 +OT

(
1

log2(T)

))
Lemma 37

≤ d+OT (ϵ log
35(T)) +OT

(
ϵ log10(T)

)
≤ d+OT (ϵ log

35(T))

≤ d+ ϵ log36(T). Suff large T

99

Finally, for j ≥ log33(T), conditional on event Et
1 ∩EL36(x,K, θ,W ′)∩E∗(x,K, θ,W ′)∩Aj

and for sufficiently large T,

dj+1 ≤
(
1 +OT

(
1

log10(T)

))j+1

· 2κ(j) ·OT (ϵ)
λ(j) · d Equation (155)

≤
(
1 +OT

(
1

log10(T)

))j+1−0

·OT (ϵ)
λ(j)−λ(0) · 2κ(j) · d

≤
(
1− 1

2 log9(T)

)j+1

2κ(j) · d Lemma 36

≤
(
1− 1

log10(T)

)j+1

· d. As in Equation (152)

Combining all three cases, we have that for all j ≥ 0, conditional onEt
1∩EL36(x,K, θ,W ′)∩

E∗(x,K, θ,W ′) ∩ Aj, Aj+1 holds. As in Case 1, we can conclude by induction using A0 as
the base case to get that conditional on EL36(x,K, θ,W ′) ∩ E∗(x,K, θ,W ′) ∩ Et

1, the event
At holds, which implies that

dj ≤

(
1− 1

log10(T)

)j
· d, if j > log33(T)

2d+ ÕT (ϵ), if j ≤ log33(T).
(159)

Taking EL33(x,K, θ,W ′) = EL36(x,K, θ,W ′) ∩ E∗(x,K, θ,W ′) ∩ Et
1, we have by a union

bound that P(EL33(x,K, θ,W ′)) = 1 − oT (1/T
20). This completes the proof of Lemma 33

for Case 2.

H.4 Proof of Lemma 32 and Lemma 34

proof. We have four cases depending on the values of x, y. We will prove the results of
Lemma 32 and Lemma 34 for each of these cases separately. WLOG assume that x ≤ y.

Case 1: DL

a−bK
≤ x ≤ y ≤ DU

a−bK
.

In this case, Cθ
K(x) = −Kx and Cθ

K(y) = −Ky, and therefore the following two equations
hold. Case 1 Lemma 34:

|a∗x+ b∗Cθ
K(x)− a∗y − b∗Cθ

K(y)| = |a∗ − b∗K|d = (|a∗ − b∗K|+OT (ϵ))d.

Case 1 Lemma 32:

|Cθ
K(x)− Cθ

K(y)| = Kd ≤ a

b
· d ≤ ā

b
· d = OT (d).

Case 2: DU

a−bK
≤ x ≤ y or x ≤ y ≤ DL

a−bK
(which is W of Lemma 34).

First, assume the former is true. Then Cθ
K(x) = DU−ax

b
and likewise Cθ

K(y) = DU−ay
b

.
Therefore the following equations hold.

100

Case 2 Lemma 34:

|a∗x+ b∗Cθ
K(x)− a∗y − b∗Cθ

K(y)| = d
∣∣∣a∗ − a

b
b∗
∣∣∣

= d

∣∣∣∣a∗b− ab∗

b

∣∣∣∣
≤ d

max ((a+ ϵ)b− a(b− ϵ), |(a− ϵ)b− a(b+ ϵ)|)
b

= d
ϵb+ ϵa

b

≤ d
ϵb̄+ ϵā

b

≤ OT (ϵ)d.

Case 2 Lemma 32:

|Cθ
K(y)− Cθ

K(x)| =
a

b
· d ≤ ā

b
· d = OT (d).

The same logic holds for when x ≤ y ≤ DL

a−bK
.

Case 3: x ≤ DL

a−bK
and y ≥ DU

a−bK

In this case, Cθ
K(x) =

DL−ax
b

and Cθ
K(y) =

DU−ay
b

. We will use the fact that |a− bK|d =
|a− bK||y − x| ≥ |DU −DL| in this case.

Case 3 Lemma 34:

|a∗x+ b∗Cθ
K(x)− a∗y − b∗Cθ

K(y)|

=

∣∣∣∣b∗b (DL −DU) +
(
a∗ − a

b
b∗
)
(x− y)

∣∣∣∣
≤ b∗

b
|DU −DL|+

∣∣∣a∗ − a

b
b∗
∣∣∣ d

≤ b∗

b
|a− bK|d+

∣∣∣a∗ − a

b
b∗
∣∣∣ d

≤ b∗

b
|a∗ − b∗K|d+ b∗

b
|a− a∗ + (b∗ − b)K| d+

∣∣∣a∗ − a

b
b∗
∣∣∣ d

≤ |a∗ − b∗K|d+
∣∣∣∣b∗b − 1

∣∣∣∣ |a∗ − b∗K|d+ b∗

b
|a− a∗ + (b∗ − b)K|d+

∣∣∣a∗ − a

b
b∗
∣∣∣ d

≤ (|a∗ − b∗K|+OT (ϵ)) d. (160)

In the last line we used that |a∗ − b∗K| ≤ a∗ + b∗|K| ≤ ā + b̄ ā+1
b

= OT (1), that | b
∗

b
−

1| ≤ ϵ
b
= OT (ϵ), that |a − a∗ + (b∗ − b)K| ≤ ϵ(1 + |K|) ≤ ϵ(1 + ā+1

b
) = OT (ϵ), and that

|a∗ − a
b
b∗| ≤ ϵ+ a

b
ϵ ≤ ϵ+ ā

b
ϵ = OT (ϵ).

Case 3 Lemma 32:

101

|Cθ
K(y)− Cθ

K(x)| =
∣∣∣∣1b (DU −DL) +

a

b
(x− y)

∣∣∣∣
=

1

b
|DU −DL|+

a

b
|x− y|

≤ 1

b
|a− bK|d+ a

b
d

≤ 1

b
d+

ā

b
d

= OT (d).

Case 4: If DL

a−bK
≤ x ≤ DU

a−bK
and y ≥ DU

a−bK
. Note that by symmetry, this is equivalent

to DL

a−bK
≤ y ≤ DU

a−bK
and x ≤ DL

a−bK
. We will first assume the former. For Lemma 34, this

case is equivalent to Z.

Case 4 Lemma 34:
In this case, Cθ

K(x) = −Kx and Cθ
K(y) = DU−ay

b
. Furthermore, in this case |y − x| ≥∣∣y − DU

a−bK

∣∣. Therefore, in this case we have

|a∗x+ b∗Cθ
K(x)− a∗y − b∗Cθ

K(y)|
= |a∗x+ b∗Cθ

K(x)− a∗y − b∗Ky + b∗Ky − b∗Cθ
K(y)|

≤ |(a∗ − b∗K)x− (a∗ − b∗K)y|+ b∗
∣∣∣∣−Ky − DU − ay

b

∣∣∣∣
≤ |(a∗ − b∗K)x− (a∗ − b∗K)y|+ b∗

∣∣∣∣(a− bK)y −DU

b

∣∣∣∣
≤ |(a∗ − b∗K)x− (a∗ − b∗K)y|+ b∗|a− bK|

b

∣∣∣∣y − DU

a− bK

∣∣∣∣
≤ |(a∗ − b∗K)x− (a∗ − b∗K)y|+ b∗|a− bK|

b
|y − x|

= |a∗ − b∗K|d+ |a− bK|b
∗

b
d

≤ |a∗ − b∗K|d+ |a− bK|d+
∣∣∣∣1− b∗

b

∣∣∣∣ |a− bK|d

≤ 2|a∗ − b∗K|d+ |a− bK − (a∗ − b∗K)|d+
∣∣∣∣1− b∗

b

∣∣∣∣ |a− bK|d

≤ 2(|a∗ − b∗K|+OT (ϵ))d. As in Equation (160)

Alternatively, note that in this case,

(a∗ − b∗K)|x| ≤ (a− bK)|x|+OT (ϵ)|x| (161)

102

and
(a− bK)x ≤ DU ≤ (a− bK)y. (162)

Therefore,

|(a∗ − b∗K)x−DU | ≤ |(a− bK)x−DU |+OT (ϵ)|x| Equation (161)

≤ |(a− bK)x− (a− bK)y|+OT (ϵ)|x| Equation (162)

≤ |a− bK|d+OT (ϵ)|x|
≤ |a∗ − b∗K|d+OT (ϵ)(d+ |x|). (163)

Therefore we can find an alternative bound on |a∗x + b∗Cθ
K(x) − a∗y − b∗Cθ

K(y)|, using
Equation (163) and that |y| ≤ |x|+ d.

|a∗x+ b∗Cθ
K(x)− a∗y − b∗Cθ

K(y)|

=

∣∣∣∣(a∗ − b∗K)x− b∗

b
DU −

(
a∗ − ab∗

b

)
y

∣∣∣∣
≤ |(a∗ − b∗K)x−DU |+

∣∣∣∣1− b∗

b

∣∣∣∣DU +

∣∣∣∣a∗ − ab∗

b

∣∣∣∣ |y|
≤ |a∗ − b∗K|d+OT (ϵ)(d+ |x|) +

∣∣∣∣1− b∗

b

∣∣∣∣DU +

∣∣∣∣a∗ − ab∗

b

∣∣∣∣ |y| Equation (163)

≤ |a∗ − b∗K|d+OT (ϵ)(d+ |x|) +
∣∣∣∣1− b∗

b

∣∣∣∣DU +

∣∣∣∣a∗ − ab∗

b

∣∣∣∣ (|x|+ d)

≤ (|a∗ − b∗K|+OT (ϵ))d+OT (ϵ)(|x|+DU)

≤ (|a∗ − b∗K|+OT (ϵ))d+OT (ϵ)(|x|+ ∥D∥∞).

where in the last line we once again bounded |1 − b∗

b
| = OT (ϵ) and |a∗ − ab∗

b
| = OT (ϵ).

Therefore, we have shown in this case that

|a∗x+ b∗Cθ
K(x)− a∗y − b∗Cθ

K(y)|
≤ min (2(|a∗ − b∗K|+OT (ϵ))d, (|a∗ − b∗K|+OT (ϵ))d+OT (ϵ)(|x|+ ∥D∥∞))

103

Case 4 Lemma 32:

|Cθ
K(x)− Cθ

K(y)| =
∣∣∣∣−Kx− DU − ay

b

∣∣∣∣
≤ |K||x− y|+

∣∣∣∣−Ky − DU − ay

b

∣∣∣∣
≤ |K||x− y|+

∣∣∣∣(a− bK)y −DU

b

∣∣∣∣
≤ |K||x− y|+ |a− bK|

b

∣∣∣∣y − DU

a− bK

∣∣∣∣
≤ |K||x− y|+ |a− bK|

b
|y − x| Equation (162)

= |K|d+ |a− bK|
b

d

≤ ā+ 1

b
d+

1

b
d

= OT (d).

Because these four cases cover all possible situations, we have shown the desired two
lemmas.

H.5 Proof of Lemma 35

proof. For sufficiently large T we have the following two results, using that ∥θ − θ∗∥∞ ≤
1

log10(T)
:

a− 1

b
≥

a∗ − 1
log10(T)

− 1

b∗ + 1
log10(T)

=
a∗ − 1

b∗
· b∗

b∗ + 1
log10(T)

− 1

log10(T)(b∗ + 1
log10(T)

)

=
a∗ − 1

b∗
·

1− 1

log10(T)
(
b∗ + 1

log10(T)

)
− 1

log10(T)(b∗ + 1
log10(T)

)

=
a∗ − 1

b∗
− a∗ − 1

b∗ log10(T)(b∗ + 1
log10(T)

)
− 1

log10(T)(b∗ + 1
log10(T)

)

=
a∗ − 1−OT

(
1

log10(T)

)
b∗

.

104

a

b
≤

a∗ + 1
log10(T)

b∗ − 1
log10(T)

=
a∗

b∗
· b∗

b∗ − 1
log10(T)

+
1

log10(T)(b∗ − 1
log10(T)

)

=
a∗

b∗
·

1 +
1

log10(T)
(
b∗ − 1

log10(T)

)
+

1

log10(T)(b∗ − 1
log10(T)

)

=
a∗

b∗
+

a∗

b∗(b∗ − 1
log10(T)

) log10(T)
+

1

log10(T)(b∗ − 1
log10(T)

)

=
a∗ +OT (1/ log

10(T))

b∗
.

H.6 Proof of Lemma 36

proof. The first step to this proof is to construct event EL36(x,K, θ,W ′). For any t2 > t1
and t2 − t1 ≥ log8(T), define the event Et1,t2

L36 as

Et1,t2
L36 =

∃j ∈ [t1 : t2 − ⌈log5(T)⌉ − 1] :

∣∣∣∣∣∣
j+⌈log5(T)⌉∑

i=j

wi

∣∣∣∣∣∣ ≥ 7 log2(T)

 .

Define
EL36(x,K, θ,W ′) := Et

1 ∩
⋂

t1<t2≤t,t2−t1≥log8(T)

Et1,t2
L36 .

First we will show that P(EL36(x,K, θ,W ′)) = 1−oT (1/T
20). Consider any pair t2 > t1 such

that t2 − t1 ≥ log8(T). Divide the interval [t1 : t2 − 1] into ⌊ t2−t1
⌈log5(T)⌉+1

⌋ consecutive disjoint

intervals of length ⌈log5(T)⌉ + 1. Consider one such interval [s1, s2]. Then the distribution
of 1√

⌈log5(T)⌉+1

∑s2
i=s1

wi converges in distribution to N(0, σ2
D) as T grows, where we recall σ2

D

is the variance of distribution D. The rate of this convergence depends on D. Therefore, for
sufficiently large T , we have that∣∣∣∣∣∣P

∣∣∣∣∣∣ 1√
⌈log5(T)⌉+ 1

s2∑
i=s1

wi

∣∣∣∣∣∣ ≥ σD/2

− P
(
|N(0, σ2

D)| ≥ σD/2
)∣∣∣∣∣∣ ≤ 0.1. (164)

This implies that

P

∣∣∣∣∣∣ 1√
⌈log5(T)⌉+ 1

s2∑
i=s1

wi

∣∣∣∣∣∣ ≥ σD/2

 ≥ P
(
|N(0, σ2

D)| ≥ σD/2
)
− 0.1 ≥ 0.5. (165)

105

For sufficiently large T , we have that

√
⌈log5(T)⌉+1σD

2
≥ 7 log2(T), and therefore this implies

that for sufficiently large T ,

P

(∣∣∣∣∣
s2∑

i=s1

wi

∣∣∣∣∣ ≥ 7 log2(T)

)
≥ 0.5. (166)

Because the random variables in each disjoint interval are independent, we have that each
interval independently satisfies Equation (166) with probability at least 1/2. Therefore, for

sufficiently large T , the probability that Equation (166) fails to hold for all ⌊ |t2−t1|
⌈log5(T)⌉+1

⌋ ≥

log2(T) intervals is at most (1/2)
⌊ |t2−t1|
⌈log5(T)⌉+1

⌋ ≤ 0.5log
2(T) = oT (1/T

22). Therefore, we have
shown that

P(Et1,t2
L36) ≥ 1− oT (1/T

22).

Since there are less than T 2 pairs (t1, t2) and P(Et
1) ≥ P(E1) = 1 − oT (1/T

20) by Equation
(21), we have by a union bound that

P(EL36(x,K, θ,W ′)) ≥ 1− oT (T
2/T 22)− oT (1/T

20) = 1− oT (1/T
20).

Lemma 38. Using the assumptions and notation of the proof of Lemma 36, for all pairs
t1, t2 such that t2 − t1 ≥ log8(T), conditional on event At2 ∩ EL36(x,K, θ,W ′),

λ(t2)− λ(t1) = ΩT

(
|t2 − t1|
log8(T)

)
. (167)

By Lemma 38, conditional on At2 ∩ EL36(x,K, θ,W ′), we that:(
1 +OT

(
1

log10(T)

))t2+1−t1

OT (ϵ)
λ(t2)−λ(t1)

=

(
1 +OT

(
1

log10(T)

))t2+1−t1

OT (1/ log(T))λ(t2)−λ(t1) ϵ = OT (1/ log(T))

≤
(
1 +OT

(
1

log10(T)

))t2+1−t1

·OT

(
1

log(T)

)ΩT

(
|t2−t1|
log8(T)

)
Equation (167)

≤
(
1 +OT

(
1

log2(T)

))(t2+1−t1)/ log
8(T)

·OT

(
1

log(T)

)ΩT

(
|t2−t1|
log8(T)

)
Lemma 37

≤ OT

((
1

log(T)

(
1 +

1

log2(T)

)))ΩT

(
|t2−t1|
log8(T)

)

≤
(
OT

(
1

log(T)

))ΩT

(
|t2−t1|
log8(T)

)

≤

(OT

(
1

log(T)

))ΩT

(
1

log8(T)

)(t2+1−t1)

≤
(
1− 2

log9(T)

)t2+1−t1

. (168)

106

This is the desired result. In the last line we used that for sufficiently large T ,(
OT

(
1

log(T)

))ΩT

(
1

log8(T)

)
≤
(
1

2

)ΩT

(
1

log8(T)

)

≤
(
1

2

) 4
log9(T)

≤
(
1− 2

log9(T))

)
Lemma 37

Note that the first inequality above is a very loose bound, however it is what we need to
prove the desired lemma.

H.7 Proof of Lemma 38

To show Equation (167), we will show that for all t2 ≥ ⌈log8(T)⌉, conditional on event
At2∩EL36(x, k, θ,W

′), for every j ≤ t2−⌈log8(T)⌉+1 there exists some i ∈ [j : j+⌈log8(T)⌉)
such that Wi holds, where we recall that

Wi =

{
min(xi, yi) ≥

DU

a− bK
or max(xi, yi) ≤

DL

a− bK

}
.

This in turn implies Equation (167) because we can divide [t1+1 : t2] into ΩT (
|t2−t1|
log8(T)

) disjoint

intervals of the form [j : j+ ⌈log8(T)⌉) where each interval contains an i such thatWi holds.
For the rest of the proof, we will prove by contradiction that conditional on event At2 ∩

EL36(x, k, θ,W
′), for every j ≤ t2 − ⌈log8(T)⌉ there exists some i ∈ [j : j + ⌈log8(T)⌉) such

that Wi holds. Assume that this is not the case, and there exists j such that there are no
i ∈ [j : j + ⌈log8(T)⌉) such that Wi holds.

By definition of Wi, if yi ̸∈
[

DL

a−bK
− di,

DU

a−bK
+ di

]
, then Wi must hold. Recall that

conditional on event At2 , di ≤ 3
log10(T)

for all i ≤ t2. Therefore, conditional on event At2 , if

yi ̸∈
[

DL

a−bK
− 3

log10(T)
, DU

a−bK
+ 3

log10(T)

]
thenWi must hold. Because we assumed that there are

no i ∈ [j : j + ⌈log8(T)⌉) such that Wi holds, this implies that for all i ∈ [j : j + ⌈log8(T)⌉),

yi ∈
[

DL

a− bK
− 3

log10(T)
,

DU

a− bK
+

3

log10(T)

]
. (169)

We also have that for sufficiently large T ,

∥D∥∞
a− bK

≤ ∥D∥∞
a∗ − b∗K −OT

(
1

log10 T

) ∥θ − θ∗∥∞ ≤ 1/ log10(T)

≤ ∥D∥∞
1−OT

(
1

log9 T

) |1− (a∗ − b∗K)| ≤ 1

log9(T)

≤ 2∥D∥∞
≤ 2 log2(T). Assumption 3 (170)

107

Therefore, if |yi| ≥ log2(T) ≥ 2 log2(T) + 3
log10(T)

for sufficiently large T , then Wi must

hold. For the rest of the proof, we will show that if Equation (169) holds for all i ∈ [j :
j + ⌈log8(T)⌉), then at least one such i must satisfy |yi| ≥ 3 log2(T), which implies that Wi

will hold which is a contradiction.

Lemma 39. Using the notation and assumptions of Lemma 38, conditional on At2∩EL36(x, k, θ,W
′),

if yi ∈
[

DL

a−bK
− 3

log10(T)
, DU

a−bK
+ 3

log10(T)

]
, then yi+1−yi ∈ [wi−OT (1/ log

7(T)), wi+OT (1/ log
7(T))].

proof. The control at time i is either −Kyi,
DU−ayi

b
, or DL−ayi

b
. If the control is −Kyi, then

under event Et
1,

|yi+1 − yi − wi| = |(a∗ − b∗K)yi − yi|
= |yi||1− (a∗ − b∗K)|

= OT

(
|yi|

log9(T)

)
Assumed in Lemmas 36, 38, and 39

= OT

(
1

log7(T)

)
. Under event Et

1 by Lemma 12.

The control at position yi is
DU−ayi

b
only when yi ≥ DU

a−bK
. Because yi ≤ DU

a−bK
+ 3

log10(T)
,

this implies that
∣∣yi − DU

a−bK

∣∣ ≤ 3
log10(T)

, and because (a − bK) ≤ 1 this implies that |DU −
(a − bK)yi| = OT (1/ log

10(T)). Therefore, under event Et
1, when the control at position yi

is DU−ayi
b

,

|yi+1 − yi − wi| = |a∗yi + b∗
DU − ayi

b
− yi|

≤ |(a∗ − b∗K)yi − yi|+ b∗
∣∣∣∣Kyi +

DU − ayi
b

∣∣∣∣
≤ |(a∗ − b∗K)− 1||yi|+

b∗

b
|DU − (a− bK)yi|

≤ OT

(
|yi|

log9(T)

)
+OT

(
1

log10(T)

)
≤ OT

(
1

log7(T)

)
. Under event Et

1 by Lemma 12

A symmetric result holds if the control at position yi is
DL−ayi

b
(which happens when yi ≤

DL

a−bK
). This exactly implies the desired result.

Using Lemma 39, for j ≤ i1 < i2 ≤ j + ⌈log8(T)⌉ such that i2 − i1 ≤ ⌈log5(T)⌉ and
sufficiently large T , if yi ∈

[
DL

a−bK
− 3

log10(T)
, DU

a−bK
+ 3

log10(T)

]
for all i ∈ [j : j + ⌈log8(T)⌉),

108

then

|yi2+1 − yi1| ≥

∣∣∣∣∣
i2∑

j=i1

wj

∣∣∣∣∣−OT

(
|i2 − i1|
log7(T)

)

≥

∣∣∣∣∣
i2∑

j=i1

wj

∣∣∣∣∣− 1

log(T)
. i2 − i1 ≤ ⌈log5(T)⌉ (171)

By construction, event EL36(x,K, θ,W ′) directly implies that for sufficiently large T , there
exists some i ∈ [j : j + ⌈log8(T)⌉ − ⌈log5(T)⌉ − 1] such that∣∣∣∣∣∣

i+⌈log5(T)⌉∑
j=i

wj

∣∣∣∣∣∣ ≥ 7 log2(T) ≥ 2 · 3 log2(T) + 1

log(T)
. (172)

Combining this with Equation (171) for i1 = i and i2 = i + ⌈log5(T)⌉, conditional on
At2 ∩ EL36(x, k, θ,W

′),
|yi2+1 − yi1 | ≥ 6 log2(T).

This implies that either |yi| or |yi+⌈log5(T)⌉+1| is greater than 3 log2(T). However, as argued
above this implies that Wi or Wi+⌈log5(T)⌉+1 holds, which is a contradiction. This completes
the proof by contradiction.

H.8 Satisfaction of Assumption 7

Proposition 13. Under Assumptions 1–3, the class of truncated linear controllers satisfies
Assumption 7 for ϵA7 =

1
log46(T)

. In other words, for any ϵ := ∥θ−θ∗∥∞ ≤ 1
log46(T)

and t ≤ T ,

|J∗(θ∗, Cθ
Kopt(θ,t), t)− J∗(θ∗, Cθ∗

Kopt(θ∗,t), t)| = ÕT

(
ϵ+

1

T 2

)
.

proof. We will combine the following two results.

Lemma 40. Under Assumptions 1–3, for any θ such that ∥θ − θ∗∥∞ = ϵ ≤ 1
log46(T)

, the

following holds for the class of truncated linear controllers for t ≤ T :

J∗(θ, Cθ
Kopt(θ,t), t)− J∗(θ∗, Cθ∗

Kopt(θ∗,t), t) = ÕT (ϵ).

The proof of Lemma 40 can be found in Appendix H.9.

Lemma 41. Under Assumptions 1–3, for any ∥θ − θ∗∥∞ = ϵ ≤ 1
log46(T)

, t ≤ T , and K ∈
[a−1

b
, a
b
],

|J∗(θ∗, Cθ
K , t)− J∗(θ, Cθ

K , t)| = ÕT

(
ϵ+

1

T 2

)
. (173)

The proof of Lemma 41 can be found in Appendix H.10.
Putting together Lemma 40 and Lemma 41 with K = Kopt(θ, t), we have the desired

result that

J∗(θ∗, Cθ
Kopt(θ,t), t)− J∗(θ∗, Cθ∗

Kopt(θ∗,t), t) = ÕT

(
ϵ+

1

T 2

)
.

109

H.9 Proof of Lemma 40

proof. First, we will prove some results about a∗, b∗, Kopt(θ
∗, t). Because b, b∗ ≥ b and ∥θ −

θ∗∥∞ = ϵ ≤ 1
log46(T)

< b/2 for large enough T , we have that∣∣∣∣∣
(
a∗

b∗

)2

−
(a
b

)2∣∣∣∣∣ =
∣∣∣∣(a∗)2b2 − (b∗)2a2

b2(b∗)2

∣∣∣∣ ≤ ϵ2b2 + 2ϵab2 + 2ϵba2 + ϵ2a2

b2(b− ϵ)2
= OT (ϵ). (174)∣∣∣∣ab − a∗

b∗

∣∣∣∣ = ∣∣∣∣a∗b− b∗a

bb∗

∣∣∣∣ ≤ ∣∣∣∣ ϵb+ ϵa

b(b− ϵ)

∣∣∣∣ = OT (ϵ). (175)

Let K ′ be the solution to a∗ − b∗Kopt(θ
∗, t) = a− bK ′. Then

K ′ =
(a− a∗) + b∗Kopt(θ

∗, t)

b
= Kopt(θ

∗, t) +
(b∗ − b)Kopt(θ

∗, t)

b
+

a− a∗

b
.

Since Kopt(θ
∗, t) ≤ a∗

b∗
by definition, we have the following two equations:

|K ′ −Kopt(θ
∗, t)| =

∣∣∣∣(b∗ − b)Kopt(θ
∗, t)

b
+

a− a∗

b

∣∣∣∣ ≤ (a∗

bb∗
+

1

b

)
ϵ = OT (ϵ). (176)

|(K ′)2 − (Kopt(θ
∗, t))2| ≤ |K ′ −Kopt(θ

∗, t)| · |K ′ +Kopt(θ
∗, t)| = OT (ϵ). (177)

By the choice of K ′, using the controller Cθ∗

Kopt(θ∗,t)
under dynamics θ∗ results in the exact

same sequence of positions as using the controller Cθ
K′ under dynamics θ. This is because

a − bK ′ = a∗ − b∗Kopt(θ
∗, t), which by construction of truncated linear controllers implies

that ax + bCθ
K′(x) = a∗ + b∗Cθ∗

Kopt(θ∗,t)
for all x. The controls will however be different, and

we will now bound that difference in controls.
Define x0, x1, ..., xt as the sequence of positions when using controller Cθ∗

Kopt(θ∗,t)
under

dynamics θ∗ starting at position x0 = 0. Then we have the following result.

∣∣∣rCθ∗

Kopt(θ∗,t)(xi)
2 − rCθ

K′(xi)
2
∣∣∣ =

∣∣rx2
i

(
(Kopt(θ

∗, t))2 − (K ′)2
)∣∣ if xi ∈ [DL

a∗−b∗Kopt(θ∗,t) ,
DU

a∗−b∗Kopt(θ∗,t)]∣∣∣∣r (DU−a∗xi

b∗

)2
− r

(
DU−axi

b

)2∣∣∣∣ if xi >
DU

a∗−b∗Kopt(θ∗,t)∣∣∣∣r (DL−a∗xi

b∗

)2
− r

(
DL−axi

b

)2∣∣∣∣ if xi <
DL

a∗−b∗Kopt(θ∗,t)

(178)

By Equation (177), this implies the following.∣∣∣rCθ∗

Kopt(θ∗,t)(xi)
2 − rCθ

K′(xi)
2
∣∣∣

≤

OT (x

2
i ϵ) if xi ∈ [DL

a∗−b∗Kopt(θ∗,t) ,
DU

a∗−b∗Kopt(θ∗,t)]

rD2
U

∣∣∣(1
b∗

)2 − (1b)2∣∣∣+ 2DUr|xi|
∣∣∣ab − a∗

b∗

∣∣∣+ rx2
i

∣∣∣∣(a∗

b∗

)2
−
(
a
b

)2∣∣∣∣ if xi >
DU

a∗−b∗Kopt(θ∗,t)

rD2
L

∣∣∣(1
b∗

)2 − (1b)2∣∣∣+ 2|DL|r|xi|
∣∣∣ab − a∗

b∗

∣∣∣+ rx2
i

∣∣∣∣(a∗

b∗

)2
−
(
a
b

)2∣∣∣∣ if xi <
DL

a∗−b∗Kopt(θ∗,t)

By Equations (174) and (175), we get the following result.

∣∣∣rCθ∗

Kopt(θ∗,t)(xi)
2 − rCθ

K′(xi)
2
∣∣∣ ≤

OT (x

2
i)ϵ if xi ∈ [DL

a∗−b∗Kopt(θ∗,t)
, DU

a∗−b∗Kopt(θ∗,t)
]

OT (D
2
Uϵ+DU |xi|ϵ) +OT (x

2
i ϵ) if xi >

DU

a∗−b∗Kopt(θ∗,t)

OT (D
2
Lϵ+ |DL||xi|ϵ) +OT (x

2
i ϵ) if xi <

DL

a∗−b∗Kopt(θ∗,t)

(179)

110

Using that ∥D∥∞ ≤ log2(T), in all three cases we have that∣∣∣rCθ∗

Kopt(θ∗,t)(xi)
2 − rCθ

K′(xi)
2
∣∣∣ = ÕT

(
1 + |xi|+ |xi|2

)
ϵ. (180)

The last fact we need is to note that xi is a sequence of positions for the controller Cθ∗

Kopt(θ∗,t)

under dynamics θ∗, which by construction will always satisfy thatDL ≤ a∗xi+b∗Cθ∗

Kopt(θ∗,t)
(x∗) ≤

DU . Therefore, since E[|wi−1|] and E[w2
i−1] are constants relative to T that depend on D, for

all i,
E[|xi|] ≤ ∥D∥∞ + E[|wi−1|] = OT (log

2(T)).

E[|xi|2] ≤ ∥D∥2∞ + E[w2
i−1] + 2∥D∥∞ E[|wi−1|] = OT (log

4(T)).

Therefore, we can upper bound the difference in cost as follows:

J∗(θ, Cθ
K′ , t)− J∗(θ∗, Cθ∗

Kopt(θ∗,t), t) ≤ E

[
1

t

t−1∑
i=0

∣∣∣rCθ∗

Kopt(θ∗,t)(xi)
2 − rCθ

K′(xi)
2
∣∣∣]

≤ 1

t

t−1∑
i=0

ÕT

(
1 + E[|xi|] + E[|xi|2]

)
ϵ Equation (180)

≤ 1

t

t−1∑
i=0

ÕT

(
log2(T) + log4(T)

)
ϵ

= ÕT (ϵ) .

Finally, by definition of Kopt we know that

J∗(θ, Cθ
Kopt(θ,t), t) ≤ J∗(θ, Cθ

K′ , t),

therefore we can conclude that

J∗(θ, Cθ
Kopt(θ,t), t)− J∗(θ∗, Cθ∗

Kopt(θ∗,t), t) = ÕT (ϵ).

H.10 Proof of Lemma 41

proof. For a set of time varying dynamics {θj}t−1
j=0 where θj ∈ Θ for all j, we define the

expected total cost for varying dynamics as

J∗({θj}t−1
j=0, C

θ
K , t) := qx2

t +
t−1∑
j=0

qx2
j + rCθ

K(xj−1)
2,

where x0 = 0 and xj = aj−1xj−1 + bj−1C
θ
K(xj−1) + wj−1. In other words, this is the total

cost if the dynamics at time j < t are θj.
For i ∈ [0 : t], let {θij}t−1

j=0 be a time varying dynamics with θij = θ for all j < i and

θij = θ∗ for j ≥ i. We will now compare the costs under dynamics {θij}t−1
j=0 versus under

111

{θi+1
j }t−1

j=0. Let x0, x1, ...xt be the positions when using controller Cθ
K under time-varying

dynamics {θij}t−1
j=0 and x∗

0, ...x
∗
t be the positions when using controller Cθ

K under time-varying

dynamics {θi+1
j }t−1

j=0 (both starting at x0 = x∗
0 = 0). Up until time i, the dynamics of these

two trajectories are the same (both equal to θ), and therefore the positions and controls
of the two trajectories are equivalent up until time i. Because Cθ

K is safe with respect to
dynamics θ, |x∗

i | = |xi| ≤ ∥D∥∞ + |wi−1|. Because ∥D∥∞ ≤ log2(T), this implies that

E[|x∗
i |] = E[|xi|] = ÕT (1). (181)

Also note that by construction of the truncated linear controller, |Cθ
K(xi)| ≤ K|xi| +

∥D∥∞+a|xi|
b

. Therefore, we have that

|xi+1−x∗
i+1| = |axi+bCθ

K(xi)−a∗xi−b∗Cθ
K(xi)| ≤ ϵ|xi|+ϵ|Cθ

K(xi)| ≤ ϵ

(
|xi|+K|xi|+

∥D∥∞ + a|xi|
b

)
.

(182)
Combining Equations (181) and (182) gives that

E[|xi+1 − x∗
i+1|] = ÕT (ϵ). (183)

Consider xi+1. Define the event F = {|xi+1| < log3(T)}. As argued above, |xi| ≤ ∥D∥∞ +
|wi−1| ≤ 2 log2(T) under event E1. Furthermore, the control Cθ

K(xi) is safe with respect to
dynamics θii and ∥θii − θ∗∥∞ = ∥θ − θ∗∥∞ ≤ 1/ log46(T) ≤ 1/ log(T) for sufficiently large T .
Therefore, we can apply Lemma 4 for one step to get that for sufficiently large T , |xi+1| ≤
4 log2(T) under event E1. Therefore, for sufficiently large T , P(F) ≥ P(E1) = 1− oT (1/T

11).
By Lemma 13 (using the same logic as in Equation (57)), this implies that

P(|xi+1| ≥ log3(T))E[|xi+1|2 | |xi+1| ≥ log3(T)] = oT (1/T
10).

The same logic holds for x∗
i+1. We already showed that Assumption 8 holds for the class of

truncated linear controllers in Proposition 12, and Assumptions 4–6 hold for truncated linear
controllers by construction. Furthermore we showed above that P(|xi+1| ≤ 4 log2(T)) =
1 − oT (1/T

11) (and the same equation holds for x∗
i+1). Therefore, we can apply Lemma 11

to get that

|t · J∗({θij}t−1
j=0, C

θ
K , t, 0)− t · J∗({θi+1

j }t−1
j=0, C

θ
K , t, 0)|

= E
[
|(t− i)J∗(θ∗, Cθ

K , t− i, xi+1)− (t− i)J∗(θ∗, Cθ
K , t− i, x∗

i+1)|
]

= ÕT

(
E
[∣∣xi+1 − x∗

i+1

∣∣]+ ϵ+
1

T 2

)
Lemma 11

= ÕT

(
ϵ+

1

T 2

)
. Equation (183) (184)

Now, we conclude by noting that

|t · J∗(θ∗, Cθ
K , t)− t · J∗(θ, Cθ

K , t)| =

∣∣∣∣∣
t∑

i=0

t · J∗({θi+1
j }t−1

j=0, C
θ
K , t, 0)− t · J∗({θij}t−1

j=0, C
θ
K , t, 0)

∣∣∣∣∣
= ÕT

(
t

(
ϵ+

1

T 2

))
,

and dividing both sides of the equation by t gives the desired result.

112

I Proof of Theorem 1

For the proof of Theorem 1, we will use the following notation (which was also defined
in the proof sketch of Theorem 1). Define Cunc = {Cunc

K }K∈R as the class of untrun-
cated linear controllers, where Cunc

K (x) = −Kx. For any controller C and dynamics θ,
define J∗(θ, C) = limT−→∞ J∗(θ, C, T). Define Kopt(θ) = arg supK J∗(θ, Cθ

K) and Fopt(θ) =
arg supK J∗(θ, Cunc

K).
Recall that we showed in Propositions 13 and 12 respectively that the class of truncated

linear controllers satisfies Assumptions 7 and 8. Furthermore, the class of truncated linear
controllers satisfies Assumptions 4–6 by construction. If D has infinite support and ∥D∥∞ =
OT (1), then Assumption 9 is satisfied. Therefore, under Assumptions 1–3, if D has infinite
support and ∥D∥∞ = OT (1), then Algorithm 4 with the baseline class of truncated linear
controllers has regret of ÕT (

√
T) by Theorem 2. Therefore, Theorem 2 directly proves

Theorem 1 in the case when D has infinite support. For the rest of this proof, we will
focus on proving Theorem 1 when D has bounded support, therefore making the following
assumption.

Assumption 10. The distribution D has bounded support, i.e. there exists w̄ > 0 such that
Pw∼D(|w| ≤ w̄) = 1.

For the rest of the proof of Theorem 1, we will also assume WLOG that DU ≤ |DL|.

Definition 4. Define Kθ
DU

as the value that satisfies the equation

DU

a− bKθ
DU

−DU = w̄.

For the rest of Appendix I, let Calg be the controller of Algorithm 4 and Cθtr be the class
of truncated linear controllers for dynamics θ as in Equation (8).

We will now redefine the important events and lemmas from Appendix C with respect
to Algorithm 4 (and the corresponding θ̂s), and use this notation for the rest of Appendix I.
For νT = T−1/4, let se = log2(Tν

2
T)− 1, and let

E0 :=
{
∀s ∈ [0 : se] : ∥θ∗ − θ̂pres ∥∞ ≤ ϵs

}
. (185)

By Lemma 23 we have that with probability 1 − oT (1/T
2), for all s, ∥θ∗ − θ̂pres ∥∞ ≤

ϵs.Therefore,
P(E0) = 1− oT (1/T

2).

By construction we also have that ∥θ̂s− θ̂pres ∥∞ ≤ ϵs. This implies by the triangle inequality
that under event E0, ∥θ̂s − θ∗∥∞ ≤ 2ϵs.

We also have the following equivalent result to Lemma 2, but with respect to the ϵs in
Algorithm 4.

Lemma 42. Under Assumptions 1–3, there exists a cL42 = ÕT (1) such that with probability
1− oT (1/T

2)
max
s∈[0:se]

ϵs ≤ cL42T
−1/4 = ÕT (νT).

113

The proof of Lemma 2 relies only on the first νT steps and is written agnostic to the
choice of νT , and therefore the result of Lemma 42 follows directly from that proof. Note
that we explicitly named the constant in Lemma 42 as we will use this constant later in the
proof. For the rest of this section, define

E2 := E0

⋂{
max
s∈[0:se]

ϵs ≤ cL42T
−1/4 = ÕT (νT)

}
. (186)

Lemma 42 implies that we have

P(E2) = 1− oT (1/T
2).

Define
E0

2 := {ϵ0 ≤ cL42T
−1/4} ∩ {∥θ∗ − θ̂pre0 ∥∞ ≤ ϵ0} ⊆ E2.

Recall θ̂wu, which is defined in Line 5 of Algorithm 4. Because θ̂wu = θ̂pre0 , by the same logic
as above, under E0

2 we have that ∥θ∗ − θ̂wu∥∞ ≤ 2ϵ0 ≤ 2cL42T
−1/4

For this section, E1 will still refer to the same event as in Equation (20). We also define
the event Esafe the same way as in Equation (23) except with respect to the positions and
controls of Algorithm 4, and finally we define the event E = E1 ∩E2 ∩Esafe (the same as in
Appendix C.2). Therefore by a union bound we still have that P(E) = 1− oT (1/T

2). Using
this new notation and Lemma 42, we can proceed to the main proof.

The safety of Calg follows from an equivalent version of Lemma 1, except stated for
Algorithm 4 instead of Algorithm 3. The proof follows as in the proof of Lemma 1 except
using Lemma 42 instead of Lemma 2, and using the above definitions of E0, E1 and E2 with
respect to Algorithm 4. An equivalent statement of Lemma 3 holds except for the usafeU

t

and usafeL
t coming from Algorithm 4. Note that the only place that the proof of Lemma 3

relies on νT is that it requires that ϵs = ÕT (νT) and that ÕT (νT) = oT (1/ log(T)) at multiple
points in the proof, which still holds under the new definitions of E2 and νT . The rest of the
proof of Lemma 1 follows directly.

The rest of this section will focus on proving that the regret of Algorithm 4 is ÕT (
√
T)

with probability 1− oT (1/T).
Let Cswitch = cE212DU

c2L50
= ÕT (1) where cE212 = ÕT (1) and is defined in Equation (212)

and cL50 = Ω(1) defined in Lemma 50; Equation (212) and Lemma 50 will both appear in
Appendix K.2. Note that Cswitch is used in Line 11 of Algorithm 4. Define the event EE187

as

EE187 :=

{
w̄ +DU −

DU

âwu − b̂wuFopt(θ̂wu)
≤ CswitchT

−1/4

}
. (187)

We will study the regret of Algorithm 4 separately under event EE187 and under event
¬EE187. Informally, if EE187 holds then the optimal linear controller is close to being safe for
dynamics θ∗. If ¬EE187, then the magnitude of the noise is large relative to the constraints,
and therefore an argument similar to that of Theorem 2 will bound the regret.

Proposition 14. Under Assumptions 1–3 and 10, there exists an event EP14 such that
EP14 ⊆ ¬EE187, such that P(EP14) ≥ P(¬EE187) − oT (1/T), and such that conditional on
event EP14, Algorithm 4 has ÕT (

√
T) regret.

114

The proof of Proposition 14 can be found in Appendix I.1.

Proposition 15. Under Assumptions 1–3 and 10, there exists an event EP15 such that
EP15 ⊆ EE187, such that P(EP15) ≥ P(EE187)− oT (1/T), and such that conditional on event
EP15, Algorithm 4 has ÕT (

√
T) regret.

The proof of Proposition 15 can be found in Appendix I.2.
Combining these two propositions gives that the regret of Algorithm 4 is ÕT (

√
T) con-

ditional on EP14 ∪ EP15. Because EP14 ∩ EP15 = ∅ by construction, we have that

P(EP14∪EP15) = P(EP14)+P(EP15) ≥ P(E¬187)−oT (1/T)+P(EE187)−oT (1/T) = 1−oT (1/T).

Therefore the desired result holds with unconditional probability 1 − oT (1/T), completing
the proof of Theorem 1.

I.1 Proof of Proposition 14

proof. Similar to the proof of Theorems 2 and 3, we can decompose the regret in the following
manner (where K∗ and K∗

s are defined as in Appendix C.2). Define x′
t as the position of the

controller of Algorithm 4 at time t. Define x̂T0 , x̂T0+1, ... as the sequence of random variables

representing the sequence of positions if the control at each time t ≥ T0 is C θ̂s
Kopt(θ̂s)

(x̂t) for

s = ⌊log2 (tν2
T)⌋ and starting at x̂T0 = x′

T0
.

115

T · J(θ∗, Calg, T, 0,W)− T · J∗(θ∗, Cθ∗

Kopt(θ∗,T), T)

≤ T · J(θ∗, Calg, T, 0,W)− E

[
1

ν2
T

J

(
θ∗, Cθ∗

K∗ ,
1

ν2
T

, 0, {wt}
1/ν2T−1
t=0

)
+

se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]

≤ T · J(θ∗, Calg, T, 0,W)− E

[
se∑
s=0

TsJ
∗(θ∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]

=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ
∗(θ∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
︸ ︷︷ ︸

R1

+
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s]− se∑

s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]︸ ︷︷ ︸

R1b

+
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s]︸ ︷︷ ︸

R2

+
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts, x̂Ts ,Ws)︸ ︷︷ ︸

R3

+ T · J(θ∗, Calg, T, 0,W)−
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)︸ ︷︷ ︸

R0

. (188)

Informally, as in the proof of Theorem 2, we will show that with high probability ϵs =
ÕT (1/

√
Ts) for all s.

Lemma 43. Under Assumptions 1–3 and 10, there exists event EL43 such that P(EL43) =
1− oT (1/T) and such that conditional on ¬EE187 ∩ E ∩ EL43,

max
s∈[0:se]

ϵs
√
Ts = ÕT (1).

The proof of Lemma 43 can be found in Appendix J.1. Define event E3 as

E3 =

{
max
s∈[0:se]

ϵs
√

Ts = ÕT (1)

}
.

Lemma 43 implies that ¬EE187∩E∩EL43 ⊆ E3. Note that compared to the regret decompo-
sition in Theorems 2 and 3, there is an extra regret term R1b. This extra regret term can be
thought of as the extra regret caused by choosing the best infinite horizon controller instead
of the best finite horizon controller. The following lemma bounds the regret of this term by
ÕT (
√
T).

116

Proposition 16. Define R1b as

R1b =
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s]− se∑

s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] .
(189)

Under Assumptions 1–3 and 10, conditional on event E ∩ E3,

R1b = ÕT

(√
T
)
.

The proof of Proposition 16 can be found in Appendix J.2. As in the proof of Theorem
2, we will need the following propositions.

Proposition 17 (Regret from Randomness). Define R2 as

R2 :=
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s

]
.

Then under Assumptions 1–3 and 10 there exists an event EP17 such that P(EP17) = 1 −
oT (1/T) and conditional on EP17 ∩ ¬EE187 ∩ E,

R2 = ÕT (
√
T). (190)

The proof of Proposition 17 can be found in Appendix J.3. The next two propositions
have different regret bounds than their counterparts in Appendix C.2.

Proposition 18. Define R1 as

R1 :=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
.

Under Assumptions 1–3 and 10, conditional on event E3 ∩ E,

R1 = ÕT

(√
T
)
. (191)

The proof of Proposition 18 can be found in Appendix J.4.

Proposition 19. Define R3 as (the random variable)

R3 :=
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts, x̂Ts ,Ws).

Then under Assumptions 1–3 and 10,there exists an event EP19 such that P(EP19) = 1 −
oT (1/T) and conditional on EP19 ∩ ¬EE187 ∩ E ∩ E3,

R3 = ÕT (
√
T). (192)

The proof of Proposition 19 can be found in Appendix J.5.

117

Proposition 20. Under Assumptions 1–3 and 10, conditional on event E,

T · J(θ∗, Calg, T, 0,W)−
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws) = ÕT (

√
T). (193)

The proof of Proposition 20 can be found in Appendix J.6.
Using Equation (188) combined with Propositions 20, 16, 17, 18 and 19, conditional on

event ¬EE187 ∩ E3 ∩ E ∩ EP19 ∩ EP17 the total regret is upper bounded by

T · J(θ∗, Calg, T)− T · J∗(θ∗, Cθ∗

Kopt(θ∗,T), T) ≤ R0 +R1 +R1b +R2 +R3 = ÕT

(√
T
)
.

Combining Propositions 17 and 19, P(EP19 ∩EP17) = 1− oT (1/T). Therefore, we have that

P(E3 ∩ E ∩ ¬EE187 ∩ EP19 ∩ EP17)

= P(E3 ∩ E ∩ ¬EE187)− oT (1/T) Remark 21

≥ P(EL43 ∩ E ∩ ¬EE187)− oT (1/T) Lemma 43

≥ P(¬EE187)− oT (1/T). Remark 21

Above, we twice used the following remark:

Remark 21. If two events E1 and E2 satisfy that P(E1) = 1− oT (1/T), then

P(E1 ∩ E2) = P(E1) + P(E2)− P(E1 ∪ E2) ≥ P(E2)− oT (1/T)

Taking EP14 = E3 ∩ E ∩ ¬EE187 ∩ EP19 ∩ EP17 gives the desired result.

I.2 Proof of Proposition 15

Informally, EE187 implies that the optimal linear controller for θ∗ is close to satisfying the
constraints. Therefore, we will bound the regret by approximating both the best constrained
controller and the controller of Algorithm 4 by the optimal unconstrained linear controller.

We will decompose the regret as follows. Define Calg′ to be the controller of Algorithm
4 after the warm-up period, i.e. starting at time t = T0. Therefore, Calg′

t = Calg
t+T0

. Define

x′
0, x

′
1, ... as the series of positions when using algorithm Calg. Define W ′ = {wi}T−1

i=T0
. Recall

that Cunc
K is the linear controller such that Cunc

K (x) = −Kx. We can decompose the regret

118

as follows:

T · J(θ∗, Calg, T, 0,W)− T · J∗(θ∗, Cθ∗

Kopt(θ∗,T), T)

≤ T · J(θ∗, Calg, T, 0,W)− (T − T0) · J∗(θ∗, Cθ∗

Kopt(θ∗,T), T − T0)

= (T − T0) · J∗(θ∗, Cunc
Fopt(θ̂wu)

, T − T0)− (T − T0) · J∗(θ∗, Cθ∗

Kopt(θ∗,T), T − T0)︸ ︷︷ ︸
R′

1

+ (T − T0) · J(θ∗, Cunc
Fopt(θ̂wu)

, T − T0, 0,W
′)− (T − T0) · J∗(θ∗, Cunc

Fopt(θ̂wu)
, T − T0)︸ ︷︷ ︸

R′
2

+ (T − T0) · J(θ∗, Cunc
Fopt(θ̂wu)

, T − T0, x
′
T0
,W ′)− (T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0,W

′)︸ ︷︷ ︸
R′

3

+ (T − T0) · J(θ∗, Calg′ , T − T0, x
′
T0
,W ′)− (T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, x

′
T0
,W ′)︸ ︷︷ ︸

R′
4

+ T · J(θ∗, Calg, T, 0,W)− (T − T0) · J(θ∗, Calg′ , T − T0, x
′
T0
,W ′)︸ ︷︷ ︸

R′
5

. (194)

We will now individually analyze each of these components of regret. The first component
of regret (R′

1) is the extra expected cost of using Cunc
Fopt(θ̂wu)

versus Cθ∗

Kopt(θ∗,T). We will bound

that regret with the following proposition.

Proposition 22. Under Assumptions 1–3 and 10, conditional on event E0
2 ,

(T − T0) · J∗(θ∗, Cunc
Fopt(θ̂wu)

, T − T0)− (T − T0) · J∗(θ∗, Cθ∗

Kopt(θ∗,T), T − T0) = ÕT (
√
T). (195)

The proof of Proposition 22 can be found in Appendix L.1.
The next source of regret (R′

2) is the variation in the realization of the T − T0 time step
cost versus the expected cost. We will bound this regret with Proposition 23.

Proposition 23. Under Assumptions 1–3 and 10, there exists an event EP23 such that
P(EP23) = 1− oT (1/T) and such that conditional on event EP23,∣∣∣(T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0,W

′)− (T − T0) · J∗(θ∗, Cunc
Fopt(θ̂wu)

, T − T0)
∣∣∣ = ÕT (

√
T).

(196)

The proof of Proposition 23 can be found in Appendix L.2.
The next source of regret (R′

3) comes from the starting position of the controller Cunc
Fopt(θ̂wu)

.

We will bound this regret with Proposition 24.

Proposition 24. Under Assumptions 1–3 and 10, conditional on event E,∣∣∣(T − T0) · J(θ∗, Cunc
Fopt(θ̂wu)

, T − T0, x
′
T0
,W ′)− (T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0,W

′)
∣∣∣ = ÕT (1).

(197)

119

The proof of Proposition 24 can be found in Appendix L.3.
The next component of regret (R′

4) is the additional cost of enforcing safety on top of
the controller Cunc

Fopt(θ̂wu)
. Define event Ewu

safe as the event that the first 1/ν2
T controls used by

controller Calg are safe for dynamics θ∗.

Proposition 25. Under Assumptions 1–3 and 10, there exists an event EP25 such that
P(EP25 | EE187∩E0

2∩Ewu
safe) = 1−oT (1/T) and such that conditional on EE187∩E0

2∩Ewu
safe∩EP25,∣∣∣(T − T0) · J(θ∗, Calg′ , T − T0, x

′
T0
,W ′)− (T − T0) · J∗(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, x

′
T0
,W ′)

∣∣∣ = ÕT (
√
T).

(198)

The proof of Proposition 25 can be found in Appendix L.4.
The last source of regret is the regret from the warm-up period. By Proposition 20, this

source of regret is Õ(
√
T) conditional on event E, because by definition T ·J(θ∗, Calg, T, 0,W)−

(T−T0)·J(θ∗, Calg′ , T−T0, x
′
T0
,W ′) = T ·J(θ∗, Calg, T, 0,W)−

∑se
s=0 TsJ(θ

∗, Calg
s , Ts, x

′
Ts
,Ws).

Recall that E ⊆ E0
2∩Ewu

safe. Therefore, conditional on EP25∩EP23∩E∩EE187, by Equation
(194) and Propositions 22, 23, 24, 25, and 20, we have that

T · J(θ∗, Calg, T, 0,W)− T · J∗(θ∗, Cθ∗

Kopt(θ∗,T), T) = ÕT (
√
T).

Furthermore, because P(E0
2 ∩ Ewu

safe) ≥ P(E) ≥ 1− oT (1/T), we have that

P(EP25 ∩ EP23 ∩ E ∩ EE187)

= P(EP25 ∩ E0
2 ∩ Ewu

safe ∩ E ∩ EE187)− oT (1/T) Remark 21

= P(EP25 ∩ E0
2 ∩ Ewu

safe ∩ EE187)− oT (1/T) Remark 21

= P(EP25 | E0
2 ∩ Ewu

safe ∩ EE187)P(E0
2 ∩ Ewu

safe ∩ EE187)− oT (1/T)

≥ (1− oT (1/T))P(E0
2 ∩ Ewu

safe ∩ EE187)− oT (1/T)

= P(E0
2 ∩ Ewu

safe ∩ EE187)− oT (1/T)

= P(EE187)− oT (1/T). Remark 21

Taking EP15 = EP25 ∩ EP23 ∩ E ∩ EE187 gives the desired result.

J Proofs from Appendix I.1

J.1 Proof of Lemma 43

proof. We will use the following equivalent version of Lemma 26 for Algorithm 4.

Lemma 44. Let xt, ut respectively be the position and control of Calg (the controller of
Algorithm 4) at time t starting at x0 = 0. Define Gi = (x0, u0, ..., xi−1, ui−1). For constant
γ > 0, define St as

St =
{
i < t : ui = usafeU

i and P(ui = usafeU
i | Gi, E) ≥ γ

}
. (199)

Then under Assumptions 1–3 and for sufficiently large T , with probability 1− oT (1/T),

max
s∈[0:se]

ϵs
√
|STs| = ÕT (1) . (200)

120

The proof of Lemma 44 can be found in Appendix K.1.
While we have not yet explained the significance of Lemma 45, we state it here because

the definition of ϵ∗ is needed for other definitions below.

Lemma 45. Define

ϵ∗ := w̄ −
(

DU

a∗ − b∗Kopt(θ∗)
−DU

)
. (201)

Then event ¬EE187 ∩ E can only hold if ϵ∗ > 0.

The proof of Lemma 45 can be found in Appendix K.2.
Define γϵ =

Pw∼D(w≥w̄−3ϵ∗/8)
2

(which is a constant) and define S ′
t as

S ′
t :=

{
i < t : ui = usafeU

i and P(ui = usafeU
i | Gi, E) ≥ γϵ

}
. (202)

Note that this is the same as the definition of St in Lemma 44 except with γ = γϵ.

Lemma 46. Under Assumptions 1–3 and 10, there exists an event EL46 such that P(EL46) ≥
1− oT (1/T) and such that conditional on event EL46 ∩ ¬EE187,

max
s∈[1:se]

Ts∣∣S ′
Ts

∣∣ = ÕT (1).

The proof of Lemma 46 can be found in Appendix K.3.
Define EL44 as the event that Equation (200) holds for STs = S ′

Ts
. Then P(EL44) =

1− oT (1/T) by Lemma 44. By Lemma 46, conditional on event EL44 ∩ EL46 ∩ ¬EE187,

max
s∈[1:se]

ϵs
√

Ts ≤
√

max
s∈[1:se]

Ts∣∣S ′
Ts

∣∣
(

max
s∈[1:se]

ϵs

√
|S ′

Ts
|
)

= ÕT (1).

Under event E2, we also have that ϵ0
√
T0 = ÕT (νT)

1
νT

= ÕT (1). Because E ⊆ E2 this implies

that conditional on E, we have ϵ0
√
T0 = ÕT (1).

Therefore, conditional on EL44 ∩ EL46 ∩ ¬EE187 ∩ E,

max
s∈[0:se]

ϵs
√
Ts = ÕT (1).

Taking EL43 = EL44∩EL46 gives the desired result because P(EL43) = 1−oT (1/T) by a union
bound.

J.2 Proof of Proposition 16

proof. The goal of this proposition is to show that using the infinite horizon controller is not
significantly worse than using the finite horizon controller. This proof will use the following
lemma.

Lemma 47. Under Assumptions 1–3 and 10, for any θ ∈ Θ and K ∈ [a−1
b
, a
b
],

|J∗(θ, Cθ
K , T)− J∗(θ, Cθ

K)| = ÕT

(
1

T

)
.

121

The proof of Lemma 47 can be found in Appendix K.4.
We can apply Lemma 47 to get the following two equations:∣∣∣J∗(θ̂s, C

θ̂s
Kopt(θ̂s)

, Ts)− J∗(θ̂s, C
θ̂s
Kopt(θ̂s)

)
∣∣∣ = ÕT

(
1

Ts

)
(203)

∣∣∣J∗(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

, Ts)− J∗(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

)
∣∣∣ = ÕT

(
1

Ts

)
. (204)

By definition, we also also have the following two inequalities.

J∗(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

, Ts) ≤ J∗(θ̂s, C
θ̂s
Kopt(θ̂s)

, Ts) (205)

J∗(θ̂s, C
θ̂s
Kopt(θ̂s)

) ≤ J∗(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

). (206)

Combining Equations (203)–(206), we have that

J∗(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

, Ts) ≥ J∗(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

)− ÕT

(
1

Ts

)
Equation (204)

≥ J∗(θ̂s, C
θ̂s
Kopt(θ̂s)

)− ÕT

(
1

Ts

)
Equation (206)

≥ J∗(θ̂s, C
θ̂s
Kopt(θ̂s)

, Ts)− ÕT

(
1

Ts

)
. Equation (203).

Combining this with Equation (205) gives that∣∣∣J∗(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

, Ts)− J∗(θ̂s, C
θ̂s
Kopt(θ̂s)

, Ts)
∣∣∣ = ÕT

(
1

Ts

)
. (207)

This is almost the desired result, but to bound the regret term R1b we need to bound the
difference under dynamics θ∗, not under θ̂s. Conditional on event E, ∥θ̂s−θ∗∥∞ = ÕT (νT) ≤

1
log46(T)

for sufficiently large T , and therefore Lemma 41 implies the following inequalities for

sufficiently large T :∣∣∣J∗(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

, Ts)− J∗(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts)
∣∣∣ = ÕT

(
∥θ̂s − θ∗∥∞ +

1

T 2

)
(208)

∣∣∣J∗(θ̂s, C
θ̂s
Kopt(θ̂s)

, Ts)− J∗(θ∗, C θ̂s
Kopt(θ̂s)

, Ts)
∣∣∣ = ÕT

(
∥θ̂s − θ∗∥∞ +

1

T 2

)
. (209)

Putting together Equations (207), (208), (209), and the fact that Ts ≤ T 2, we have

∣∣∣J∗(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts)− J∗(θ∗, C θ̂s
Kopt(θ̂s)

, Ts)
∣∣∣ ≤ ÕT

(
∥θ̂s − θ∗∥∞ +

1

Ts

)
. (210)

122

Now we are ready to use Equation (210) to bound R1b conditional on event E ∩ E3:

R1b

=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s]− se∑

s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts,Ws)
∣∣∣ θ̂s]

=
se∑
s=0

TsJ
∗(θ∗, C θ̂s

Kopt(θ̂s)
, Ts)−

se∑
s=0

TsJ
∗(θ∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts)

≤
se∑
s=0

Ts

∣∣∣J∗(θ∗, C θ̂s
Kopt(θ̂s)

, Ts)− J∗(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts)
∣∣∣

= ÕT

(
se∑
s=0

Ts

(
∥θ̂s − θ∗∥∞ +

1

Ts

))
. Eq (210)

= ÕT

(
se +

se∑
s=0

Tsϵs

)
Event E

= ÕT (
√
T) Event E3

The last line follows from the fact that se = ÕT (1) and that under event E3, Tsϵs =√
Ts

(
ϵs
√
Ts

)
= ÕT (

√
Ts) = ÕT (

√
T),

J.3 Proof of Proposition 17

Because the events E and E3 are defined equivalently to the events in Appendix F and νT
is the same for Algorithm 5 and 4, this proof is very similar to the proof of Proposition 9
with the events and variables with respect to Algorithm 4 instead of Algorithm 5. There
are two differences between this proof and that of Proposition 9. The first difference is that
the subscript on the controller is Kopt(θ̂s) rather than Kopt(θ̂s, Ts). The proof of Proposition
9 follows the proof of Proposition 6, and primarily relies on analogous versions of Lemmas
6 and 7. Examining the proofs of these lemmas, the proofs (and analogous results) hold

for any controller C θ̂s
K where K ∈ [K θ̂s

L , K θ̂s
U]. This is because the value of K is not used

anywhere in the proof. Therefore, analogous versions of these lemmas hold for Algorithm 4
with Kopt(θ̂s) instead of Kopt(θ̂s, Ts).

The second major difference is that Propositions 6 and 9 state that the result holds
conditional on E with high probability, while Proposition 17 holds conditional on E ∩EP17.
In the proof of Proposition 6 (specifically Equation (46)), we can define the event

EE46 :=

{
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts, 0,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≥ ÕT (

√
T)

}
.

Note that we replaced Kopt(θ̂s, Ts) with Kopt(θ̂s) for reasons discussed in the previous para-
graph. Equation (46) implies that P(EE46) = 1 − oT (1/T). Looking at the last sentence of

123

the proof of Proposition 6, we have that conditional on E ∩ EE46 ∩
⋂se

s=0 EA8(C
θ̂s
Kopt(θ̂s)

,Ws),

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≤ ÕT (

√
T).

(211)

Furthermore, because by construction P(EA8(C
θ̂s
Kopt(θ̂s)

,Ws)) = 1 − oT (1/T
10), we have by a

union bound that P(EE46 ∩
⋂se

s=0 EA8(C
θ̂s
Kopt(θ̂s)

,Ws)) = 1− oT (1/T). Therefore, we can take

EP17 = EE46 ∩
⋂se

s=0 EA8(C
θ̂s
Kopt(θ̂s)

,Ws) to get the desired result of Proposition 17.

J.4 Proof of Proposition 18

Because the event E and E3 are defined equivalently to the events in Appendix F and νT is
the same for Algorithm 5 and 4, this proof is exactly identical to the proof of Proposition
10 with the events and variables with respect to Algorithm 4 instead of Algorithm 5.

J.5 Proof of Proposition 19

Because the events E and E3 are defined analogously to the events in Appendix F and νT
is the same for Algorithm 5 and 4, this proof is very similar to the proof of Proposition 11
with the events and variables with respect to Algorithm 4 instead of Algorithm 5. Other
than this redefining of events and variables, there are just two differences.

The first difference between Proposition 19 and Proposition 11 is that the subscript on the
controller is Kopt(θ̂s) rather than Kopt(θ̂s, Ts). The proof of Proposition 11 follows the proof
of Proposition 7 and analogous versions of Lemmas 9, 10, and 16. The results of Lemmas 9,

10 and 16 all hold when the controller C θ̂s
Kopt(θ̂s,Ts)

is replaced with C θ̂s
K for any K ∈ [K θ̂s

L , K θ̂s
U]

(because the proofs do not depend on the value of K). Therefore, analogous versions of
Lemmas 9, 10, and 16 hold for Algorithm 4 with Kopt(θ̂s, Ts) replaced with Kopt(θ̂s).

The second difference is that Proposition 11’s bound holds with high probability condi-
tional on E∩E3, while Proposition 19’s bound holds conditional on E∩E3∩EP19. Examining
the proof of Proposition 7 (which is used in the proof of Proposition 11), the high probability
event comes from Lemma 9, and that high probability event comes from Lemma 16. Looking
at the proof of Lemma 16, the final result is proven conditional on event E with conditional
probability 1 − oT (1/T

9). However, this “with conditional probability” is coming from the

event
⋂se

s=0EA8(C
θ̂s
Kopt(θ̂s,Ts)

,Ws). Therefore, by Equation (76) and the last sentence in the

proof of Lemma 16, for Algorithm 4,conditional on E ∩
⋂se

s=0EA8(C
θ̂s
Kopt(θ̂s)

,Ws), for all s,

|Ts · J(θ∗, C θ̂s
Kopt(θ̂s)

, Ts, x
′
Ts
,Ws)− Ts · J(θ∗, Calg

s , Ts, x
′
Ts
,Ws)|

= ÕT

(
Ts−1∑
i=0

|Calg
s (x′

Ts+i)− C θ̂s
Kopt(θ̂s)

(x′
Ts+i)|+ Tsϵs

)
.

124

Note that we replaced Kopt(θ̂s, Ts) with Kopt(θ̂s) for reasons discussed in the previous para-

graph. Taking EP19 =
⋂se

s=0EA8(C
θ̂s
Kopt(θ̂s)

,Ws) gives the desired result because by a union

round and Assumption 8, we have P
(⋂se

s=0EA8(C
θ̂s
Kopt(θ̂s)

,Ws)
)
= 1− oT (1/T).

J.6 Proof of Proposition 20

The proof of Proposition 20 follows exactly the same as the proof of Proposition 8. This is
because the controller of Algorithm 4 is safe for dynamics θ∗ under event E, and the result
therefore follows directly.

125

K Proofs for Appendix J

K.1 Proof of Lemma 44

Note that by construction and Propositions 13 and 12, the truncated linear controllers satisfy
Assumptions 4–8. Therefore, the proof of Lemma 44 follows exactly as the proof of Lemma
26, except for Algorithm 4 instead of Algorithm 3 and with the analogous definition of event
E.

K.2 Proof of Lemma 45

proof. The following lemma shows that Fopt(θ
∗) and Fopt(θ̂wu) are similar under event E.

Lemma 48. Under Assumptions 1–3 and 10, conditional on event E0
2 , there exists cL48 =

ÕT (1) such that for sufficiently large T ,

|Fopt(θ
∗)− Fopt(θ̂wu)| ≤ cL48T

−1/4.

The proof of Lemma 48 can be found in Appendix K.5.
Conditional on E (because E ⊆ E0

2), we have that ∥θ̂wu− θ∗∥∞ ≤ 2ϵ0 ≤ 2cL42T
−1/4. This

combined with Lemma 48 implies that there exists cE212 = ÕT (1) such that under event E
for sufficiently large T ,

â− b̂Fopt(θ̂wu) ≤ a∗ − b∗Fopt(θ
∗) + cE212T

−1/4. (212)

Now we will proceed with a proof by contradiction of Lemma 45. Assume event ¬EE187 ∩E
holds and ϵ∗ ≤ 0, the latter of which implies

DU

a∗ − b∗Kopt(θ∗)
−DU ≥ w̄, (213)

which in turn implies that Kopt(θ
∗) ≥ Kθ∗

DU
(recall Kθ∗

DU
was defined in Definition 4). A key

result is the following relationship between Kopt(θ
∗) and Fopt(θ

∗).

Lemma 49. Under Assumptions 1–3 and 10, for any θ ∈ Θ, if Kopt(θ) ≥ Kθ
DU

, then
Fopt(θ) ≥ Kθ

DU
.

The proof of Lemma 49 can be found in Appendix K.6.
We also will need the following result.

Lemma 50. Under Assumptions 1–3 and 10, there exists cL50 = OT (1) such that cL50 > 0
and for all θ ∈ Θ,

1− cL50 > a− bFopt(θ) ≥ cL50,

a− bKopt(θ) ≥ cL50.

The proof of Lemma 50 can be found in Appendix K.7.

126

Lemma 49 combined with Equation (213) give that Fopt(θ
∗) ≥ Kθ∗

DU
, or equivalently that

w̄ + DU − DU

a∗−b∗Fopt(θ∗)
≤ 0. Therefore, we have that for sufficiently large T under event

¬EE187 ∩ E,

w̄ +DU −
DU

â− b̂Fopt(θ̂wu)

≤ w̄ +DU −
DU

a∗ − b∗Fopt(θ∗) + cE212T−1/4
Equation (212)

=
cE212T

−1/4DU

(a∗ − b∗Fopt(θ∗))(a∗ − b∗Fopt(θ∗) + cE212T−1/4)
+ w̄ +DU −

DU

a∗ − b∗Fopt(θ∗)

≤ cE212T
−1/4DU

(a∗ − b∗Fopt(θ∗))(a∗ − b∗Fopt(θ∗) + cE212T−1/4)
Lemma 49, Eq (213)

≤
(
cE212DU

c2L50

)
T−1/4 Lemma 50

= CswitchT
−1/4.

However, this contradicts event ¬EE187 and therefore we have a contradiction. This implies
the desired result that if ¬EE187 ∩ E holds, then ϵ∗ > 0.

K.3 Proof of Lemma 46

proof. Define the eventEs
2 :=

{
∥θ̂pres − θ∗∥∞ ≤ ϵs = ÕT (νT)

}
. DefineGi = (x0, u0, ..., xi−1, ui−1)

and define

S ′′
t =

{
i < t : ui = usafeU

i and P(ui = usafeU
i | Gi) ≥ Pw∼D(w ≥ w̄ − 3ϵ∗/8)

}
.

Lemma 51. Under Assumptions 1–3 and 10 there exists a constant pϵ such that the following
holds. For sufficiently large T and any s ∈ [0 : se − 1] and any Ts ≤ j < Ts+1 − ⌈log(T)⌉,
there exists an event Xj that depends on {wt}j+⌈log(T)⌉−1

t=j such that P(Xj) ≥ pϵ and such
that conditional on event Xj ∩ Es

2 ∩ ¬EE187, there exists an ℓ ∈ [j : j + ⌈log(T)⌉) such that
ℓ ∈ S ′′

Ts+1
.

The proof of Lemma 51 can be found in Appendix K.8.
Define

Es :=

⌊Ts/⌊log(T)⌋⌋−1∑

ℓ=0

1XTs+ℓ⌊log(T)⌋ ≥ pϵ

⌊
Ts

⌊log(T)⌋

⌋
−

√⌊
Ts

⌊log(T)⌋

⌋
log(T)

 .

Note that
∑k

ℓ=0

(
1XTs+ℓ⌊log(T)⌋ − pϵ

)
is a submartingale. Therefore, by the Azuma–Hoeffding

inequality, we have that P(Es) = 1− oT (1/T
2). Define E = ∩se−1

s=0 Es. Then by a union bound
P(E) = 1− oT (1/T).

127

Conditional on E ∩ E ∩ ¬EE187, we have that

|S ′′
Ts+1
| ≥

⌊Ts/⌊log(T)⌋⌋−1∑
ℓ=0

1XTs+ℓ⌊log(T)⌋

≥ pϵ

⌊
Ts

⌊log(T)⌋

⌋
−

√⌊
Ts

⌊log(T)⌋

⌋
log(T) Event E

≥ pϵTs

2 log(T)
−

√⌊
Ts

⌊log(T)⌋

⌋
log(T)

≥ pϵ
4 log(T)

· Ts Suff. large T

=
pϵ

8 log(T)
· Ts+1. Ts+1 = 2Ts (214)

Define EL27 = {∀i ∈ [T0 : T − 1],P(E | Gi) ≥ 1 − Pw∼D(w≥w̄−3ϵ∗/8)
2

}. Recall Lemma 27,
which is stated and proven with respect to Algorithm 5. Note that the proof of this lemma
does not depend on Algorithm 5, and only uses that P(E) = 1 − oT (1/T

2). Therefore,
an analogous result holds for the event E defined with respect to Algorithm 4 instead of
Algorithm 5. By this analogous version of Lemma 27, P(EL27) = 1 − oT (1/T). For any
i ∈ [T0 : T − 1], conditional on EL27 ∩ {P(ui = usafeU

i | Gi) ≥ Pw∼D(w ≥ w̄ − 3ϵ∗/8)}, by the
law of total probability

P(ui = usafeU
i | Gi) = P(ui = usafeU

i | Gi, E)P(E | Gi) + P(ui = usafeU
i | Gi,¬E)P(¬E | Gi)

≤ P(ui = usafeU
i | Gi, E)P(E | Gi) +

Pw∼D(w ≥ w̄ − 3ϵ∗/8)

2
.

Rearranging terms gives

P(ui = usafeU
i | Gi, E) ≥

P(ui = usafeU
i | Gi)− Pw∼D(w≥w̄−3ϵ∗/8)

2

P(E | Gi)

≥ P(ui = usafeU
i | Gi)−

Pw∼D(w ≥ w̄ − 3ϵ∗/8)

2

≥ Pw∼D(w ≥ w̄ − 3ϵ∗/8)

2
.

Therefore we have shown that conditional on EL27 ∩ {P(ui = usafeU
i | Gi) ≥ Pw∼D(w ≥

w̄ − 3ϵ∗/8)}, we also have P(ui = usafeU
i | Gi, E) ≥ Pw∼D(w≥w̄−3ϵ∗/8)

2
. This implies that

conditional on EL27, for all t ∈ [0 : T],

S ′′
t ⊆ S ′

t.

Combining this with Equation (214), conditional on EL27 ∩ E ∩ E ∩ ¬EE187,

max
s∈[1:se]

Ts

|S ′
Ts
|
≤ 8 log(T)

pϵ
= ÕT (1).

We therefore take EL46 = EL27∩E∩E to get the desired result because P(EL46) = 1−oT (1/T)
by a union bound.

128

K.4 Proof of Lemma 47

proof. Let xT be the position after starting at x0 = 0 and using the controller Cθ
K for T

steps under dynamics θ. Therefore, because Cθ
K is safe for dynamics θ, we must have that

|xT | ≤ max(DU , |DL|)+w̄ ≤ 2 log2(T) for sufficiently large T . Therefore, there must exist an
L ≤ 2 log2(T) such that P(|x| ≥ L)E[x2 | |x| ≥ L] = oT (1/T

11). Define W ′ = {wi}Ti=0. By
construction and Propositions 12 and 13, the truncated linear controllers satisfy Assumptions
4–8, and therefore we can apply Lemma 11 in the sixth line below to get that∣∣J∗(θ, Cθ

K , 2T)− J∗(θ, Cθ
K , T)

∣∣
=

∣∣∣∣∣T · J∗(θ, Cθ
K , T) + T · E

[
J∗(θ, Cθ

K , T, xT)
]

2T
− J∗(θ, Cθ

K , T)

∣∣∣∣∣
=

∣∣∣∣∣E
[
J∗(θ, Cθ

K , T, xT)
]

2
− 1

2
J∗(θ, Cθ

K , T)

∣∣∣∣∣
=

1

2T

∣∣E [TJ∗(θ, Cθ
K , T, xT)

]
− TJ∗(θ, Cθ

K , T)
∣∣

=
1

2T

∣∣∣E [TJ(θ, Cθ
K , T, xT ,W

′)− TJ(θ, Cθ
K , T, 0,W

′)
]∣∣∣

≤ 1

T
ÕT

(
E[|xT |] + 0 +

1

T 2

)
Lemma 11

≤ ÕT

(
1

T

)
. |xT | ≤ ∥D∥∞ + w̄ = ÕT (1)

The last line follows from the fact that Cθ
K is safe for dynamics θ. Finally, we have that

|J∗(θ, Cθ
K , T)− J∗(θ, Cθ

K)| =

∣∣∣∣∣
∞∑
i=0

J∗(θ, Cθ
K , 2

iT)− J∗(θ, Cθ
K , 2

i+1T)

∣∣∣∣∣
≤

∞∑
i=0

∣∣J∗(θ, Cθ
K , 2

iT)− J∗(θ, Cθ
K , 2

i+1T)
∣∣

=
∞∑
i=0

ÕT

(
1

T2i

)
= ÕT

(
1

T

)
.

K.5 Proof of Lemma 48

proof. By Lemma 52, the optimal unconstrained controller for dynamics θ is Cunc
Fopt(θ)

, where

Fopt(θ) = argmin
F

T · J∗(θ, Cunc
F) = argmin

F
· q + rF 2

1− (a− bF)2
. (215)

129

We show in the proof of Lemma 50 that

Fopt(θ) =
a2r − b2q − r +

√
(b2q + r − a2r)2 + 4a2b2qr

2abr
.

Note that this is a differentiable function in both a and b for θ ∈ Θ. Under event E0
2 ,

∥θ∗ − θ̂wu∥∞ = ÕT (νT) = ÕT (T
−1/4) where θ̂wu is the estimate from Line 5 of Algorithm 4.

Therefore, a first order Taylor expansion of Fopt(θ) around θ = θ∗ gives that for sufficiently

large T , |Fopt(θ
∗)− Fopt(θ̂wu)| = OT (∥θ∗ − θ̂wu∥∞) = ÕT (T

−1/4) = cL48T
−1/4 for some cL48 =

ÕT (1).

K.6 Proof of Lemma 49

proof. We will prove the contrapositive, which is that if Fopt(θ) < Kθ
DU

, then Kopt(θ) < Kθ
DU

.
The first tool we need is the following result about Fopt(θ).

Lemma 52. For any θ ∈ Θ and K ∈ (Kθ
L, K

θ
U],

J∗(θ, Cunc
K) = lim

T→∞
J∗(θ, Cunc

K , T) =
σ2
D(q + rK2)

1− (a− bK)2
.

This function is convex and twice differentiable for K ∈ (Kθ
L, K

θ
U]. Furthermore, if 1− (a−

bK) > 0, then
∣∣ d
dK

J∗(θ, Cunc
K)

∣∣ and ∣∣∣ d2

dK2J
∗(θ, Cunc

K)
∣∣∣ are finite and d2

dK2J
∗(θ, Cunc

K) > 0.

Finally, if K = Kθ
L, then J∗(θ, Cunc

K) =∞.

The proof of Lemma 52 can be found in Appendix K.9.
Lemma 52 implies that the function J∗(θ, Cunc

K) has a unique local minimum (Fopt(θ))
and is convex. Therefore, if Fopt(θ) < Kθ

DU
, then for any K ′ > Kθ

DU
,

J∗(θ, Cunc
Kθ

DU

) ≤ J∗(θ, Cunc
K′). (216)

For any K ′ ≥ Kθ
DU

, the unconstrained and constrained controllers are the same, i.e. Cunc
K′ =

Cθ
K′ . This is because for K ′ ≥ Kθ

DU
the unconstrained controller will always satisfy the

position constraints because we assumed WLOG that DU ≤ |DL|. This implies by Equation
(216) that for any K ′ > Kθ

DU
,

J∗(θ, Cθ
Kθ

DU

) ≤ J∗(θ, Cθ
K′).

Therefore, to prove that Kopt(θ) < Kθ
DU

it is sufficient to find some K ′ < Kθ
DU

such that

J∗(θ, Cθ
Kθ

DU

) > J∗(θ, Cθ
K′). (217)

Let K ′ = Kθ
DU
− ϵ, where

0 < ϵ ≤ min

(
4BP

(w̄ +DU)2
,
min(w̄,DU)/2

(w̄ +DU)

)
. (218)

130

We will show that J∗(θ, Cθ
K′) < J∗(θ, Cθ

Kθ
DU

) which proves the desired contrapositive result.

Because a − bKθ
DU

= DU

DU+w̄
= 1 − w̄

DU+w̄
, by Lemma 52 the function J∗(θ, Cunc

K) has a

finite derivative at K = Kθ
DU

. Furthermore, if Fopt(θ) < Kθ
DU

, then Lemma 52 implies that
the derivative of J∗(θ, Cunc

F) is positive at K = Kθ
DU

. Therefore, we can take a first order
Taylor expansion around the point K = Kθ

DU
to get that for sufficiently small ϵ,

J∗(θ, Cunc
K′)− J∗(θ, Cunc

Kθ
DU

) ≤ −ΩT (ϵ). (219)

Because Cunc
Kθ

DU

= Cθ
Kθ

DU

, Equation (219) implies that

J∗(θ, Cunc
K′)− J∗(θ, Cθ

Kθ
DU

) ≤ −ΩT (ϵ). (220)

Note that in Equations (219) and (220), the LHS is not a function of T . We use the notation
−ΩT (ϵ) to indicate that the LHS is upper bounded by −cϵ for some constant c.

Now we will compare the cost of Cunc
K′ and Cθ

K′ using the following lemma. Note that this
lemma is stated very generally so that it can also be used in future results.

Lemma 53. For θ, θ̂L53 ∈ Θ, suppose β ≤ 1
log2(T)

satisfies that θ ∈ θ̂L53 ± β. Also, suppose

K ′ satisfies Kθ
DU
−K ′ ≤ ϵ for some ϵ > 0. Furthermore, suppose

υ := (bϵ+ β + |K ′|β) ≤ min

(
4BP

(w̄ +DU)2
,
min(w̄,DU)/2

(w̄ +DU)

)
(221)

Define the controller C as follows. For any t, define vsafeUt as the largest u such that for all
θ′ ∈ θ̂L53 ± β,

a′xt + b′u ≤ DU ,

and define vsafeLt as the smallest u such that for all θ′ ∈ θ̂L53 ± β,

DL ≤ a′xt + b′u.

Define the controller C as

C(xt) = max
(
min

(
Cunc

K′ (xt), v
safeU
t

)
, vsafeLt

)
.

Let |x0| ≤ ∥D∥∞ + w̄. Then under Assumptions 1-3 and 10,

|J∗(θ, C, x0)− J∗(θ, Cunc
K′ , x0)| ≤ OT (υ

2). (222)

Furthermore, with probability 1− oT (1/T
2), for any τ ≤ T ,

|J(θ, C, τ, x0,W
′)− J(θ, Cunc

K′ , τ, x0,W
′)| ≤ OT

(
υ log(1/υ)

(
υ +

log(T)√
τ

))
. (223)

The proof of Lemma 53 can be found in Appendix K.10.

131

We will use Lemma 53 with the ϵ defined in Equation (218), K ′ = Kθ
DU
− ϵ, θ = θ,

θ̂L53 = θ, x0 = 0, and β = 0. Choosing θ̂L53 = θ and β = 0 makes the C in Lemma 53
equivalent to a truncated linear controller. Then, Equation (222) of Lemma 53 gives that

|J∗(θ, Cθ
K′)− J∗(θ, Cunc

K′)| ≤ OT (ϵ
2). (224)

Putting together Equations (220) and (224), for small enough ϵ we have that

J∗(θ, Cθ
K′)− J∗(θ, Cθ

Kθ
DU

)

= J∗(θ, Cθ
K′)− J∗(θ, Cunc

K′) + J∗(θ, Cunc
K′)− J∗(θ, Cθ

Kθ
DU

)

≤ OT

(
ϵ2
)
− ΩT (ϵ) . Equations (220), (224)

< 0. For small enough ϵ

We have shown that Cθ
K′ has lower cost than Cθ

Kθ
DU

, and therefore we can conclude that

Kopt(θ) < Kθ
DU

, proving the contrapositive and our desired result.

K.7 Proof of Lemma 50

proof. By Lemma 52, Fopt(θ) is the value of K ∈
(
a−1
b
, a
b

]
that minimizes the function

q+rK2

1−(a−bK)2
(note that we ignore the constant σ2

D as this is a positive constant and does not

change the minimization problem). Taking the derivative of this function and equating to
0, we have that Fopt(θ) is the solution to

2Kr(1− (a− bK)2)− 2b(a− bK)(q + rK2)

(1− (a− bK)2)2
= 0.

Simplifying, we have
abrK2 + (b2q + r − a2r)K − abq = 0

Applying the quadratic formula, we get that the positive root is

Fopt(θ) =
a2r − b2q − r +

√
(b2q + r − a2r)2 + 4a2b2qr

2abr
.

We also observe that(
a2r + b2q + r

)2 − (√(b2q + r − a2r)2 + 4a2b2qr
)2

= 4a2r2,

which implies that (
a2r + b2q + r

)
−
(√

(b2q + r − a2r)2 + 4a2b2qr
)

=
4a2r2

(a2r + b2q + r) +
(√

(b2q + r − a2r)2 + 4a2b2qr
) .

132

Because a ≥ a ≥ ā, b ≥ b ≥ b̄, and r > 0, this implies that there exists a constant cF1
L50 > 0

such that

a

b
− Fopt(θ) =

a2r + b2q + r −
√

(b2q + r − a2r)2 + 4a2b2qr

2abr

=
4a2r2

2abr
(
a2r + b2q + r +

√
(b2q + r − a2r)2 + 4a2b2qr

)
≥ 4a2r2

2āb̄r
(
ā2r + b̄2q + r +

√
(b̄2q + r − a2r)2 + 4ā2b̄2qr

)
:= cF1

L50

> 0.

Similarly, we have that(
r(a− 1)2 + b2q

)2 − (√(b2q + r − a2r)2 + 4a2b2qr
)2

= −4ar
(
(a− 1)2r + b2q

)
.

which implies that (
r(a− 1)2 + b2q

)
−
(√

(b2q + r − a2r)2 + 4a2b2qr
)

=
−4ar ((a− 1)2r + b2q)

(r(a− 1)2 + b2q) +
(√

(b2q + r − a2r)2 + 4a2b2qr
) .

Because a ≥ ā and r > 0, this implies that there exists a constant cF2
L50 > 0 such that

a− 1

b
− Fopt(θ) =

r(a− 1)2 + b2q −
√

(b2q + r − a2r)2 + 4a2b2qr

2abr

=
−4ar ((a− 1)2r + b2q)

2abr
(
r(a− 1)2 + b2q +

√
(b2q + r − a2r)2 + 4a2b2qr

)
≤ −cF2

L50

< 0,

where the constant CF2
L50 depends on ā, a, b̄, b. Taking cFL50 = min(cF1

L50, c
F2
L50), we have that

cFL50 < a− bFopt(θ) < 1− cFL50. (225)

To bound Kopt(θ, T) away from 0 we need the following lemma:

Lemma 54. Under Assumptions 1–3, for any θ ∈ Θ, if Fopt(θ) ≥ Kθ
DU

, then Kopt(θ) =
Fopt(θ).

proof. If Fopt(θ) ≥ Kθ
DU

, then Cunc
Fopt(θ)

= Cθ
Fopt(θ)

, i.e. the unconstrained linear controller

for Fopt(θ) is the same as the constrained linear controller for Fopt(θ). Therefore, C
unc
Fopt(θ)

is
in the set of constrained controllers. Because the optimal unconstrained controller is linear
[AM07], Cunc

Fopt(θ)
is the lowest cost unconstrained controller, and therefore it is also the lowest

cost constrained controller.

133

By Lemma 54 and the contrapositive of Lemma 49, either Kopt(θ) = Fopt(θ) or Kopt(θ) <
Kθ

DU
. By Equation (225) and the fact that a− bKθ

DU
= DU

DU+w̄
, we can conclude that

a− bKopt(θ) ≥ min

(
DU

DU + w̄
, cFL50

)
> 0.

Therefore, taking cL50 = min
(

DU

DU+w̄
, cFL50

)
we have the desired result.

K.8 Proof of Lemma 51

proof. The structure of this proof is as follows. The bulk of the proof is split into two key
lemmas. We then combine these two lemmas to show the desired result. Define

τ :=

⌈
8

(
2 + cL50
cL50

∥D∥∞ + 2w̄

)
/ϵ∗
⌉
,

where ϵ∗ is from Lemma 45. Now, we will define

Xj := {∀t ∈ [j : j + τ], wt ≥ w̄ − ϵ∗/4} .

Note that P(Xj) = (Pw∼D(w ≥ w̄ − ϵ∗/4))τ+1 := pϵ, and for sufficiently large T , τ ≤
⌈log(T)⌉, therefore this Xj has the desired properties.

Lemma 55. Using the assumptions and notation of Lemma 51, conditional on Es
2∩¬EE187∩

Xj, there exists an ℓ ∈ [j : j + τ] such that uℓ = usafeU
ℓ .

proof. We will first show that conditional on Es
2 ∩ ¬EE187, for any value of x satisfying

DL − w̄ ≤ x ≤ DU

a∗−b∗Kopt(θ̂s)
, and for sufficiently large T , if w ≥ w̄ − ϵ∗/4, then

(a∗ − b∗Kopt(θ̂s))x+ w ≥ x+
ϵ∗

8
. (226)

Under event Es
2, ∥θ∗ − θ̂s∥∞ ≤ ÕT (T

−1/4), therefore under event Es
2 we have the following

results:

a∗ − b∗Kopt(θ̂s) ≥ âs − b̂sKopt(θ̂s)− ÕT (T
−1/4) ∥θ∗ − θ̂s∥∞ ≤ ÕT (T

−1/4)

≥ cL50 − ÕT (T
−1/4) Lemma 50

≥ cL50
2

suff large T (227)

and

a∗ − b∗Kopt(θ̂s) ≤ âs − b̂sKopt(θ̂s) + ÕT (T
−1/4) ∥θ∗ − θ̂s∥∞ ≤ ÕT (T

−1/4)

≤ 1 + ÕT (T
−1/4). Lemma 50 (228)

Equation (227) implies that for sufficiently large T ,

DU

a∗ − b∗Kopt(θ̂s)
≤ 2DU

cL50
= OT (1). (229)

To prove Equation (226), we will need the following result.

134

Lemma 56. Under Assumptions 1–3 and 10, conditional on event Es
2 ∩ ¬EE187 and for

sufficiently large T ,
DU

a∗ − b∗Kopt(θ̂s)
≤ DU + w̄ − ϵ∗/2.

The proof of Lemma 56 can be found in Appendix K.11.
Conditional on event Es

2 ∩ ¬EE187, for sufficiently large T , and for any DL − w̄ ≤ x ≤
DU

a∗−b∗Kopt(θ̂s)
,

(a∗ − b∗Kopt(θ̂s))x+ w̄ − ϵ∗/4

= DU +

(
x− DU

a∗ − b∗Kopt(θ̂s)

)
(a∗ − b∗Kopt(θ̂s)) + w̄ − ϵ∗/2 + ϵ∗/4

≥ DU

a∗ − b∗Kopt(θ̂s)
+

(
x− DU

a∗ − b∗Kopt(θ̂s)

)
(a∗ − b∗Kopt(θ̂s)) + ϵ∗/4 Lemma 56

≥ DU

a∗ − b∗Kopt(θ̂s)
+

(
x− DU

a∗ − b∗Kopt(θ̂s)

)
(1 + ÕT (T

−1/4)) + ϵ∗/4 Eq (228), x ≤ DU

a∗ − b∗Kopt(θ̂s)

= x+ ÕT

(
T−1/4

(
x− DU

a∗ − b∗Kopt(θ̂s)

))
+ ϵ∗/4

≥ x− ÕT

(
T−1/4

(
|DL|+ w̄ +

DU

a∗ − b∗Kopt(θ̂s)

))
+ ϵ∗/4 DL − w̄ ≤ x ≤ DU

a∗ − b∗Kopt(θ̂s)

≥ x− ÕT

(
T−1/4

)
+ ϵ∗/4 Eq (229), Assumption 10

≥ x+ ϵ∗/8. For sufficiently large T .

This in turn implies the statement containing Equation (226).
Recall that ui is the control at time i of Algorithm 4 and x′

i is the position of Algorithm
4 at time i. Under event ¬EE187, for any i ∈ [Ts +1 : Ts+1], if ui−1 ̸= usafeU

i−1 , then the control

at time i − 1 is either ui−1 = −Kopt(θ̂s)x
′
i−1 or ui−1 = usafeL

i−1 ≥ −Kopt(θ̂s)x
′
i−1. Therefore,

under event ¬EE187, if ui−1 ̸= usafeU
i−1 then

ui−1 ≥ −Kopt(θ̂s)x
′
i−1. (230)

Combining Equations (226) and (230) gives that for any i ∈ [Ts + 1 : 2Ts], conditional on

the event {ui−1 ̸= usafeU
i−1 } ∩

{
DL − w̄ ≤ x′

i−1 ≤ DU

a∗−b∗Kopt(θ̂s)

}
∩ Es

2 ∩ ¬EE187 ∩Xj,

x′
i = a∗x′

i−1 + b∗ui−1 + wi−1

≥ a∗x′
i−1 − b∗Kopt(θ̂s)x

′
i−1 + wi−1 Equation (230)

= (a∗ − b∗Kopt(θ̂s))x
′
i−1 + wi−1

≥ x′
i−1 +

ϵ∗

8
. Equation (226) (231)

If the control at time j − 1 is safe (which is guaranteed by construction of the algorithm
under event Es

2), then x′
j ≥ DL − w̄. Therefore by Equation (229),

DU

a∗ − b∗Kopt(θ̂s)
−x′

j ≤
DU

a∗ − b∗Kopt(θ̂s)
+|DL|+w̄ ≤ 2DU

cL50
+|DL|+w̄ ≤ 2 + cL50

cL50
∥D∥∞+w̄ = OT (1).

(232)

135

By Equation (231), conditional on Es
2 ∩ ¬EE187 ∩ Xj the position will increase by ϵ∗/8 at

each step ℓ if DL − w̄ ≤ xℓ ≤ DU

a∗−b∗Kopt(θ̂s)
and uℓ ̸= usafeU

ℓ . Furthermore, by Equation

(232), if the position increases by at least 2+cL50

cL50
∥D∥∞ + 2w̄ from x′

j, then the position will

be greater than DU

a∗−b∗Kopt(θ̂s)
. Increasing 2+cL50

cL50
∥D∥∞ + 2w̄ position in increments of at least

ϵ∗/8 takes at most

⌈
8(

2+cL50
cL50

∥D∥∞+2w̄)

ϵ∗

⌉
= τ steps. Putting this all together, conditional on

Es
2 ∩ ¬EE187 ∩ Xj, either uℓ = usafeU

ℓ for some ℓ ∈ [j : j + τ] or x′
ℓ ≥ DU

a∗−b∗Kopt(θ̂s)
for some

ℓ ∈ [j : j + τ]. Both of these alternatives imply that uℓ = usafeU
ℓ for some ℓ ∈ [j : j + τ],

because if x′
ℓ ≥ DU

a∗−b∗Kopt(θ̂s)
, then by construction of the algorithm, uℓ = usafeU

ℓ . This is the

desired result for this lemma.

The next key result is the following lemma.

Lemma 57. Using the notation and assumptions of the proof of Lemma 51, for sufficiently
large T and any ℓ ∈ [j : j+τ], conditional on {uℓ = usafeU

ℓ }∩Es
2∩¬EE187∩Xj, ℓ+1 ∈ S ′′

Ts+1
.

proof. Suppose ℓ ∈ [j : j + τ]. Under event Es
2 the control at step ℓ− 1 is safe, and therefore

by the same logic as in Equation (63), for sufficiently large T we have that

DU − ϵ∗/8 ≤ DU − ÕT (νT) ≤ DU − 4Bxϵs ≤ a∗x′
ℓ + b∗usafeU

ℓ . (233)

Therefore, if uℓ = usafeU
ℓ , then

a∗x′
ℓ + b∗uℓ ≥ DU − ϵ∗/8. (234)

Therefore, conditional on {uℓ = usafeU
ℓ } ∩ Es

2 ∩ ¬EE187 ∩Xj,

x′
ℓ+1 = a∗x′

ℓ + b∗uℓ + wℓ

≥ DU − ϵ∗/8 + wℓ Equation (234)

≥ DU

a∗ − b∗Kopt(θ̂s)
+ 3ϵ∗/8 + wℓ − w̄ Lemma 56

=
DU

a∗ − b∗Kopt(θ̂s)
+ wℓ − (w̄ − 3ϵ∗/8)

≥ DU

a∗ − b∗Kopt(θ̂s)
Event Xj (235)

We also recall again that if x′
ℓ+1 ≥ DU

a∗−b∗Kopt(θ̂s)
, then uℓ+1 = usafeU

ℓ+1 . Therefore, we have

shown that conditional on {uℓ = usafeU
ℓ } ∩Es

2 ∩¬EE187 ∩Xj, uℓ+1 = usafeU
ℓ+1 . Furthermore, we

136

have for any Gℓ+1 that satisfies {uℓ = usafeU
ℓ } ∩ Es

2 ∩ ¬EE187,

P
(
uℓ+1 = usafeU

ℓ+1

∣∣ Gℓ+1

)
≥ P

(
x′
ℓ+1 ≥

DU

a∗ − b∗Kopt(θ̂s)

∣∣∣∣∣ Gℓ+1

)

= P

(
a∗x′

ℓ + b∗uℓ + wℓ ≥
DU

a∗ − b∗Kopt(θ̂s)

∣∣∣∣∣ Gℓ+1

)

≥ P

(
DU − ϵ∗/8 + wℓ ≥

DU

a∗ − b∗Kopt(θ̂s)

∣∣∣∣∣ Gℓ+1

)
Equation (234)

= P

(
wℓ ≥

DU

a∗ − b∗Kopt(θ̂s)
−DU + ϵ/8

∣∣∣∣∣ Gℓ+1

)
≥ P (wℓ ≥ w̄ − ϵ∗/2 + ϵ∗/8 | Gℓ+1) Lemma 56

= Pw∼D(w ≥ w̄ − 3ϵ∗/8). (236)

By Definition of S ′′
t , Equations (235) and (236) imply the desired result that conditional

on {uℓ = usafeU
ℓ } ∩ Es

2 ∩ ¬EE187 ∩Xj, we have that ℓ+ 1 ∈ S ′′
Ts+1

.

Putting together the two lemmas, we have that conditional on Es
2 ∩ ¬EE187 ∩Xj, there

exists an ℓ ∈ [j : j + τ] such that uℓ = usafeU
ℓ , and for any ℓ ∈ [j : j + τ], conditional on

{uℓ = usafeU
ℓ } ∩ Es

2 ∩ ¬EE187 ∩ Xj, ℓ + 1 ∈ S ′′
Ts+1

. Combining these two lemmas gives that
conditional on Es

2 ∩ ¬EE187 ∩Xj, there exists an ℓ ∈ [j : j + τ + 1] such that ℓ ∈ S ′′
Ts+1

. For
sufficiently large T , τ + 1 ≤ ⌈log(T)⌉, and therefore this is exactly the desired result.

K.9 Proof of Lemma 52

proof. Let x0, x1, ..., be the series of positions when using controller Cunc
K under dynamics θ

with x0 = 0. Then we have the recursive relationship that x0 = 0 and xi+1 = (a−bK)xi+wi

for all i ≥ 0. Using this recursive relationship, we have that

xt =
t−1∑
i=0

wi(a− bK)t−1−i. (237)

If K = Kθ
L, then a− bK = 1. This implies that x2

t −→∞, and therefore J∗(θ, Cunc
K , T) =∞.

For the rest of this proof, assume K ∈ (Kθ
L, K

θ
U]. Recall that ui = −Kxi for all i ≥ 0.

137

Define ρ = (a− bK)2. Using the above expression for xt, we have that

J∗(θ, Cunc
K , T) =

1

T
E

[
qx2

T +
T−1∑
t=0

qx2
t + ru2

t

]

=
1

T

(
q E[x2

T] +
T−1∑
t=1

(q + rK2)E[x2
t]

)
[x0 = u0 = 0]

= −rK2 E[X2
T]

T
+

1

T

(
T∑
t=1

(q + rK2)E[x2
t]

)
.

Furthermore, we have

1

T

(
T∑
t=1

(q + rK2)E[x2
t]

)

=
1

T

T∑
t=1

(q + rK2)E
[(t−1∑

i=0

wi(a− bK)t−1−i
)2]

Equation (237)

=
1

T

T∑
t=1

(q + rK2)E
[t−1∑

i=0

t−1∑
j=0

wiwj(a− bK)t−1−i(a− bK)t−1−j
]

=
1

T

T∑
t=1

(q + rK2)
t−1∑
i=0

σ2
D(a− bK)2(t−1−i)

=
σ2
D
T

T∑
t=1

(q + rK2)
t−1∑
i=0

(a− bK)2i

=
σ2
D(q + rK2)

T

T∑
t=1

t−1∑
i=0

ρi

=
σ2
D(q + rK2)

T

T∑
t=1

1− ρt

1− ρ

=
σ2
D(q + rK2)

T (1− ρ)

(
T −

T−1∑
t=0

ρt

)

=
σ2
D(q + rK2)

1− ρ

(
1− 1− ρT

T (1− ρ)

)
.

By the same logic, we have that

rK2 E[X2
T]

T
=

rK2σ2
D

1−ρT

1−ρ

T
.

138

Therefore,

J∗(θ, Cunc
K) = lim

T→∞
J∗(θ, Cunc

K , T)

= lim
T→∞

−
rK2σ2

D
1−ρT

1−ρ

T
+

σ2
D(q + rK2)

1− ρ

(
1− 1− ρT

T (1− ρ)

)
=

σ2
D(q + rK2)

1− (a− bK)2
.

Now, we note the following derivatives:

d

dK

(
1

1− (a− bK)2

)
=

2b(a− bK)

(1− (a− bK)2)2

and
d

dK

(
K2

1− (a− bK)2

)
=

2aK(1− (a− bK))

(1− (a− bK)2)2
.

For K ∈ (Kθ
L, K

θ
U], if 1− (a− bK) = c > 0, then 1− (a− bK)2 > c > 0, and therefore these

derivatives imply that∣∣∣∣ d

dK
J∗(θ, Cunc

K)

∣∣∣∣ = ∣∣∣∣ d

dK

σ2
D(q + rK2)

1− (a− bK)2

∣∣∣∣
=

∣∣∣∣σ2
D

(
q

2b(a− bK)

(1− (a− bK)2)2
+ r

2aK(1− (a− bK))

(1− (a− bK)2)2

)∣∣∣∣
≤ σ2

D

(
q
2b(a− bK)

c2
+ r

2a|K|(1− (a− bK))

c2

)
<∞.

For all K ∈ (Kθ
L, K

θ
U], we also have that

d2

dK2

(
1

1− (a− bK)2

)
= b2

(1

(1− (a− bK))3
+

1

(1 + (a− bK))3

)
> 0

and
d2

dK2

(
K2

1− (a− bK)2

)
= b2

((a− 1)2

(1− (a− bK))3
+

(a+ 1)2

(1 + (a− bK))3

)
> 0

This implies that
d2

dK2
J∗(θ, Cunc

K) > 0.

If a− bK = 1− c < 1, we also have that

d2

dK2

(
1

1− (a− bK)2

)
= b2

(1

(1− (a− bK))3
+

1

(1 + (a− bK))3

)
≤ b2

(
1

c3
+ 1

)
<∞

and

d2

dK2

(
K2

1− (a− bK)2

)
= b2

((a− 1)2

(1− (a− bK))3
+

(a+ 1)2

(1 + (a− bK))3

)
≤ b2

(
(a− 1)2

c3
+ (a+ 1)2

)
<∞.

139

These two equations imply that for K ∈ (Kθ
L, K

θ
U],

d2

dK2
J∗(θ, Cunc

K) <∞.

K.10 Proof of Lemma 53

proof. We first note the following bounds on K ′ that we will use throughout this proof that
come from the assumptions on ϵ. For any θ′ ∈ θ̂L53 ± β,

a′ − b′K ′ = a− bKθ
DU

+ (a′ − a) + b(Kθ
DU
−K ′) +K ′(b− b′)

≤ a− bKθ
DU

+ bϵ+ β + βK ′

≤ DU

w̄ +DU

+ υ Def of Kθ
DU

≤ DU + w̄/2

w̄ +DU

Equation (221)

< 1. (238)

a′ − b′K ′ ≥ a− bKθ
DU
− bϵ− β − βK ′

≥ DU

w̄ +DU

− υ Def of Kθ
DU

≥ DU/2

w̄ +DU

Equation (221)

> 0. (239)

Let yt be the position at time t when using controller C and starting at position y0 = x0

and xt be the position at time t when using controller Cunc
K′ and starting at position x0.

Define dt := |yt − xt|. Define

θm := arg max
∥θ′−θ̂L53∥∞≤β

a′ − b′K ′. (240)

Importantly, note that θm = argminθ′∈θ̂L53±β
DU

a′−b′K′ = argmaxθ′∈θ̂L53±β
DL

a′−b′K′ . By construc-

tion this means that C(yt) = vsafeUt is used if and only if yt ≥ DU

am−bmK′ , and similarly vsafeLt is

used if and only if yt ≤ DL

am−bmK′ .

Lemma 58. Define Ht = (y0, y1, ..., yt−1). Using the notation and assumptions in the proof
of Lemma 53, for any Ht,

P
(
C(yt) = vsafeUt

∣∣ Ht

)
= OT (υ) · 1K′−Kθ

DU
≤ (|K′|+1)β

b

. (241)

Furthermore,
P
(
C(yt) = vsafeLt

∣∣ Ht

)
= OT (υ) · 1K′−Kθ

DU
≤ (|K′|+1)β

b

. (242)

140

The proof of Lemma 58 can be found in Appendix K.12. Because the equations in Lemma
58 hold for any Ht, this lemma implies that

P
(
C(yt) = vsafeUt

)
= OT (υ) · 1K′−Kθ

DU
≤ (|K′|+1)β

b

(243)

and
P
(
C(yt) = vsafeLt

)
= OT (υ) · 1K′−Kθ

DU
≤ (|K′|+1)β

b

. (244)

By Lemma 58, if K ′ −Kθ
DU

> (|K′|+1)β
b

, then for all t,

P
(
C(yt) = vsafeUt or C(yt) = vsafeLt

)
= 0.

Therefore in this case, the controllers C and Cunc
K′ are equivalent, which implies all of the

desired results. For the rest of the proof, we will address the case when K ′−Kθ
DU
≤ (|K′|+1)β

b
.

This combined with the definition of ϵ gives that

|K ′ −Kθ
DU
| ≤ min

(
(|K ′|+ 1)β

b
, ϵ

)
= OT (υ). (245)

Lemma 59. Using the notation and assumptions in the proof of Lemma 53, if Equation
(245) holds then for all t ≥ 0,

dt+1 =

{
(a− bK ′)dt if DL

am−bmK′ ≤ yt ≤ DU

am−bmK′

(a− bK ′)dt +OT (υ) otherwise,
(246)

and

|Cunc
K′ (xt)− C(yt)| =

{
|K ′|dt if DL

am−bmK′ ≤ yt ≤ DU

am−bmK′

OT (υ) otherwise.
(247)

The proof of Lemma 59 can be found in Appendix K.13.
This recursive relationship for dt in Lemma 59 implies that

dt = |xt − yt|

≤
t∑

i=1

(a− bK ′)i−1OT (υ)1yt−i≥
DU

am−bmK′ or yt−i≤
DL

am−bmK′
Lemma 59

≤ OT (υ)
∞∑
i=0

(a− bK ′)i

≤ OT (υ)

1− (a− bK ′)

≤ OT (υ). Equation (238) (248)

Note that yt is by construction safe with respect to dynamics θm. Therefore, |amyt +
bmC(yt)| ≤ ∥D∥∞ and |yt| ≤ ∥D∥∞ + w̄, which together imply that

|C(yt)| ≤
∥D∥∞ + am|yt|

bm
= OT (1). (249)

141

Now we can bound the difference in cost at time t ≥ 0 as follows:

|qx2
t − qy2t |+ |rCunc

K′ (xt)
2 − rC(yt)

2|
≤ 2q|yt|dt + qd2t +

(
2r|C(yt)| |Cunc

K′ (xt)− C(yt)|+ r |Cunc
K′ (xt)− C(yt)|2

)
≤ 2q|yt|dt + qd2t +

(
2rOT (1)| |Cunc

K′ (xt)− C(yt)|+ r |Cunc
K′ (xt)− C(yt)|2

)
Equation (249)

≤ 2q(∥D∥∞ + w̄)dt + qd2t +
(
2rOT (1)

(
|K ′|dt +OT (υ)1yt≥ DU

am−bmK′ or yt≤
DL

am−bmK′

)
+ r

(
|K ′|dt +OT (υ)1yt≥ DU

am−bmK′ or yt≤
DL

am−bmK′

)2)
Equation (247)

= OT

(
dt + υ2 + υ1

yt≥
DU

am−bmK′ or yt≤
DL

am−bmK′

)
. Equation (248)

(250)

We will now show that E[dt] ≤ OT (υ
2). Importantly, we use that the event

{yi−1 ≥
DU

am − bmK ′ or yi−1 ≤
DL

am − bmK ′}

is equivalent to the event that C(yi−1) ∈ {vsafeUt , vsafeLt }, which allows us to apply Lemma 58
in the second line.

E[dt] ≤ OT (υ)
t∑

i=1

(a− bK ′)t−i E[1
yi−1≥

DU
am−bmK′ or yi−1≤

DL
am−bmK′

] Lemma 59

≤ OT (υ)
t∑

i=1

(a− bK ′)t−iOT (υ) Lemma 58

≤ Ot(υ
2)

∞∑
i=0

(a− bK ′)t−i

≤ OT (υ
2)

1− (a− bK ′)

≤ OT (υ
2). Equation (238) (251)

142

Therefore,

|J∗(θ, C, τ, x0)− J∗(θ, Cunc
K′ , τ, x0)|

≤ E

[
1

τ

(
q|x2

τ − y2τ |+
τ−1∑
t=0

|qx2
t − qy2t |+ |rCunc

K′ (xt)
2 − rC(yt)

2|

)]

≤ E

[
1

τ

τ∑
t=0

OT

(
dt + υ2 + υ1

yt≥
DU

am−bmK′ or yt≤
DL

am−bmK′

)]
Equation (250)

≤ 1

τ

τ∑
t=0

OT

(
E[dt] + υ2 + υ E

[
1
yt≥

DU
am−bmK′ or yt≤

DL
am−bmK′

])
≤ 1

τ

τ∑
t=0

OT (υ
2) Equation (251), Lemma 58

≤ OT (υ
2).

Taking a limit as τ →∞ of the above equation (where nothing on the right side depends on
τ) gives the first desired equation that

|J∗(θ, C, x0)− J∗(θ, Cunc
K′ , x0)| ≤ OT (υ

2).

Now we want to bound the difference in cost with high probability instead of in expectation.
Let X be the set of times t ∈ [0 : τ] such that C(yt) ̸= −K ′yt (i.e. C(yt) ∈ {vsafeLt , vsafeUt }).
Note that the event {t ∈ X} is the same as the event {yt ≥ DU

am−bmK′ or yt ≤ DL

am−bmK′}.
By Lemma 58, P(t ∈ X | Ht) ≤ cυ for some constant c > 0 for all t. Therefore, Mk =∑τ

t=0 (1t∈X − cυ) is a supermartingale. By Azuma–Hoeffding’s inequality, with probability
1− oT (1/T

10),
|X| ≤ OT (υτ) + log(T)

√
τ .

Define A as the event that |X| ≤ OT (υτ) + log(T)
√
τ . Define κ = ⌈loga−bK′(υ)⌉. Note that

κ = ⌈loga−bK′(υ)⌉

≤
⌈

log(υ)

log(a− bK ′)

⌉
= O(log(υ)) Lemma 238 (252)

Define
G = {t ∈ [0 : τ] : ∃i ∈ [t− κ : t] such that C(yi) ̸= −K ′yi} .

Under event A,
|G| ≤ |X| · (κ+ 1) ≤ (OT (υτ) + log(T)

√
τ)(κ+ 1). (253)

143

By Lemma 59, if t ̸∈ G, then

dt ≤ OT (υ)
t∑

i=1

(a− bK ′)t−i1
yi−1≥

DU
am−bmK′ or yi−1≤

DL
am−bmK′

Lemma 59

≤ OT (υ)
t−κ∑
i=1

(a− bK ′)t−i1
yi−1≥

DU
am−bmK′ or yi−1≤

DL
am−bmK′

t ̸∈ G

≤ OT (υ)(a− bK ′)κ
t−κ∑
i=1

(a− bK ′)t−i−κ1
yi−1≥

DU
am−bmK′ or yi−1≤

DL
am−bmK′

≤ OT (υ)(a− bK ′)κ
∞∑
i=0

(a− bK ′)i

≤ OT (υ
2)

∞∑
i=1

(a− bK ′)i Definition of κ

=
OT (υ

2)

1− (a− bK ′)

= OT (υ
2). Equation (238)

(254)

Recall that by Equation (248), for any t ∈ G, dt ≤ OT (υ), therefore Equation (254) implies
that

dt = OT

(
υ1t∈G + υ2

)
. (255)

Using that t ∈ G for all t satisfying yt ≥ DU

am−bmK′ or yt ≤ DL

am−bmK′ , we have that under event
A,

|J(θ, C, τ, x0,W
′)− J(θ, Cunc

K′ , τ, x0,W
′)|

≤ 1

τ

τ∑
t=0

|qx2
t − qy2t |+ |rCunc

K′ (xt)
2 − rC(yt)

2|

=
1

τ

τ∑
t=0

OT

(
dt + υ2 + υ1

yt≥
DU

am−bmK′ or yt≤
DL

am−bmK′

)
Equation (250)

=
1

τ

τ∑
t=0

OT

(
υ · 1t∈G + υ2 + υ1

yt≥
DU

am−bmK′ or yt≤
DL

am−bmK′

)
Equation (255)

= OT (υ
2) +

1

τ

τ∑
t=0

OT (υ) · 1t∈G

= OT (υ
2) +OT

(
υ · (OT (υτ) + log(T)

√
τ)(κ+ 1)

τ

)
Equation (253)

= OT

(
υ log(1/υ)

(
υ +

log(T)√
τ

))
. Equation (252)

Since this holds under event A and P(A) ≥ 1− oT (1/T
10), this completes the proof.

144

K.11 Proof of Lemma 56

proof. In Algorithm 4, θ̂s satisfies

θ̂s = argmax
∥θ−θ̂pres ∥≤ϵs

a− bKopt(θ).

Under event Es
2, we have that ∥θ̂pres − θ∗∥ ≤ ϵs, which implies that

âs − b̂sKopt(θ̂s) ≥ a∗ − b∗Kopt(θ
∗).

Therefore, we have that (using Lemma 45 in the equality)

DU

âs − b̂sKopt(θ̂s)
−DU ≤

DU

a∗ − b∗Kopt(θ∗)
−DU = w̄ − ϵ∗. (256)

Under event Es
2, we also have that ∥θ̂s − θ∗∥∞ ≤ ÕT (νT), therefore

DU

a∗ − b∗Kopt(θ̂s)
−DU

=
DU

âs − b̂sKopt(θ̂s)
−DU +

DU

a∗ − b∗Kopt(θ̂s)
− DU

âs − b̂sKopt(θ̂s)

≤ w̄ − ϵ∗ +DU
(âs − a∗) + (b∗ − b̂s)Kopt(θ̂s)

(a∗ − b∗Kopt(θ̂s))(âs − b̂sKopt(θ̂s))
Eq (256)

= w̄ − ϵ∗ +DU
(âs − a∗) + (b∗ − b̂s)Kopt(θ̂s)(

âs − b̂sKopt(θ̂s)− (âs − a∗)− (b∗ − b̂s)Kopt(θ̂s)
)
(âs − b̂sKopt(θ̂s))

≤ w̄ − ϵ∗ +DU

∥θ∗ − θ̂s∥∞
(
1 + |Kopt(θ̂s)|

)
(âs − b̂sKopt(θ̂s)− ∥θ∗ − θ̂s∥∞(1 + |Kopt(θ̂s)|))(âs − b̂sKopt(θ̂s))

≤ w̄ − ϵ∗ +
DU ÕT (νT)

(
1 + |Kopt(θ̂s)|

)
(âs − b̂sKopt(θ̂s)− ÕT (νT)(1 + |Kopt(θ̂s)|))(âs − b̂sKopt(θ̂s))

≤ w̄ − ϵ∗/2. Eq (258)
(257)

To see the last inequality, note that Lemma 50 gives that 1 > âs − b̂sKopt(θ̂s) ≥ cL50. This

implies that |Kopt(θ̂s)| = OT (1), and therefore for sufficiently large T we have that

DU ÕT (νT)
(
1 +Kopt(θ̂s)

)
(âs − b̂sKopt(θ̂s)− ÕT (νT)(1 +Kopt(θ̂s)))(âs − b̂sKopt(θ̂s))

≤ ÕT (νT)DU (1 +OT (1))

(cL50 − ÕT (νT)(1 +OT (1)))cL50

≤ ϵ∗/2. (258)

Finally, rearranging Equation (257) gives exactly the desired result.

145

K.12 Proof of Lemma 58

Lemma 60. Using the same notation and assumptions of Lemma 58, for all θ′ ∈ θ̂L53 ± β,
the controls used by controller C are safe for dynamics θ′ for all t ∈ [0 : T − 1].

The proof of Lemma 60 can be found in Appendix K.14
By definition, C(yt) = vsafeUt if and only if there exists a θ′ ∈ θ̂L53±β such that yt ≥ DU

a′−b′K′ .

Equivalently, C(yt) = vsafeUt if and only if yt ≥ DU

am−bmK′ . We also note that

(a− bKθ
DU

)− (am − bmK
′) = (a− am) + b(K ′ −Kθ

DU
) +K ′(bm − b)

≥ −β + b(K ′ −Kθ
DU

)− |K ′|β
= b(K ′ −Kθ

DU
)− (1 + |K ′|)β

≥
(
b(K ′ −Kθ

DU
)− (|K ′|+ 1)β

)
1
K′−Kθ

DU
≤ (|K′|+1)β

b

≥ −(bϵ+ (|K ′|+ 1)β)1
K′−Kθ

DU
≤ (|K′|+1)β

b

= −υ1
K′−Kθ

DU
≤ (|K′|+1)β

b

. (259)

Therefore,

P
(
C(yt) = vsafeUt | Ht

)
= P

(
yt ≥

DU

am − bmK ′ | Ht

)
= P

(
ayt−1 + bC(yt−1) + wt−1 ≥

DU

am − bmK ′ | Ht

)
≤ P

(
|wt−1| ≥

DU

am − bmK ′ −DU | Ht

)
Lemma 60

= P
(
|wt−1| ≥

DU

am − bmK ′ + w̄ − DU

a− bKθ
DU

)
Definition of Kθ

DU

= P
(
|wt−1| ≥ w̄ +

DU(a− bKθ
DU

)−DU(am − bmK
′)

(a− bKθ
DU

)(am − bmK ′)

)
≤ P

(
|wt−1| ≥ w̄ − DUυ

(a− bKθ
DU

)(am − bmK ′)

)
1
K′−Kθ

DU
≤ (|K′|+1)β

b

Equation (259)

≤ P
(
|wt−1| ≥ w̄ − DUυ

(a− bKθ
DU

)(a− bKθ
DU
− υ)

)
1
K′−Kθ

DU
≤ (|K′|+1)β

b

Equation (259)

≤ P

(
|wt−1| ≥ w̄ − DUυ

(DU

w̄+DU
)(DU

w̄+DU
− DU

2(w̄+DU)
)

)
1
K′−Kθ

DU
≤ (|K′|+1)β

b

Def 4, υ ≤ (DU/2)

(w̄ +DU)

= P
(
|wt−1| ≥ w̄ − 2υ(w̄ +DU)

2

DU

)
1
K′−Kθ

DU
≤ (|K′|+1)β

b

≤ 4BPυ(w̄ +DU)
2

DU

1
K′−Kθ

DU
≤ (|K′|+1)β

b

D pdf bounded by BP

= OT (υ) · 1K′−Kθ
DU

≤ (|K′|+1)ϵ
b

. (260)

146

Therefore, the safety truncation vsafeUt is only applied with probability at most OT (υ) at
every time step. By definition, C(yt) = vsafeLt if and only if there exists a θ′ ∈ θ̂L53 ± β such
that yt ≤ DL

a′−b′K′ . This only happens if and only if yt ≤ DL

am−bmK′ . We also have by Equations
(238) and (239) that because DL < 0,∣∣∣∣ DL

am − bmK ′ −DL

∣∣∣∣ = |DL|
am − bmK ′ − |DL|. (261)

Also by Equations (238) and (239), we have because DU ≤ |DL| that

|DL|
am − bmK ′ − |DL| ≥

DU

am − bmK ′ −DU . (262)

Therefore,

P
(
C(yt) = vsafeLt

∣∣ Ht

)
= P

(
yt ≤

DL

am − bmK ′

∣∣∣∣ Ht

)
= P

(
ayt−1 + bC(yt−1) + wt−1 ≤

DL

am − bmK ′

∣∣∣∣ Ht

)
≤ P

(
wt−1 ≤

DL

am − bmK ′ −DL

∣∣∣∣ Ht

)
Lemma 60

≤ P
(
|wt−1| ≥

|DL|
am − bmK ′ − |DL|

∣∣∣∣ Ht

)
Equation (261)

≤ P
(
|wt−1| ≥

DU

am − bmK ′ −DU

∣∣∣∣ Ht

)
Equation (262)

≤ OT (υ) · 1K′−Kθ
DU

≤ (|K′|+1)ϵ
b

· . Equation (260) (263)

This is exactly the second result we need and therefore we are done.

K.13 Proof of Lemma 59

If DL

am−bmK′ ≤ yt ≤ DU

am−bmK′ , then C(yt) = −K ′yt, and therefore

|C(yt)− Cunc
K′ (xt)| = |K ′|dt (264)

and
dt+1 = |ayt + bC(yt) + wt − (axt + bCunc

K′ (xt) + wt)| = (a− bK ′)dt. (265)

This proves the first case of both equations in Lemma 59. Now we will prove the second case
of both equations.

Under Equation (245), we have that for any θ′ ∈ θ̂L53 ± β∣∣(a− bKθ
DU

)− (a′ − b′K ′)
∣∣ ≤ |a− a′|+ b|K ′ −Kθ

DU
|+ |K ′||b′ − b|

≤ (β + bOT (υ) + |K ′|β)
= OT (υ). (266)

147

If yt >
DU

am−bmK′ , then for some θ′ ∈ θ̂L53 ± β, C(yt) =
DU−a′yt

b′
. Therefore,

|C(yt)− Cunc
K′ (yt)|

= |C(yt) +K ′yt|

=

∣∣∣∣DU − a′yt
b′

+K ′yt

∣∣∣∣
=

1

b′
|DU − (a′ − b′K ′) yt|

=
a′ − b′K ′

b′

∣∣∣∣ DU

a′ − b′K ′ − yt

∣∣∣∣ Equations (238), (239)

≤ a′ − b′K ′

b′

∣∣∣∣ DU

a′ − b′K ′ − (DU + w̄)

∣∣∣∣ DU

a′ − b′K ′ ≤ yt ≤ DU + w̄ by Lemma 60

=
a′ − b′K ′

b′

∣∣∣∣ DU

a′ − b′K ′ −
DU

a− bKθ
DU

∣∣∣∣
=

DU

b′

∣∣∣∣(a− bKθ
DU

)− (a′ − b′K ′)

a− bKθ
DU

∣∣∣∣
≤ DU

b′

(
OT (υ)

a− bKθ
DU

)
Equation (266), Equation (239)

=
(DU + w̄)OT (υ)

b′
a− bKθ

DU
=

DU

DU + w̄

= OT (υ). (267)

Because the controls used by C are safe with respect to θ by Lemma 60, if DL− DL

am−bmK′ > w̄,

then P
(
yt ≤ DL

am−bmK′

)
= 0. Therefore, if yt ≤ DL

am−bmK′ then it also must be the case that

DL− DL

am−bmK′ ≤ w̄. By Equations (238) and (239), we have that am−bmK
′ ≤ DU

DU+w̄
+OT (υ)

and am− bmK
′ ≥ DU

DU+w̄
−OT (υ). Therefore, if yt ≤ DL

am−bmK′ , then DL− DL

am−bmK′ ≤ w̄, which
implies that

DL ≥
w̄

1− 1
am−bmK′

= w̄
am − bmK

′

am − bmK ′ − 1

≥ w̄

DU

DU+w̄
−OT (υ)

DU

DU+w̄
+OT (υ)− 1

= w̄

(
DU

DU+w̄
−w̄

DU+w̄

−OT (υ)

)
= −DU −OT (υ).

This combined with the fact thatDU ≤ |DL| by Assumption 10, we have that if yt ≤ DL

am−bmK′ ,
then

||DL| −DU | ≤ OT (υ). (268)

148

Therefore, if yt <
DL

am−bmK′ , then for some θ′ ∈ θ̂L53 ± β, C(yt) =
DL−a′yt

b′
. Therefore,

|C(yt)− Cunc
K′ (yt)|

= |C(yt) +K ′yt|

=

∣∣∣∣DL − a′yt
b′

+K ′yt

∣∣∣∣
=

1

b′
|DL − (a′ − b′K ′) yt|

≤ 1

b′
|DL − (a′ − b′K ′) (DL − w̄)| DL − w̄ ≤ yt ≤

DL

a′ − b′K ′ , Eq (239)

=
1

b′
||DL| − (a′ − b′K ′) (|DL|+ w̄)|

≤ 1

b′
|DU − (a′ − b′K ′) (DU + w̄)|+ |DU − |DL||

+ |(a′ − b′K ′)(DU − |DL|)|

≤ 1

b′
|DU − (a′ − b′K ′) (DU + w̄)|+ |DU − |DL||+ |DU − |DL|| Equation (239), (238)

≤ 1

b′
|DU − (a′ − b′K ′) (DU + w̄)|+OT (υ) Equation (268)

≤ (a′ − b′K ′)

b′

∣∣∣∣ DU

(a′ − b′K ′)
− (DU + w̄)

∣∣∣∣+OT (υ)

= OT (υ). As in Equation (267) (269)

Combining Equations (267) and (269) gives that if yt >
DU

am−bmK′ or yt <
DL

am−bmK′ ,

|Cunc
K′ (xt)− C(yt)| = |−K ′xt +K ′yt −K ′yt − C(yt)|

= |K ′xt −K ′yt|+ |K ′yt + C(yt)|
≤ K ′dt +OT (υ)

≤ OT (υ). Equation (248) (270)

Now we can use this to bound the value of dt+1 as follows:

dt+1 = |(a− bK ′)xt − (ayt − bC(yt1)|
= |(a− bK ′)xt − (a− bK ′)yt + bK ′yt − bC(yt)|
≤ |(a− bK ′)xt − (a− bK ′)yt|+ |bK ′yt − bC(yt)|
≤ (a− bK ′)dt + bOT (υ) Equations (267) and (269)

≤ (a− bK ′)dt +OT (υ). (271)

Equations (270) and (271) give the second half of both desired piecewise equations.

K.14 Proof of Lemma 60

proof. The proof follows similar logic to that in the proof of Lemma 3. We will proceed
by induction. For the base case, we have that y0 = x0 satisfies |y0| ≤ ∥D∥∞ + w̄. Define

z := DU−ay0−2β(∥D∥∞+w̄+log(T))
b

. For sufficiently large T , because β ≤ 1/ log2(T) and ∥D∥∞ =
OT (1), we have that

|z| ≤ DU + a(∥D∥∞ + w̄) + 2β(∥D∥∞ + w̄ + log(T))

b
≤

DU + a(∥D∥∞ + w̄) + 2(∥D∥∞+w̄+log(T))

log2(T)

b
≤ log(T).

149

Because θ ∈ θ̂L53 ± β,

max
θ′∈θ̂L53±β

a′y0 + b′z ≤ ay0 + bz + 2β|y0|+ 2β|z|

≤ ay0 + bz + 2β(∥D∥∞ + w̄ + log(T))

= ay0 +DU − ay0 − 2β(∥D∥∞ + w̄ + log(T)) + 2β(∥D∥∞ + w̄ + log(T))

= DU .

Therefore,

vsafeUt ≥ z =
DU − ay0 − 2β(DU + w̄ + log(T))

b
.

By similar logic, we have that

vsafeLt ≤ DL − ay0 + 2β(∥D∥∞ + w̄ + log(T))

b
.

For sufficiently large T , 4β(∥D∥∞+w̄+log(T)) ≤ 1
log(T)

. Therefore, becauseDU ≥ DL+
1

log(T)

by Assumption 3, we have that
vsafeLt ≤ vsafeUt .

Finally, this implies by construction of the controller C that the control C(y0) will be safe
for all θ′ ∈ θ̂L53 ± β. This completes the base case.

For the inductive step, we note that if C(yt−1) is safe for all θ′ ∈ θ̂L53 ± β, then it is safe
for θ. This implies that DL ≤ ayt−1 + bC(yt−1) ≤ DU , which implies that |yt| ≤ ∥D∥∞ + w̄.
We can therefore use the exact same logic as in the base case to get that C(yt) will be safe
for all θ′ ∈ θ̂L53 ± β. This completes the proof by induction.

L Proofs from Appendix I.1

L.1 Proof of Proposition 22

proof. By Lemma 50, a∗−b∗Fopt(θ
∗) < 1−cL50, which implies by Lemma 52 that J∗(θ∗, Cunc

F)
is twice differentiable at the point F = Fopt(θ

∗) with first and second derivatives that are

both finite and independent of T . We also have by Lemma 48 that |Fopt(θ̂wu)− Fopt(θ
∗)| ≤

ÕT (T
−1/4) conditional on event E0

2 . Therefore, conditional on event E0
2 and for sufficiently

large T , we can do a second order Taylor expansion of J∗(θ∗, Cunc
F) around F = Fopt(θ

∗) to
get that ∣∣∣T · J∗

(
θ∗, Cunc

Fopt(θ̂wu)

)
− T · J∗

(
θ∗, Cunc

Fopt(θ∗)

)∣∣∣ = ÕT (
√
T). (272)

Because the lowest-cost unconstrained linear controller Cunc
Fopt(θ∗)

has the lowest cost among

all unconstrained controllers [AM07],

T · J∗(θ∗, Cunc
Fopt(θ∗))− T · J∗(θ∗, Cθ∗

Kopt(θ∗,T)) ≤ 0. (273)

Combining Equations (272) and (273) and multiplying by (T − T0)/T , we have

(T − T0) · J∗(θ∗, Cunc
Fopt(θ̂wu)

)− (T − T0) · J∗(θ∗, Cθ∗

Kopt(θ∗,T)) = ÕT (
√
T). (274)

Now we just need to convert this to a result about finite time cost rather than infinite cost
which requires the following lemma.

150

Lemma 61. Under Assumptions 1-3 and 10, for any θ ∈ Θ and K satisfying 1− (a−bK) =
ϵ > 0 for some ϵ = ΩT (1),

|J∗(θ, Cunc
K , T)− J∗(θ, Cunc

K)| = OT

(
1

T

)
.

The proof of Lemma 61 can be found in Appendix L.5.
For sufficiently large T , conditional on event E0

2 ,

1− (a∗ − b∗Fopt(θ̂wu)) ≥ 1−
(
a∗ − b∗Fopt(θ

∗)− ÕT (T
−1/4)

)
Lemma 48

> cL50/2. Lemma 50

Therefore, we can apply Lemmas 47 and 61 to Equation (274) to get the desired result that
conditional on event E0

2 ,

(T − T0) · J∗(θ∗, Cunc
Fopt(θ̂wu)

, T − T0)− (T − T0) · J∗(θ∗, Cθ∗

Kopt(θ∗,T), T − T0) = ÕT (
√
T).

L.2 Proof of Proposition 23

proof. We will apply the standard McDiarmid’s inequality to the function

f({wt}T−1
t=T0

) = (T − T0)J(θ
∗, Cunc

Fopt(θ̂wu)
, T − T0, 0,W

′).

To do this, we need a bounded difference inequality. We will show the following.

Lemma 62. For i ∈ [T0 : T − 1], let {w′
t}T−1

t=T0
be such that w′

t = wt for t ̸= i and w′
i ∼ D is

independent of {wt}T−1
t=T0

. If |Fopt(θ̂wu)−Fopt(θ
∗)| ≤ ÕT (T

−1/4), then for sufficiently large T ,

|(T−T0)·J(θ∗, Cunc
Fopt(θ̂wu)

, T−T0, 0, {wt}T−1
t=T0

)−(T−T0)·J(θ∗, Cunc
Fopt(θ̂wu)

, T−T0, 0, {w′
t}T−1

t=T0
)| ≤ c.

for some c = ÕT (1).

The proof of Lemma 62 can be found in Appendix L.6.
Under event E0

2 , by Lemma 48 we have that |Fopt(θ̂wu) − Fopt(θ
∗)| ≤ ÕT (T

−1/4). Fur-

thermore, conditional on E0
2 and θ̂wu the random variables {wt}T−1

t=T0
are still i.i.d. because

the noise random variables are independent of the history. Therefore, conditional on event
E0

2 , we can use Lemma 62 with the standard McDiarmid’s inequality [M+89] and get

P
(
|(T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0, {wt}T−1

t=T0
)− E[(T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0, {wt}T−1

t=T0
)]| ≥ ϵ

∣∣∣ θ̂wu

)
≤ 2 exp

(
−2 ϵ2

c2(T − T0)

)
.

Because

E[(T − T0) · J(θ∗, Cunc
Fopt(θ̂wu)

, T − T0, 0, {wt}T−1
t=T0

)] = (T − T0) · J∗(θ∗, Cunc
Fopt(θ̂wu)

, T − T0),

151

taking ϵ =
√
Tc log(T) gives conditional on E0

2 ,

P
(
|(T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0, {wt}T−1

t=T0
)− T − T0) · J∗(θ∗, Cunc

Fopt(θ̂wu)
, T − T0)| ≥

√
Tc log(T)

∣∣∣ θ̂wu

)
= oT (1/T). (275)

Define

EP23 :=
{
|(T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0, {wt}T−1

t=T0
)− T − T0) · J∗(θ∗, Cunc

Fopt(θ̂wu)
, T − T0)| <

√
Tc log(T)

}
.

By the law of total expectation, Equation (275) implies that

P(EP23 | E0
2) = E[P(EP23 | θ̂wu, E

0
2) | E0

2] ≥ 1− oT (1/T).

Because P(E0
2) ≥ P(E) = 1− oT (1/T), we therefore have that

P(EP23) ≥ P(EP23 | E0
2)P(E0

2) = 1− oT (1/T)

as desired.

L.3 Proof of Proposition 24

proof.

Lemma 63. Under Assumptions 1–3 and 10, for any θ ∈ Θ and any K ∈ [Kθ
L, K

θ
U], when

using controller Cunc
K under dynamics θ where 1 − (a − bK) = ϵ = ΩT (1) and starting at

position x0 = x, then for all t, the position xt at time t satisfies

|xt| ≤ |x|+
w̄

ϵ
.

Furthermore, for any x, y,W ′ and τ ≤ T ,

|τJ(θ, Cunc
K , τ, x,W ′)− τJ(θ, Cunc

K , τ, y,W ′)| ≤
(q + rK2)(x− y)2 + 2(q + rK2)

(
|x|+ w̄

ϵ

)
|x− y|

ϵ
= OT

(
(x− y)2 + |x(x− y)|

)
.

The proof of Lemma 63 can be found in Appendix L.7.
By Lemma 48, under event E ⊆ E0

2 , we have |Fopt(θ̂wu)− Fopt(θ
∗)| ≤ OT (T

−1/4). There-
fore, by Lemma 50, under event E and for large enough T ,

1− (a∗ − b∗Fopt(θ̂wu)) ≥ cL50 − b∗|Fopt(θ̂wu)− Fopt(θ
∗)| ≥ cL50/2.

Conditional on event E, Calg is safe for dynamics θ∗, and therefore by Lemma 4, the position
of Calg at time T0 satisfies |x′

T0
| ≤ Bx = ÕT (1) conditional on E. Therefore, by Lemma 63,

conditional on E,

(T−T0)·J(θ∗, Cunc
Fopt(θ̂wu)

, T−T0, x
′
T0
, {wt}T−1

t=T0
)−(T−T0)·J(θ∗, Cunc

Fopt(θ̂wu)
, T−T0, 0, {wt}T−1

t=T0
) = ÕT (1).

152

L.4 Proof of Proposition 25

proof. Under event E0
2 , we have that for sufficiently large T ,

â− b̂Fopt(θ̂wu) ≥ a∗ − b∗Fopt(θ
∗)− ÕT (T

−1/4) > 0 (276)

by Lemma 50 and Lemma 48. Conditional on event E0
2 ∩ EE187 and for sufficiently large T

we have the following result:

ÕT (T
−1/4)

≥ DU + w̄ − DU

â− b̂Fopt(θ̂wu)
Equation (187)

=
DU

a∗ − b∗Kθ∗
DU

− DU

â− b̂Fopt(θ̂wu)
Definition of Kθ∗

DU

≥ DU

a∗ − b∗Kθ∗
DU

− DU

a∗ − b∗Fopt(θ∗)− ÕT (T−1/4)
Equation (276)

=
−DU ÕT (T

−1/4) + b∗DU(K
θ∗
DU
− Fopt(θ

∗))

(a∗ − b∗Fopt(θ∗)− ÕT (T−1/4))(a∗ − b∗Kθ∗
DU

)

≥
−DU ÕT (T

−1/4) + b∗DU(K
θ∗
DU
− Fopt(θ

∗))

(a∗ − b∗Fopt(θ∗))(a∗ − b∗Kθ∗
DU

)

= (Kθ∗

DU
− Fopt(θ

∗))
b∗DU

(a∗ − b∗Fopt(θ∗))(a∗ − b∗Kθ∗
DU

)

− DU ÕT (T
−1/4)

(a∗ − b∗Fopt(θ∗))(a∗ − b∗Kθ∗
DU

)
. (277)

Because θ∗, DU , Fopt(θ
∗), Kθ∗

DU
are all independent of T , we can rearrange Equation (277) to

get
Kθ∗

DU
− Fopt(θ

∗) ≤ ÕT (T
−1/4).

Combining this with Lemma 48 which states that |Fopt(θ̂wu)−Fopt(θ
∗)| = ÕT (T

−1/4) we have
that

Kθ∗

DU
− Fopt(θ̂wu) ≤ ÕT (T

−1/4). (278)

Conditional on event E0
2 ∩ Ewu

safe, ∥θ̂wu − θ∗∥∞ ≤ ϵ0 = ÕT (T
−1/4) and |x′

T0
| ≤ ∥D∥∞ + w̄.

Conditional on E0
2 ∩Ewu

safe, we can apply Lemma 53 with θ = θ∗, θ̂L53 = θ̂wu, K
′ = Fopt(θ̂wu),

ϵ as the right hand side of Equation (278), β = ϵ0, τ = T − T0, and x0 = x′
T0
. With this

choice of parameters, the controller C in Lemma 53 is exactly equivalent to Calg′ under event
EE187. Conditional on E0

2 , ϵ and β satisfy the necessary inequality for Lemma 53 as both
are ÕT (T

−1/4).
The event E0

2∩Ewu
safe∩EE187 depends only on noise random variables before time T0, which

means we can apply Lemma 53 conditional on these events. Equation (223) of Lemma 53
gives that for sufficiently large T , conditional on E0

2 ∩ Ewu
safe ∩ EE187, and with conditional

153

probability 1− oT (1/T),∣∣∣(T − T0) · J(θ∗, Calg′ , T − T0, x
′
T0
,W ′)− (T − T0) · J(θ∗, Cunc

K′ , T − T0, x
′
T0
,W ′)

∣∣∣
≤ (T − T0)OT

(
(bϵ+ ϵ0 + |Fopt(θ̂wu)|ϵ0) log

(
1

bϵ+ ϵ0 + |Fopt(θ̂wu)|ϵ0

)

×
(
(bϵ+ ϵ0 + |Fopt(θ̂wu)|ϵ0) +

log(T)√
T − T0

))
≤ (T − T0)OT

(
ÕT (T

−1/4) log(1/Ω̃T (T
−1/4))

(
ÕT (T

−1/4) +
log(T)√
T − T0

))
[ϵ0 = Ω̃T (1)]

= ÕT (
√
T). (279)

Taking EP25 to be the event that Equation (279) holds gives the desired result that P(EP25 |
E0

2 ∩ Ewu
safe ∩ EE187) = 1− oT (1/T).

L.5 Proof of Lemma 61

proof. By Lemma 63, when starting at x0 = 0 and using controller Cunc
K we have that

|xT | ≤
w̄

ϵ
. (280)

Therefore, we can conclude that (for W ′ = {wt}T−1
t=0):

|J∗(θ, Cunc
K , 2T)− J∗(θ, Cunc

K , T)|

=

∣∣∣∣T · J∗(θ, Cunc
K , T) + T · E [J∗(θ, Cunc

K , T, xT)]

2T
− J∗(θ, Cunc

K , T)

∣∣∣∣
=

∣∣∣∣E [J∗(θ, Cunc
K , T, xT)]

2
− 1

2
J∗(θ, Cunc

K , T)

∣∣∣∣
=

1

2T
|E [TJ∗(θ, Cunc

K , T, xT)]− TJ∗(θ, Cunc
K , T)|

=
1

2T

∣∣∣E [E [TJ(θ, Cunc
K , T, xT ,W

′)− TJ(θ, Cunc
K , T, 0,W ′)

∣∣∣ xT

]]∣∣∣
=

1

2T

∣∣∣E [OT

(
x2
T

)]∣∣∣ Lemma 63

= OT

(
1

T
E[x2

T]

)
= OT

(
1

T
E
[
w̄2

ϵ2

])
Equation (280)

= OT

(
1

T

)
.

154

Furthermore, we have that

|J∗(θ, Cunc
K , T)− J∗(θ, Cunc

K)| =

∣∣∣∣∣
∞∑
i=0

J∗(θ, Cunc
K , 2iT)− J∗(θ, Cunc

K , 2i+1T)

∣∣∣∣∣
≤

∞∑
i=0

∣∣J∗(θ, Cunc
K , 2iT)− J∗(θ, Cunc

K , 2i+1T)
∣∣

=
∞∑
i=0

OT

(
1

T2i

)
= OT

(
1

T

)
.

L.6 Proof of Lemma 62

proof. Define xT0 , .., xT as the positions with noise {wt}T−1
t=T0

when using controller Cunc
Fopt(θ̂wu)

starting at xT0 = 0 and define yT0 , ..., yT as the positions with noise {w′
t}T−1

t=T0
when using

controller Cunc
Fopt(θ̂wu)

starting at yT0 = 0. By construction, the cost up until time i is the same

for both trajectories. At time i+ 1, we have that

|yi+1 − xi+1| = |wi − w′
i| ≤ 2w̄ = OT (1). (281)

The remaining difference in cost is simply the difference in cost of two length T ′ = T − i− 1
trajectories using controller Cunc

Fopt(θ̂wu)
starting at positions yi+1 and xi+1 respectively. By the

assumption of this lemma on Fopt(θ̂wu) and Lemma 50, we have that for sufficiently large T ,

1− (a∗ − b∗Fopt(θ̂wu)) ≥ 1− (a∗ − b∗Fopt(θ
∗))− ÕT (T

−1/4) ≥ cL50/2.

Therefore we can combine Lemma 63 and Equation (281) to get that the difference in the
cost from time i+ 1 onward is upper bounded by

|T ′ · J(θ∗, Cunc
Fopt(θ̂wu)

, T ′, xi+1, {wt}T−1
t=i+1)− T ′ · J(θ∗, Cunc

Fopt(θ̂wu)
, T ′, yi+1, {wt}T−1

t=i+1)| = OT (1).

(282)
Therefore, we have that (see below for justification)

|(T − T0)J(θ
∗, Cunc

Fopt(θ̂wu)
, T − T0, 0, {wt}T−1

t=T0
)− (T − T0)J(θ

∗, Cunc
Fopt(θ̂wu)

, T − T0, 0, {w′
t}T−1

t=T0
)|

= |(i− T0)J(θ
∗, Cunc

Fopt(θ̂wu)
, i− T0, {wt}i−1

t=T0
)− (i− T0)J(θ

∗, Cunc
Fopt(θ̂wu)

, i− T0, {w′
t}i−1

t=T0
)|+

|T ′J(θ∗, Cunc
Fopt(θ̂wu)

, T ′, xi+1, {wt}T−1
t=i+1)− T ′J(θ∗, Cunc

Fopt(θ̂wu)
, T ′, yi+1, {wt}T−1

t=i+1)|

= |J(θ∗, Cunc
Fopt(θ̂wu)

, T − i− 1, xi+1, {wt}T−1
t=i+1)− J(θ∗, Cunc

Fopt(θ̂wu)
, T − i− 1, yi+1, {wt}T−1

t=i+1)|

= OT (1).

Note that in the first equality we also cancelled out the controls at time i which are the same
for both trajectories. In the second equality, we used the fact that {wt}i−1

t=T0
= {w′

t}i−1
t=T0

, and
in the final line we used Equation (282).

155

L.7 Proof of Lemma 63

proof. By construction, when using Cunc
K we have the recursive relationship that xt = (a −

bK)xt−1 + wt−1. Because we assume that a− bK = 1− ϵ < 1, we have that

|xt| ≤ |x|+
∞∑
i=0

(a− bK)iw̄ = |x|+ w̄

1− (a− bK)
= |x|+ w̄

ϵ
= β,

where we define β = |x| + w̄
ϵ
. This proves the first part of the lemma. Furthermore, this

implies that the magnitude of the control is never greater than

|ut| = |K||xt| ≤ |K|β.

Using controller Cunc
K , let x0, x1, ..., xT be the sequence of positions starting at x0 = x and

let y0, y1, ..., yT be the series of positions starting at y0 = y. Define dt = |xt − yt|. Note that
d0 = |x− y|. Furthermore, for all t,

dt = (a− bK)dt−1.

and

|Cunc
K (xt)− Cunc

K (yt)| = Kdt.

Therefore, we have the following bound.

|TJ(θ, Cunc
K , T, x,W ′)− TJ(θ, Cunc

K , T, y,W ′)|

=

∣∣∣∣∣(qx2
T − qy2T) +

T−1∑
t=0

qx2
t − qy2t + r(Kxt)

2 − r(Kyt)
2

∣∣∣∣∣
≤

T∑
t=0

2q|xt|dt + qd2t + 2r|Kxt||Kdt|+ rK2d2t

≤ (2q + 2rK2)β
T∑
t=0

dt + (q + rK2)
T∑
t=0

d2t |xt| ≤ β

≤ (2q + 2rK2)β
∞∑
t=0

(a− bK)td0 + (q + rK2)
∞∑
t=0

(a− bK)2td20

= 2(q + rK2)β
|x− y|

1− (a− bK)
+

(q + rK2)(x− y)2

1− (a− bK)2

≤ 2(q + rK2)β
|x− y|

1− (a− bK)
+

(q + rK2)(x− y)2

1− (a− bK)
a− bK < 1

≤
2(q + rK2)

(
|x|+ w̄

ϵ

)
|x− y|+ (q + rK2)(x− y)2

ϵ
. (283)

This is exactly the desired result of the second equation of Lemma 63.

156

M Feasibility and Boundary Proofs

M.1 Relaxation of Assumption 1

The assumption that a, b > 0 in Assumption 1 can actually be dropped under Assumptions
2 and 3. Informally, this is because the controller C init can be used for log10(T) steps to,
with high probability, obtain an estimate θ̂ such that ∥θ̂ − θ∗∥∞ ≤ 1

log(T)
(by the same logic

as in Lemma 2). Therefore, we could include an initial phase in every algorithm that does
log10(T) steps of initial exploration and then replaces Θ with Θ′ = {θ : ∥θ − θ̂∥∞ ≤ 1

log(T)
},

and this Θ′ will satisfy a′, b′ > 0 for sufficiently large T because a∗ > 0. However, to simplify
the algorithms and proofs we will assume that the initial uncertainty set Θ is small enough
that this is unnecessary. Note that this assumption of sufficiently small bounded initial
uncertainty appears in other safe LQR literature such as [LDSL21].

M.2 Discussion on Assumption 2

To better understand Assumption 2, consider the case of bounded noise and constant bound-
aries as in [LDSL21, DTMR19]. In this case, to satisfy Assumption 2, it is sufficient to

replace the ∀x ∈
[
D

E[x]
L + F−1

D (1
T 4), D

E[x]
U + F−1

D (1− 1
T 4)
]
with ∀x ∈ [D

E[x]
L − w̄,D

E[x]
U + w̄].

[LDSL21] makes a similar assumption that there is an initial linear controller that satisfies
this property. For the bounded noise case, Assumption 2 can be shown to be equivalent
to an assumption on the size of the initial uncertainty set. Let C init(xt) = −a

b
xt for some

arbitrary θ ∈ Θ. When using this controller, the position and control at time t (denoted xt

and ut respectively) satisfy

|a∗xt+b∗ut| ≤ |xt|
∣∣∣∣a∗ − ab∗

b

∣∣∣∣ ≤ |xt|
∣∣∣∣a∗ − a− (b∗ − b)a

b

∣∣∣∣ ≤ (1 + a

b

)
|xt|size(Θ) ≤

(
1 +

ā

b

)
|xt|size(Θ).

This controller C init satisfies Assumption 2 under bounded noise if

size(Θ) ≤
min(D

E[x]
U , |DE[x]

L |)− b̄
log(T)∣∣∣1 + ā

b

∣∣∣ (∥DE[x]∥∞ + w̄)
.

Therefore, instead of assuming Assumption 2, it is sufficient to assume that size(Θ) ≤
min(D

E[x]
U ,|DE[x]

L |)− b̄
log(T)

|1+ ā
b |(∥DE[x]∥∞+w̄)

, as the controller C init(xt) = −a
b
xt satisfies Assumption 2. Note that

the bound on size(Θ) does still depend on the end points of Θ. As a sanity check, suppose
∥DE[x]∥∞ = OT (1) and ā, b̄, 1

b
≤ c for some constant c. Then there exists a constant such

that if size(Θ) is less than that constant, then Assumption 2 is satisfied for sufficiently large
T .

M.3 Assumptions Relationship to Infeasibility

In this section we briefly relate the assumptions we make to a notion of infeasibility. We begin
with two formal definitions. The first is a formal definition of feasibility for our problem.
The second is a property of a controller that is slightly stronger than regular safety.

157

Definition 5 (Feasibility). An initial uncertainty set of system dynamics Θ is feasible for
boundary DE[x] and trajectory length T with probability 1 − δ if there exists a controller C
that satisfies the following. For any θ∗ ∈ Θ, if the true dynamics are θ∗, then

P
(
∀t < T : D

E[x]
L ≤ a∗xt + b∗C(Ht) ≤ D

E[x]
U

)
≥ 1− δ.

Definition 6 (Robust safety). A controller C is robustly safe for T0 time steps for dynamics
θ∗ if the following holds for some known distribution ρ with mean 0 and constant variance

η2 > 0. If st
i.i.d.∼ ρ and ut = C(Ht) +

st
log(T)

, then

P
(
∀t ∈ [0, T0 − 1] : D

E[x]
L ≤ a∗xt + b∗ut ≤ D

E[x]
U

)
≥ 1− oT (1/T

4).

Proposition 26 shows that assuming access to a robustly safe controller replaces the need
for Assumption 2.

Proposition 26. The results of Theorems 1 and 2 hold without Assumption 2 if we assume
access to a controller Crs that is robustly safe for

√
T steps. Similarly, the result of Theorem

3 holds without Assumption 2 if we assume access to a controller Crs that is robustly safe
for T 2/3 steps.

proof. In the exploration phase of any of the three algorithms, instead of sampling ϕt from
Rademacher distribution we can instead sample i.i.d. from ρ and keep the rest of the algo-
rithm the same. Then the robust feasibility implies that with probability 1− oT (1/T

4) the
algorithm will be safe for the warm-up period of the first 1

ν20
steps. We can then proof a

variation of Lemma 2 that holds using the distribution ρ instead of the Rademacher distri-
bution.

By Definition 5, as T approaches infinity, the existence of a robustly safe controller
Crs becomes intuitively equivalent to Θ being feasible for boundary DE[x] with probability
1 − oT (1/T

4). Therefore by Proposition 26, Assumption 2 is intuitively asymptotically
equivalent to the assumption that the problem is feasible for dynamics Θ and that a controller
that achieves feasibility is known.

158

N Generalizations

N.1 Control Constraints

Our results focus on positional constraints, but we believe that our results with the same rates
of regret will also hold with both positional and control constraints under some additional
assumptions. While we leave the formal derivations of results for control constraints to future
work, we provide a brief discussion of how the algorithm and proofs from this paper could
be extended to include control constraints.

First, we briefly mention how control constraints change the definitions and notation
used. Control constraints would be of the form Du

L ≤ ut ≤ Du
U for all t < T (for the

rest of this section, we will refer to the expected-position constraints as DE[x]). We also
define the function Kopt(θ, T,D

E[x], Du) as choosing the optimal parameter K for a controller
satisfying both the position constraints DE[x] and the control constraints Du. We also need
the additional assumption that there exists a (non-empty) set of baseline controllers that
can satisfy both the position and control constraints. Finally, we need to assume that the
controller C init satisfies both position and control constraints (i.e. an analogue of Assumption
2).

N.1.1 Theorem 3 and Algorithm 3

We start with considering how Algorithm 3 would need to be modified with the addition
of control constraints. The key idea behind Algorithm 3 satisfying the position constraints
is that the algorithm sometimes uses controls usafeU

t and usafeL
t to enforce positional safety.

However, in the presence of control constraints, we can no longer use the controls usafeU
t and

usafeL
t , as these controls may not satisfy the control constraints. The key modification of

Algorithm 3 is to choose the controller Calg
s in such a way that Calg

s will satisfy a tighter

positional constraint with respect to DE[x]′ = (D
E[x]
L + Θ̃T (ϵs), D

E[x]
U − Θ̃T (ϵs)) for dynamics

θ̂s and a tighter control constraint Du′
= (Du

L + Θ̃T (ϵs), D
u
U − Θ̃T (ϵs)). In other words,

choosing Calg
s = C θ̂s

Kopt(θ̂s,Ts,DE[x]′ ,Du′)
. Within each iteration of the safe exploitation phase,

the algorithm then can directly use Calg
s . Because ∥θ̂s−θ∗∥∞ ≤ ÕT (ϵs) with high probability

and this Calg
s is chosen to satisfy the tighter position constraints DE[x]′ for dynamics θ̂s,

the controller Calg
s will satisfy the true position constraints DE[x] for dynamics θ∗ with high

probability. Because Calg
s satisfies the tighter control constraints Du′

, with the additional
assumption that the controller class is continuous, the controls used by Calg

s under dynamics
θ∗ will also satisfy the control constraints with high probability.

Now we will briefly describe what additional results need to be proven in order for the
modified version of Algorithm 3 described above to achieve the same regret rate of ÕT (T

2/3)
in the presence of control constraints. We will do this by analyzing each of the terms of
regret from the proof of Theorem 3.

• The regret term R0, which is the regret from the warm-up period of the first 1/ν2
T

steps, would have the same definition and the same regret bound of Õ(T 2/3) as in the
analysis of Algorithm 3.

159

• To bound the regret term R1, we would need to show that Cs
alg as described above does

not have much more expected cost than the true best controller, Cθ∗

Kopt(θ∗,T,DE[x],Du)
.

This can be incorporated into an analogue of Assumption 7: assuming that for ∥θ −
θ∗∥∞, ∥Du −Du′∥∞, ∥DE[x] −DE[x]′∥∞ all sufficiently small,

|J∗(θ∗, Cθ
Kopt(θ,T,DE[x]′ ,Du′)

, t)− J∗(θ∗, Cθ∗

Kopt(θ∗,T,DE[x],Du), t)|

= ÕT

(
∥θ − θ∗∥∞ + ∥DE[x] −DE[x]′∥∞ + ∥Du −Du′∥∞ +

1

T 2

)
.

This can be made into a new assumption on the baseline class of controllers that
replaces Assumption 7.

• We expect that the regret source R2 (of converting from expected regret to realized
regret) will still be ÕT (

√
T), as this was a result of a concentration inequality that will

still apply.

• Note that regret R3 no longer exists as we no longer use the controls usafeU
t or usafeL

t ,
and instead this source of regret is being incorporated into the chosen Calg

s in regret
term R1.

To summarize, the main modification to the algorithm would be the choice of controller
Calg

s , and the main change to the proof is moving the burden of bounding the regret term R3

to the version of Assumption 7 described above that accounts for the tightened constraint
arguments to Kopt.

N.1.2 Theorem 2 and Algorithm 5

In order to show a version of Theorem 2 that works for control constraints, Algorithm 5
would need the same modifications as described for Algorithm 3. Specifically, instead of

using controls usafeU
t and usafeL

t , the controller Calg
s is chosen as Calg

s = C θ̂s
Kopt(θ̂s,Ts,DE[x]′ ,Du′)

.

The main way that the proof of regret for Algorithm 5 differs from the regret for Algorithm
3 is that the proof for Algorithm 5 relies on the faster rate of convergence for θ̂s given by
Lemma 21. Proving a form of Lemma 21 for the modified algorithm would be the main
additional step in proving that ÕT (

√
T) regret is possible with control constraints. As

discussed in the proof sketch of Theorem 2, the proof of Lemma 21 comes from the fact
that a constant fraction of the time, usafeU

t is non-linear by an amount larger than a positive
constant. The non-linearity of usafeU

t occurs because enforcing safety constraint satisfaction
requires non-linear controls. While the modified controller Calg

s described in the previuos
paragraph does not use the non-linear controls usafeU

t , Calg
s must still be frequently non-linear

in order to satisfy the safety constraints. Therefore, we expect that for noise distributions
with large enough support, the modified Algorithm 5 will a constant fraction of the time use
a control that is non-linear by a constant amount, which will give that ϵs decreases at a rate
of 1/

√
t.

160

N.1.3 Theorem 1 and Algorithm 4

Finally, we will discuss how we could modify Theorem 1 to get the same result in the
presence of control constraints. To modify Algorithm 4, we will need the same modification
as described above that chooses Calg

s in a way that usafeU
t and usafeL

t are unnecessary. However,
an additional complexity with extending this theorem is that we no longer have a clean
dichotomy where we can use the unconstrained linear controller if the noise distribution
seems “small enough” and use the certainty equivalence if the noise distribution seems “large
enough”. This is because even with a very small amount of noise, the optimal unconstrained
linear controller may still not satisfy constraints because it may not satisfy the control
constraints. As a result, we can no longer do the split of Calg

s as we do in Algorithm 4.
Fundamentally, Algorithm 4 has this split because when the optimal unconstrained linear
controller does not satisfy positional constraints, the optimal constraint-satisfying controller
(and therefore the algorithm) is non-linear by a constant amount a constant fraction of the
time, which leads to a learning rate of 1/

√
t as described above. We expect that this is still

true in the presence of control constraints. In other words, when the unconstrained linear
controller does not satisfy either the control or position constraints by a relatively large
amount, then the optimal constraint-satisfying controller would still be very non-linear.
However, this does require a new uncertainty bound that can capture the non-linearity in
the presence of control constraints. This is the main additional technical result that would
be needed to extend these results to control constraints.

N.2 Higher Dimensions

This work focuses on the one-dimensional LQR setting, but many LQR applications have
higher dimensional positions and controls. We leave the formal extension of our results to
higher dimensions for future work, but discuss here when and how we believe our results
will extend to higher dimensions. Suppose xt ∈ Rn and ut ∈ Rm, which implies that the
dynamics are a pair of matrices θ∗ = (A∗, B∗) where A∗ ∈ Rn×n and B∗ ∈ Rn×m. A
natural extension of our constraints to higher dimensions is to consider a (origin-containing)
polytopal constraint, i.e., the intersection of a finite number of half-spaces that contain the
origin. Specifically, we could consider constraints of the form ∆(A∗xt + B∗ut) ≤ d where
∆ ∈ Rk×n and d ∈ Rk. This still has the interpretation as the expected position at each time
is within the convex region {x ∈ Rn : ∆x ≤ d}. Analogous to in Appendix N.1, we define the
function Kopt(θ, T,∆, d) as choosing the optimal parameter K for a controller satisfying the
constraints ∆(Axt + But) ≤ d. Before talking about specific algorithms, we first note that
we expect that the results of Lemmas 23 and 2 generalize directly to higher dimensions. This
is necessary for all of our algorithmic results. Note that because the dynamics are matrices,
the dynamics estimates will also be matrices denoted θ̂s.

N.2.1 Theorem 3 and Algorithm 3

In higher dimensions, Assumption 5 becomes slightly more complicated. Specifically, we
define the truncated version of a controller C in higher dimensions as using either control
C(x) if C(x) would result in an expected position inside the convex safe region, and otherwise

161

using the smallest magnitude control that takes the position in expectation to inside of the
convex safe region. The other assumptions have direct higher dimensional counterparts.

The key modification of Algorithm 3 is to choose the controller Calg
s in such a way that

∆(Âsxt + B̂sC
alg
s (xt)) ≤ d − Θ̃T (ϵs). In other words, choosing Calg

s = C θ̂s
Kopt(θ̂s,Ts,∆,d−Θ̃T (ϵs))

.

Within each iteration of the main loop of Algorithm 3, the algorithm can directly use Calg
s

without the need for usafeU
t or usafeL

t . By this construction, ∆(Âsxt + B̂sC
alg
s (xt)) ≤ d −

ÕT (ϵ). Because with high probability ∥θ̂s − θ∗∥∞ ≤ ÕT (ϵs), this will imply that ∆(A∗xt +
B∗Calg

s (xt)) ≤ d with high probability. This in turn means that the algorithm will satisfy
the constraints with high probability.

Analyzing the regret of this algorithm, the regret terms R0, R1, and R2 stay the same
as in the proof of Theorem 3. The regret term R3 is no longer needed, as we no longer use
controls usafeU

t or usafeL
t . To bound the regret term R1, we want to show that the cost of Cs

alg

is close to the cost of Cθ∗

Kopt(θ∗,T,∆,d). Like we did in Appendix N.1, we need an analogue of

Assumption 7, which is that for ∥θ − θ∗∥∞ and ∥d− d′∥∞ both sufficiently small,

|J∗(θ∗, Cθ
Kopt(θ,T,∆,d′), t)− J∗(θ∗, Cθ∗

Kopt(θ∗,T,∆,d), t)|

= ÕT

(
∥θ − θ∗∥∞ + ∥d− d′∥∞ +

1

T 2

)
.

By similar arguments as in our current proof, we expect this assumption will be sufficient
to bound R1 for this modified algorithm. We expect that the bound on R2 would be very
similar as in the proof of Theorem 3, as this regret term corresponds to concentration of the
cost. Similarly, the regret term R0 can also be bounded the same as in the proof of Theorem
3, as this term corresponds to the warm-up period which still has length Õ(T 2/3). Therefore,
we expect that the total regret of this modified algorithm can still be bounded by Õ(T 2/3).

N.2.2 Theorem 2 and Algorithm 5

We leave whether or not Theorem 2 generalizes to higher dimensions in all situations as an
open question. However, we will briefly outline a setting in which we do expect the result
to generalize. Suppose that m = n and that A∗ and B∗ are invertible. Algorithm 5 for
higher dimensions would require the same changes as in the previous subsubsection, which

means that Calg
s = C θ̂s

Kopt(θ̂s,Ts,∆,d−Θ̃T (ϵs))
. The main new result that would be necessary is

an analogue of Lemma 21 for higher dimensions. Intuitively, the result of Lemma 21 holds
because Algorithm 5 will a constant fraction of the time use the non-linear control usafeU

t

which allows for faster learning. The analogue for higher dimensions is to show that the
modified algorithm will a constant fraction of the time use a non-linear control. A difficulty
in higher dimension is that it is not sufficient to just be non-linear along one dimension.
Instead, there must be sufficient non-linearity in all m dimensions. Therefore, the higher
dimensional version of Assumption 9 requires that the noise distribution is sufficiently large
relative to the constraints in all m dimensions, which for example would be satisfied by the
multivariate normal distribution with mean 0 and constant variance matrix. Under this
assumption, the modified algorithm will a constant fraction of the time use controls ut that
satisfy ∆i(A

∗xt + B∗ut) ≥ di − OT (ϵs) for some i ∈ [1 : k]. Furthermore, if the noise is
sufficiently large in all dimensions, then we expect that for every side of the boundary of

162

the convex compact region (corresponding to ∆i and di for i ∈ [1 : k]), xt will at times be
sufficiently far from that side and a point on that side will be the closest point to xt. Because
A∗ is invertible, the previous sentence will also hold for A∗xt. Because B∗ut must bring the
position back to within the safe region in expectation, for every side of the boundary we
must have that B∗ut is large and perpendicular to that side. Because B∗ is invertible, this
implies that the ut used to enforce safety will be sufficiently non-linear in all directions. We
believe this would allow the algorithm to learn the matrix B∗ up to accuracy OT (1/

√
t) at

time t. Equipped with an analogue of Lemma 21, we expect that the rest of the proof will
follow directly. If m > n or A∗ and B∗ are not invertible, then showing that the non-linear
controls ut are sufficient for learning every column of the matrix B∗ is more difficult. We
leave the details of analyzing this case for future work.

N.2.3 Theorem 1 and Algorithm 4

In order to show the same result as Theorem 1 for higher dimensions, we would use the same
choice of Calg

s as in the previous two subsubsections. In higher dimensions, the difficult part
is showing that a similar dichotomy to that in the proof of Theorem 1 holds. Namely, we
want to show that it is still the case that if the noise distribution is “large enough”, then the
rate of learning is 1/

√
t which causes the regret to be ÕT (

√
T). Likewise, when the noise

distribution is “small enough”, then using a modification of the optimal unconstrained linear
controller will only have ÕT (

√
T) regret. While we leave the question of whether the general

result of Theorem 1 generalizes to higher dimensions as an open question, we outline below
a specific situation in which we expect that the same result will hold.

Suppose A∗, B∗ ∈ Rn×n and suppose that A∗ and B∗ are invertible. Furthermore, assume
that the noise distribution is spherically symmetric, in that for x, y ∈ Rn, the noise density
function f satisfies f(x) = f(y) if ∥x∥2 = ∥y∥2. Define δ as the smallest distance from the
origin to any of the points on the constraint boundaries, and define S as the set of coordinates
on the constraint boundaries that are exactly δ from the origin. In other words, S is the set
of points on the boundaries that are (tied for) closest to the origin. Assume that the span
of the vectors in S is equal to Rn. One way to achieve this would be to have the constraints
be a symmetric n-dimensional polyhedron (for example a hypercube) with a center at the
origin. These last two assumptions can be informally viewed as requiring that the noise is
equally large in all directions and the tightest parts of the constraints are restricting along all
d dimensions. Under these assumptions, we expect that the same dichotomy from Theorem
1 of two cases based on the noise function holds. More specifically, we expect that either the
noise is small enough relative to the distance δ such that the unconstrained linear controller
only violates the constraints with probability ÕT (T

−1/4), or the constraints are tight enough
in all directions for the constrained controller to learn the unknown dynamics at a rate
of 1/

√
t. Therefore, we expect that a modified form of Algorithm 4 would achieve ÕT (

√
T)

regret. We leave details of this specific case and exploration of the general higher dimensional
case as open questions for future work.

163

	Introduction
	Background and Motivation
	Setting and Motivation
	Our Contribution
	Related Work

	Preliminaries
	Outline of Preliminaries
	Problem Dynamics
	Constraints
	Initial Uncertainty Assumptions
	Problem Statement
	Notation

	Theoretical Results
	T(T) Regret for Truncated Linear Controllers
	Regret Rates for General Baselines

	Proof Sketches of Main Results
	Proof Sketch of Theorem 3
	Proof Sketch of Theorem 2
	Proof Sketch of Theorem 1

	Discussion
	Notation
	Big O Notation
	Miscellaneous Notation
	Problem Specifications
	Algorithm Notation
	Proof Notation

	Additional Related Work
	Proof of Theorem 3
	Proof of Safety of Algorithm 3
	Proof of Regret Bound of Algorithm 3

	Proofs of Propositions from Appendix C
	Proof of Proposition 4 (Regret of Warm-up)
	Proof of Proposition 5 (Regret of Non-optimal Controller)
	Proof of Proposition 6 (Concentration of Cost)
	Proof of Proposition 7 (Regret of Enforcing Safety)

	Proofs of Lemmas from Appendix D
	Proof of Lemma 3
	Proof of Lemma 4 (Bounded positions and controls)
	Proof of Lemma 5
	Proof of Lemma 6 (Concentration of Conditional Expected Cost)
	Proof of Lemma 7 (Unconditional Cost vs Conditional Cost)
	Proof of Lemma 8
	Proof of Lemma 9 (Cost of safety controls)
	Proof of Lemma 10 (Difference in Safety Controls)
	Proof of Lemma 15 (McDiarmid's Condition)
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Lemma 16

	Proofs of Sufficiently Large Noise Case
	Proof of Theorem 2
	Proof of Lemma 19(Uncertainty bounds using boundary times)
	Proof of Proposition 8
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 11
	Proof of Equivalent Version of Lemma 10 for Algorithm 5
	Proof of Lemma 20
	Proof of Lemma 22

	Uncertainty Bounds
	Tools for Uncertainty Bounds
	Proof of Lemma 2
	Proof of Lemma 21
	Proof of Lemma 26
	Proof of Lemma 23
	Proof of Lemma 24
	Proof of Lemma 25
	Proof of Lemma 28

	Truncated Linear Controller Satisfaction of Assumption 7 (Proposition 13) and Assumption 8 (Proposition 12)
	Satisfaction of Assumption 8
	Proof of Lemma 31
	Proof of Lemma 33
	Proof of Lemma 32 and Lemma 34
	Proof of Lemma 35
	Proof of Lemma 36
	Proof of Lemma 38
	Satisfaction of Assumption 7
	Proof of Lemma 40
	Proof of Lemma 41

	Proof of Theorem 1
	Proof of Proposition 14
	Proof of Proposition 15

	Proofs from Appendix I.1
	Proof of Lemma 43
	Proof of Proposition 16
	Proof of Proposition 17
	Proof of Proposition 18
	Proof of Proposition 19
	Proof of Proposition 20

	Proofs for Appendix J
	Proof of Lemma 44
	Proof of Lemma 45
	Proof of Lemma 46
	Proof of Lemma 47
	Proof of Lemma 48
	Proof of Lemma 49
	Proof of Lemma 50
	Proof of Lemma 51
	Proof of Lemma 52
	Proof of Lemma 53
	Proof of Lemma 56
	Proof of Lemma 58
	Proof of Lemma 59
	Proof of Lemma 60

	Proofs from Appendix I.1
	Proof of Proposition 22
	Proof of Proposition 23
	Proof of Proposition 24
	Proof of Proposition 25
	Proof of Lemma 61
	Proof of Lemma 62
	Proof of Lemma 63

	Feasibility and Boundary Proofs
	Relaxation of Assumption 1
	Discussion on Assumption 2
	Assumptions Relationship to Infeasibility

	Generalizations
	Control Constraints
	Theorem 3 and Algorithm 3
	Theorem 2 and Algorithm 5
	Theorem 1 and Algorithm 4

	Higher Dimensions
	Theorem 3 and Algorithm 3
	Theorem 2 and Algorithm 5
	Theorem 1 and Algorithm 4

