
ar
X

iv
:2

50
6.

09
81

3v
1

 [
cs

.L
G

]
 1

1
Ju

n
20

25

Metritocracy:
Representative Metrics for Lite Benchmarks∗

Ariel D. Procaccia† Benjamin Schiffer‡ Serena Wang§

Shirley Zhang¶

June 12, 2025

Abstract

A common problem in LLM evaluation is how to choose a subset of metrics from
a full suite of possible metrics. Subset selection is usually done for efficiency or inter-
pretability reasons, and the goal is often to select a “representative” subset of metrics.
However, “representative” is rarely clearly defined. In this work, we use ideas from so-
cial choice theory to formalize two notions of representation for the selection of a subset
of evaluation metrics. We first introduce positional representation, which guarantees
every alternative is sufficiently represented at every position cutoff. We then introduce
positional proportionality, which guarantees no alternative is proportionally over- or
under-represented by more than a small error at any position. We prove upper and
lower bounds on the smallest number of metrics needed to guarantee either of these
properties in the worst case. We also study a generalized form of each property that
allows for additional input on groups of metrics that must be represented. Finally,
we tie theory to practice through real-world case studies on both LLM evaluation and
hospital quality evaluation.

∗This work was partially supported by the National Science Foundation under grants IIS-2147187 and
IIS-2229881; by the Office of Naval Research under grants N00014-24-1-2704 and N00014-25-1-2153; and
by a grant from the Cooperative AI Foundation. Schiffer was supported by an NSF Graduate Research
Fellowship. Zhang was supported by an NSF Graduate Research Fellowship.

†Paulson School of Engineering and Applied Sciences, Harvard University — E-mail : ariel-
pro@seas.harvard.edu.

‡Department of Statistics, Harvard University — E-mail : bschiffer1@g.harvard.edu.
§Paulson School of Engineering and Applied Sciences, Harvard University — E-mail : serenal-

wang@g.harvard.edu.
¶Paulson School of Engineering and Applied Sciences, Harvard University — E-mail :

szhang2@g.harvard.edu.

mailto:arielpro@seas.harvard.edu
mailto:arielpro@seas.harvard.edu
mailto:bschiffer1@g.harvard.edu
mailto:serenalwang@gmail.com
mailto:serenalwang@gmail.com
mailto:szhang2@g.harvard.edu
https://arxiv.org/abs/2506.09813v1

1 Introduction

The last few years have seen an explosion in metrics to evaluate large language models
(LLMs). While this has improved our ability to understand the capabilities of LLMs, it is
also increasingly computationally expensive to evaluate all of these measures. This challenge
is directly felt by platforms like BIG-bench (Srivastava et al., 2022) and HELM (Liang et al.,
2022) that aggregate numerous metrics to provide as complete a picture as possible of LLM
performance.

A common approach that evaluation platforms take to mitigate these growing computational
difficulties is to create a “lite” version of the full evaluation suite, which consists of a subset
of the original measures. For example, BIG-bench Lite contains a subset of 24 JSON metrics
from the full collection of over 200 metrics, which is “designed to provide a canonical measure
of model performance, while being far cheaper to evaluate than the full set.” HELM Lite also
contains a subset of scenarios from HELM Classic (in addition to some others), constructed
to have a lighter computational overhead.

The problem of selecting a subset of evaluation metrics is actually quite general beyond LLM
evaluation, and is also common in public policy and business operations. For example, Cal
Hospital Compare awards Patient Safety Honor Roll status to hospitals using a subset of 12
measures from a full set of hundreds of hospital quality measures collected by the Centers
for Medicare and Medicaid Services (Cal Hospital Compare, 2025). This subset is carefully
hand-selected, but Cal Hospital Compare still acknowledges that “measurement of patient
safety is complex and there is no single validated method for measuring the overall safety
of care provided in a given health care setting.” Beyond computational considerations, an
additional reason for selecting a subset of metrics is understandability for stakeholders.

Across these settings, a recurring theme is that practitioners want to select a subset of met-
rics that is in some sense “representative” of the underlying full set of metrics.1 However,
there is no formal notion of representation that is common across these contexts. To provide
the tools to more clearly discuss and achieve representation in the selection of a subset of
evaluation metrics, we introduce formal definitions of representation inspired by notions in
computational social choice. Our theoretical framework provides the basis for discussing
tradeoffs between representation and computational cost or understandability, and allows
practitioners to more clearly reason about the consequences of subset selection on down-
stream decision-making. Our framework also opens the door to algorithmic support for
metric selection, which we characterize theoretically and empirically.

1.1 Our Contributions

We study the problem of selecting a representative subset from a set of n evaluation metrics
that each rank m alternatives.2 We introduce two desirable properties for the subset and

1Not all “Lite” benchmarks are trying to be representative—SWE-bench Lite (Jimenez et al., 2023) also
tries to include easier metrics. In this work we focus on settings where the goal is to be representative.

2A metric refers to anything that gives a ranking over alternatives (and not necessarily a loss function).

1

provide lower and upper bounds on the number of metrics needed to satisfy each of the two
properties.

We start by defining positional representation, which prevents under-representation. Posi-
tional representation guarantees that every alternative is sufficiently represented at every
rank. This property is parameterized by a group size g, which indicates the granularity of
representation. We show upper and lower bounds on the number of metrics necessary to sat-
isfy positional representation in the worst case that are tight up to a logarithmic factor. We
also provide a polynomial-time algorithm which always finds a subset satisfying positional
representation with size at most n

g
log(m).

We next introduce positional proportionality, which guarantees that no alternative is under-
or over-represented at any position in the chosen subset by more than an additive factor of
ϵ. We give tight (up to constant factors) upper and lower bounds on the number of metrics
needed to satisfy positional proportionality in the worst case. We also show that any subset
of metrics satisfying positional proportionality can approximate any social choice scoring
rule on the original set of metrics.

Finally, we generalize both properties to enable preserving information about the original
set of metrics which may be external to the rank information. We show that our upper
and lower bound extend to the general versions of our properties, and prove that finding
the smallest set satisfying either general property is NP-hard. Our theoretical results are
summarized in Table 1.

Properties Parameter Upper Bound Lower Bound Complexity

Positional Representation Group size g O
(

n
g
log(m)

)
Ω
(n

g
log(m)

log(n
g
log(m))

)
NP-hard

Positional Proportionality Accuracy ϵ O
(

1
ϵ2
log(m)

)
Ω
(

1
ϵ2
log(m)

)
NP-hard

Table 1: Summary of theoretical results.

To connect these theoretical results to the above motivating practical examples, we evaluated
algorithms to achieve positional representation and positional proportionality in three case
studies with real data: two on LLM evaluation and one on hospital quality evaluation. We
show that the outputs of our methods compare favorably with the existing subsets currently
deployed in the real world for each of these settings.

1.2 Related Work

There has been a surge of recent work studying benchmarks as voters from the social choice
perspective. These works differ from ours in that none study subset selection of metrics.
Many of these works study how metrics should be aggregated, particularly to improve ro-
bustness (Colombo et al., 2022b,a; Peyrard et al., 2017; Mishra and Arunkumar, 2021; Himmi
et al., 2023). Colombo et al. (2022a) propose using Borda count to aggregate benchmarks

2

as an approximation of the Kemeny Rule and Rofin et al. (2022) propose VOTE’N’RANK,
which consists of several scoring rules based on social choice theory for benchmark aggrega-
tion. In a different direction, Zhang and Hardt (2024) give a form of Arrow’s Impossibility
result for the benchmark setting and highlight an inherent tradeoffs between sensitivity and
diversity.

In social choice, our properties are most closely related to Justified Representation (JR)
introduced by Aziz et al. (2017) in the committee selection setting. JR guarantees repre-
sentation for sufficiently-large “coalitions” of voters that approve the same candidate; it is
similar to our notion of positional representation, which guarantees representation for “coali-
tions” of benchmarks that all rank alternative a in the top r. However, our setting has no
voters and no notion of approval, which makes a direct comparison impossible. See Appendix
C for more discussion of the relationship to JR. Also in the approval setting, Skowron and
Faliszewski (2015) study the relationship between set cover and proportional representation
with approval ballots, similar to our NP-hardness results in Section 4.

Other methods have also been proposed to speed up LLM evaluation through selection of
individual prompts from all possible evaluation metrics (Perlitz et al., 2023; Polo et al., 2024;
Li et al., 2024). Our work differs in that we restrict to selecting a subset of full metrics,
and not the more granular selection of prompts. This captures more general public policy
settings like hospital quality evaluation, where only full metrics are available. Note, however,
that the two approaches are complementary and can be used in tandem.

1.3 Model

Let there be a set N = [n] of metrics and a set A = [m] of alternatives. Each metric
i has a ranking σi over alternatives. Let σir be the alternative ranked in position r in
metric i’s ranking, and let σi(a) be the rank of alternative a in metric i’s ranking. The set
of all metric rankings forms a preference profile σN = {σ1, . . . , σn}. For K ⊆ N , define
σK = {σi : i ∈ K}. We study the following:

How should we select a small subset of metrics K ⊂ N such that K preserves
some information from the metrics in N?

We say that metric i ranks alternative a at least at position r if σi(a) is r or better (i.e.
σi(a) ≤ r). Similarly, we say that metric i ranks alternative a above position r if σi(a) is
strictly better than r (i.e. σi(a) < r). Define C(N, r, a) as the number of metrics in N that
rank alternative a in the top r. Likewise, for K ⊆ N , C(K, r, a) is the number of metrics in
K that rank alternative a in the top r.

2 Positional Representation

Consider some alternative a ∈ A. If a is ranked highly by many metrics in N , then we want
a to be ranked highly in many metrics in the subset K as well—otherwise, a would not be
getting the representation it deserves in K. Intuitively, it would be undesirable if a is ranked
in the top 10 positions by the majority of the metrics in N , but does not appear in the top

3

10 positions for any metric in K. Similarly, it would be undesirable if b is ranked in the top
50 by 90% of metrics in N , but b is ranked in the top 50 by less than half of the metrics
in K. We therefore begin by introducing positional representation, which guarantees that
the subset K gives every alternative a ∈ A sufficient representation at every cutoff position.
More specifically, positional representation guarantees that for every position cutoff, if a
is ranked above the cutoff in a sufficiently large number of the original metrics, then that
alternative is also ranked above the cutoff in a (close to) proportional number of metrics in
K.

Definition 2.1. A subset K satisfies positional representation for group size g if for every
r ∈ [1 : m], any alternative that is ranked in the first r positions in at least ℓ · g metrics is
ranked in the first r positions in at least ℓ metrics in K. Equivalently, for all r ∈ [1 : m] and
all a ∈ A,

C(K, r, a) ≥
⌊
C(N, r, a)

g

⌋
. (1)

Positional representation is parameterized by a group size g, which will capture the tradeoff
between the granularity of representation and the size of K needed to satisfy positional rep-
resentation. As g gets larger, the minimum necessary |K| decreases, but for each alternative
a it takes more high-ranked votes to deserve representation. If g = n, for instance, then
positional representation guarantees only that every alternative is ranked by some metric
in K at least as high as its lowest ranking. By the pigeonhole principle, it will always be
possible to satisfy this specific guarantee with |K| = 1. At the other extreme, if g = 1, then
we must have that K = N in order to satisfy positional representation.

As a concrete example, suppose that we have n = 100 metrics and g = 10. If alternative a is
ranked first by exactly 23 metrics in N , then Definition 2.1 requires that a is ranked first by
at least two metrics in K. Similarly, if alternative a is ranked in one of the top two places
by exactly 76 metrics in N , then Definition 2.1 also requires that alternative a is ranked in
the top two by at least 7 metrics in K.

2.1 Lower Bound

In this section, we first provide a lower bound on the size of K needed to satisfy positional
representation. We then give an algorithm that returns a solution satisfying positional
representation where |K| is at most a logarithmic factor larger than the lower bound.

Observe that any K satisfying positional representation for group size g must have size
|K| ≥ ⌊n

g
⌋. This is because every alternative a must be ranked in the top m by all n metrics,

and therefore Definition 2.1 requires that a is ranked in the top m by at least ⌊n
g
⌋ metrics in

K. Naturally, we might hope that for any g and N , we can always find K ⊆ N such that K
satisfies positional representation for group size g and |K| = ⌊n

g
⌋. Unfortunately, we show

this is impossible in the following example.

In this example, a set K satisfies positional representation for group size g = 2 if and only
if every color appears in K. However, there is no such subset K ⊂ {b1, b2, b3, b4} where
|K| ≤ 2 = n

g
, and therefore any K satisfying positional representation for g = 2 must have

4

b1 b2 b3 b4
x x w w
y z y z
u v v u
z y z y
v u u v
w w x x

Table 2: Example where positional representation for group size g = 2 is impossible with
|K| = n

g
. Each metric in {b1, b2, b3, b4} has preference ordering among the alternatives

{u, v, w, x, y, z} corresponding to that metric’s column. Each color needs to be represented
in K.

|K| ≥ 3. More generally, we show the following worst-case lower bound on the number of
metrics needed to guarantee positional representation.

Theorem 2.2 (Proof in Appendix F). For every g ≥ 2, there exists σN such that no subset

K ⊆ N satisfies positional representation for group size g with size |K| ≤ Ω

(
n
g
log(m)

log(n
g
log(m))

)
.

Proof Sketch. We will construct a preference profile σN where K must be large to sat-
isfy positional representation. First, we enumerate all possible subsets of N of size g as
{G1, ..., G(ng)

}. We then construct a preference profile σN such that σir = ar if i ∈ Gr and

σir = br if i ̸∈ Gr where ar, br are distinct alternatives for all r ∈
(
n
g

)
. By this construction,

for every r ≤
(
n
g

)
, a subset K satisfying Equation (2) for alternative ar must include at least

one metric from Gr. Therefore, K must include at least one metric from every subset of size
g of N , which means K must have size at least n − g + 1. We then show that n − g + 1
satisfies the desired bound.

Although achieving |K| = ⌊n/g⌋ is not always possible, we still want to efficiently find a K
that satisfies positional representation for group size g and contains relatively few metrics.
We next present Algorithm 1, a polynomial time greedy algorithm that finds such a K with
|K| ≤ n

g
log(m).

2.2 Algorithm

We first give a high-level overview of the algorithm. The algorithm iterates through every
element of the preference profile row by row. As it does so, it keeps track of how many times
each alternative j has shown up. Whenever j has shown up g times, the algorithm colors the
last g entries of j with a new color and resets the counter for alternative j. Table 2 provides
an example of the coloring at the end of this procedure. Note that if n/g is not integral, not
all of the elements will be colored.

After completing this process, the algorithm greedily selects metrics to include in the subset
K based on the number of colored alternatives in each metric’s column that are not included
in a previously selected metric. Specifically, the algorithm will select the first metric from the

5

set of metrics that have the most colored elements. The second metric is selected from the
set of metrics that have the most new colors, and so on. This process continues until there
are no new colors remaining among the unselected metrics, at which point the algorithm
returns the set of selected metrics.

Algorithm 1 Greedy (pseudo-code)

Require: Preference profile σN , group size g
1: while there exist alternatives with at least g uncolored instances do
2: Choose an alternative a with at least g uncolored instances
3: Color the highest g uncolored instances of a with a new color (breaking ties arbitrarily)
4: end while
5: Initialize K ← ∅
6: Let C be the set of colors used
7: while C is nonempty do
8: Choose a metric i ∈ N \K that covers the most colors in C
9: Add i to K
10: Remove the colors that i covers from C
11: end while
12: return K

The full algorithm is presented in Appendix D. Theorem 2.3 gives the formal bound for
Algorithm 1.

Theorem 2.3 (Proof in Appendix E). For any preference profile σN and any group size g,
Algorithm 1 terminates in polynomial time and returns a subset K with |K| ≤ O(n

g
log(m))

which satisfies positional representation for group size g .

Proof sketch. The key idea of the proof is to keep track of the number of distinct colors that
K does not yet cover after iteration t of the loop on Line 7 of Algorithm 1. Denote this
quantity Qt. By construction, the number of colors at the beginning of the loop is Q0 ≤ mn

g
.

The algorithm terminates at the smallest time t where Qt = 0. We first show that for each
round of the loop, the metric i ∈ N \ K that covers the most remaining colors in C must
cover at least Qt

n/g
colors. Therefore, for all t, we have Qt+1 ≤ Qt

(
1− g

n

)
. We also know that

if Qt ≤ n/g, then Qt+1 ≤ Qt−1. Combining these two equations, we show the desired result
that Qt = 0 for t ≥ (n/g + 1) log(m).

Because any K satisfying positional representation must have size at least ⌊n/g⌋, Algorithm
1 selects no more than a log(m) factor more metrics than the smallest number needed to
satisfy positional representation, For any σN . For a given σN , we can find the minimum
number of metrics needed to satisfy positional representation using an integer program (see
Appendix A); however this is not guaranteed to run in polynomial time.

3 Positional proportionality

While positional representation guarantees that each alternative gets sufficient represen-
tation in the subset of metrics chosen for each position cutoff, it does not prevent over-

6

representation. For example, if an alternative a is ranked in the top 10 in σN exactly g
times, then in order to satisfy positional representation with parameter g, a must be ranked
in the top 10 in σK at least once. However, there’s no upper bound on how many times
a can be ranked in the top 10— it could be possible to satisfy positional representation for
this instance and have a ranked in the top 10 by every metric in K.

In this section, we define a notion of proportionality which prevents both under-representation
and over-representation. This notion, positional proportionality, is especially useful for re-
covering summary information such as the fraction of metrics which rank an alternative in
the top half. We will show that if K satisfies positional proportionality for σN , then any
positional scoring rule evaluated on σK is a good approximation for the same scoring rule
evaluated on σN .

Informally, positional proportionality guarantees that for every alternative and position cut-
off, K preserves the fraction of times that alternative is ranked above that position cutoff
within an additive error ϵ. From this guarantee, we can also recover the fraction of times
that each alternative is ranked at each specific position within an additive error. The formal
definition for positional proportionality follows below.

Definition 3.1. A subset K satisfies ϵ-positional proportionality for ϵ ≥ 0 if for every
alternative a ∈ A and every r ∈ [m], the fraction of metrics that rank a in the top r in N is
within ϵ of the fraction of metrics that rank a in the top r in K. Formally, for all a ∈ A and
r ∈ [m], ∣∣∣∣C(N, r, a)

|N |
− C(K, r, a)

|K|

∣∣∣∣ ≤ ϵ. (2)

Note that, unlike positional representation, positional proportionality is not parameterized
by a group size g, but rather by an error ϵ. As in positional representation, the choice of ϵ
trades off the accuracy guarantee for proportionality with the minimum size of K necessary.
As ϵ increases, the size |K| decreases, but the error in how well K captures N for each alter-
native and position cutoff may increase. As a concrete example of positional proportionality,
suppose that we have n = 100 metrics and use parameter ϵ = 1

25
. Further suppose that a

is ranked first by exactly 20 metrics in N . Then Definition 3.1 requires that the fraction
of metrics in K that rank a first is between 4

25
and 6

25
. Definition 3.1 further requires that

approximate proportionality holds for every alternative at every position cutoff.

While both positional representation and positional proportionality enforce ways that K
must be representative of N , neither property implies the other, and neither is weakly eas-
ier to satisfy. In particular, positional representation strictly prevents under-representation,
while positional proportionality approximately prevents both under-representation and over-
representation. In the worst-case (and, we expect, in the typical case), the minimum number
of metrics needed to satisfy positional representation with parameter g is less than the mini-
mum number of metrics needed to satisfy positional proportionality with ϵ = g/n. However,
this is not always the case. For instance, suppose that every metric in N has the exact same
ranking over alternatives. Then positional proportionality can be satisfied with |K| = 1 for
any ϵ ≥ 0 by choosing an arbitrary metric. However, for any g ≤ |N |/2, positional repre-
sentation cannot be satisfied with less than |K| = 2. Intuitively, this is because positional

7

proportionality gives a fractional guarantee, while positional representation gives an abso-
lute guarantee, which sometimes allows positional proportionality to be more efficient in its
information aggregation.

3.1 Upper and Lower Bounds

In this section, we present upper and lower bounds on the number of metrics necessary to
guarantee positional proportionality. First, we show that for any preference profile σN , there
always exists a set |K| with size |K| = O

(
1
ϵ2
log(m)

)
that satisfies positional proportionality.

Theorem 3.2 (Proof in Appendix G). For every preference profile σN and ϵ ≥ 0, there
exists K ⊂ N with |K| ≤ 1

ϵ2
log(2m) that satisfies positional proportionality.

We next show that there exist preference profiles σN for which there is no K with size less
than Ω(1

ϵ2
log(m)) that satisfies positional proportionality. Importantly, this shows that the

result of Theorem 3.2 is tight up to constant factors.

Theorem 3.3 (Proof in Appendix H). For any ϵ ≤ 1/24, there exist σN such that no K ⊆ N
with |K| ≤ 1

288ϵ2
log(m) satisfies ϵ-positional proportionality.

Proof sketch. We prove this result by designing a random σN such that with positive prob-
ability, there is no K ⊆ N with |K| ≤ 1

288ϵ2
log(m) that satisfies ϵ-positional proportionality.

We construct the random σN as follows. For every metric i and every j ∈ [m/2], with
probability 1/2 we will have alternative 2j ranked in position 2j and alternative 2j + 1 in
alternative 2j+1, and with probability 1/2 we will have alternative 2j+1 ranked in position
2j and alternative 2j ranked in position 2j + 1. This is done independently for all metrics
i and all j. For each fixed K ⊆ N with |K| ≤ 1

288ϵ2
log(m), we upper bound the proba-

bility that K satisfies ϵ-positional proportionality to be exponentially small. Intuitively, K
has an exponentially small probability of satisfying ϵ-positional proportionality because the
randomly assigned rankings must be approximately evenly distributed for all j ∈ [m

2
] simul-

taneously, and independence implies this has small probability. We formally show this using
an inverse version of Hoeffding’s Inequality. After bounding the probability of any fixed K
satisfying ϵ-positional proportionality, a union bound gives that with positive probability, no
such K satisfies ϵ-positional proportionality. This proves there must exist a profile σN such
that no K with |K| ≤ 1

288ϵ2
log(m) satisfies ϵ-positional proportionality.

As with positional representation, we can find the smallest K that satisfies positional pro-
portionality for a given instance using an integer program (see Equation (4) in Appendix
A).

3.2 Approximating Scoring Rules

A nice feature of positional proportionality is that it allows us to approximate scoring rules
evaluated on σN using only σK . Informally, a scoring rule such as Borda count aggregates
multiple rankings into a single ranking by assigning scores to each alternative based on its
position in each of the original rankings (Young, 1975). Because positional proportionality

8

approximates the frequency at which an alternative a is ranked above a cutoff r up to an
ϵ additive error, positional proportionality also approximates the frequency at which a is
ranked at exactly position r up to a 2ϵ additive error. This information in turn allows us
to estimate the result of any scoring rule evaluated on σN , which is especially helpful when
σN is an intermediary of another computation, such as when σN is being used to decide a
single winning alternative or a single meta-ranking.

Formally, a scoring rule has an associated score vector s ∈ Rm, where s1 ≥ ... ≥ sm. It is
without loss of generality to normalize so that s1 = 1 and sm = 0. When using a scoring
rule to aggregate rankings, each metric awards sr points to the alternative that is ranked
in position r, which results in each alternative having an average score of fs(a,σN) :=
1

|N |
∑

i∈N sσi(a). In Theorem 3.4, we show that given any scoring rule and any K satisfying
ϵ-positional proportionality, every alternative has approximately the same average score in
σK as in σN .

Theorem 3.4 (Proof in Appendix I). If a subset K satisfies ϵ-positional proportionality, then
for every scoring rule with score vector s and every alternative a ∈ A, |fs(a,σN)− fs(a,σK)| ≤
ϵ.

4 Generalizations

In previous sections, our goal has been to choose a subset of metrics that preserves rank
information from the original set. However, there may be other types of information we
would like to preserve instead of or in addition to rank information. For example, perhaps
the metrics fall into different categories, and we want to include sufficiently many metrics
of each category. It turns out that we can generalize both positional representation and
positional proportionality to settings like this.

Formally, suppose we have a collection of γ groups of metrics G = {Gi}γi=1 where Gi ⊆ N .
Our goal is to choose a K that represents every Gi ∈ G. In the following two definitions, we
generalize both positional representation and positional proportionality to this setting.

Definition 4.1. For a given N and collection of groups G, a subset K ⊆ N satisfies gener-

alized representation for group size g if for every Gi ∈ G, |K ∩Gi| ≥
⌊
|Gi|
g

⌋
.

Definition 4.2. For a given N and collection of groups G, a subset K ⊆ N satisfies ϵ-

generalized proportionality for ϵ ≥ 0 if for every Gi ∈ G,
∣∣∣ |Gi|
|N | −

|K∩Gi|
|K|

∣∣∣ ≤ ϵ.

Note that positional representation (Definition 2.1) and positional proportionality (Definition
3.1) are special cases of Definitions 4.1 and 4.2 for a specific choice of G that depends on
σN . Specifically, given σN , we can construct G as follows. Let γ = m2 and let G = {Gar}
where for each a ∈ A and r ∈ [m] we define Gar := {i ∈ N : σi(a) ≤ r}. In other
words, for every a ∈ A and r ∈ [m], there is one group in G that corresponds to all of the
metrics that rank a in the top r positions. By construction, any subset K that satisfies
generalized representation/proportionality for this choice of G will also satisfy positional
representation/proportionality.

9

While the groups in Definitions 4.1 and 4.2 can be based on σN , they need not be. Definitions
4.1 and 4.2 give us the freedom to define groups in whatever way is useful, which in turn
allows us to specify which types of information to preserve. Below are some examples of
groups we could define:

• Suppose some metrics are in English, some are in Chinese, and some are in Spanish.
Then for each language, we could have a group in G corresponding to all metrics in that
language.

• Suppose the metrics have a range of difficulty. Then for each difficulty level (e.g. very
easy, easy, hard, very hard), we could have a group in G corresponding to all metrics of
that difficulty level.

• Suppose we have ten experts who each believe a different subset of metrics are important.
Then for each expert, we could have a group in G including all metrics that expert supports.

In Appendix B, we show how the lower and upper bounds of Theorems 2.2–3.3 can be
generalized to give bounds for Definitions 4.1 and 4.2. In Appendix B, we also discuss the
relationship between Definition 4.1 and set cover. Finally, we show that finding the smallest
set that satisfies either Definition 4.2 or Definition 4.1 is NP-hard.

5 Empirical Case Studies

We demonstrate our proposed definitions and algorithms on three real-world case studies
that involve selecting a subset of metrics for evaluation and decision making. To illustrate
the wide potential applicability of our approach, we consider two case studies on evaluating
LLM capabilities, and one case study on evaluating hospital quality. Each case study includes
a full set of metrics, an existing subset of metrics currently deployed (e.g., an existing LITE
benchmark), and a set of alternatives. Our experiments focus on two goals: (i) supplementing
our theory by comparing the performance of our algorithms relative to the stated upper and
lower bounds on real datasets, and (ii) demonstrating practical relevance by comparing
against existing deployed subsets. An additional consideration is that a practitioner might
want to keep an existing curated subset, so we also show that our algorithms can also be
used to augment an existing subset. We summarize each case study below, and provide more
details and code in the Supplemental Materials.

Case Study 1: BIG-bench (Srivastava et al., 2022). We consider the problem of
selecting a subset of n = 141 BIG-bench JSON metrics to include in a “lite” version. The
existing BIG-bench Lite includes k = 24 JSON metrics, and was “designed to provide a
canonical measure of model performance, while being far cheaper to evaluate than the full
set.” The alternatives consist of m = 120 LLMs from three model families.

Case Study 2: HELM (Liang et al., 2022). We next consider the problem of selecting
a subset of n = 34 scenarios available on HELM Classic for a Lite version. For this case
study, we compare against the k = 7 metrics from HELM Lite that are from HELM Classic.

10

The alternatives consist of m = 67 models that appeared on the HELM Classic leaderboard
as of March, 2025.

Case Study 3: Cal Hospital Compare (Cal Hospital Compare, 2025). Beyond
LLMs, we also demonstrate how our methods can apply more widely through a case study
on hospital quality evaluation. Cal Hospital Compare uses a subset of k = 12 hospital quality
metrics selected from a full set of metrics collected by the Centers for Medicare and Medicaid
Services (CMS). For the purposes of this illustration, we consider the problem of selecting
a “representative” set of quality metrics from the n = 50 existing patient safety metrics
available in the CMS Hospital Compare database. The alternatives consist of m = 282
hospitals in California.

5.1 Results

We now empirically evaluate the performance of the proposed algorithms for achieving po-
sitional representation (PR) and positional proportionality (PP). We evaluate each method
by comparing the subset sizes |K| achieved for each tolerance parameter (group size g for
PR, tolerance ϵ for PP). Smaller subsets are better.

Positional Representation. We first evaluate the performance of Algorithm 1 (Greedy)
relative to our theoretical upper and lower bounds, as well as the optimal integer program-
ming solution.3 Figure 1 shows that in practice, the greedy algorithm performs significantly
better than the upper bound, but a gap remains relative to the optimal integer programming
solution for small group sizes.

For all case studies, the greedy algorithm finds a subset smaller than the existing subset,
while guaranteeing positional representation for a smaller group size g than the existing
subset guarantees (marked by the blue points in the bottom left quadrant). This suggests
that if positional representation is important to a practitioner, it is possible to achieve it
more efficiently than the existing subset.

In practice, the existing subset is often carefully curated. Thus, we also evaluate the perfor-
mance of using our greedy and integer programming algorithms to optimally augment the
existing subset for PR. Figure 1 shows that a subset optimally augmented using an integer
program can perform better than the greedy algorithm for small group sizes. A computa-
tional advantage of augmenting the existing subset is that it reduces the free parameters of
the integer programming problem. Thus, augmenting the existing subset could be a compu-
tationally practical approach that can beat the greedy algorithm in some cases, and is worth
considering by practitioners.

Positional Proportionality. For positional proportionality, we compare the integer pro-
gramming solutions to the existing subsets. Figure 2 shows that for all datasets, the IP is

3The optimal integer program is computationally feasible as our real instances have n ≤ 141 and m ≤ 282.
Even when the IP is employed, Theorem 2.3 is directly useful as it upper bounds the size of the optimal
solution.

11

BIG-bench HELM Cal Hospital Compare

0 10 20 30 40 50 60 70
Group size g

0

20

40

60

80

100

120

140
Se

le
ct

ed
 s

ub
se

t s
iz

e
|K

|
Greedy
IP
Greedy augmented
IP augmented
Upper bound
Lower bound
Size of existing subset
Min g for
 existing subset

0 5 10 15 20 25 30
Group size g

0

5

10

15

20

25

30

35

Se
le

ct
ed

 s
ub

se
t s

iz
e

|K
|

0 10 20 30 40 50
Group size g

0

10

20

30

40

50

60

Se
le

ct
ed

 s
ub

se
t s

iz
e

|K
|

Figure 1: Results of running greedy and integer programming algorithms to achieve posi-
tional representation. The upper and lower bounds are from Theorems 2.3 and 2.2. The
dashed red line marks the smallest g for which the existing subset guarantees PR.

BIG-bench HELM Cal Hospital Compare

0.0 0.2 0.4 0.6 0.8
Tolerance

0

20

40

60

80

100

120

140

Se
le

ct
ed

 s
ub

se
t s

iz
e

|K
|

IP
IP augmented
Upper bound
Lower bound
Size of existing subset
Min for
 existing subset

0.0 0.2 0.4 0.6 0.8
Tolerance

0

5

10

15

20

25

30

35

40

Se
le

ct
ed

 s
ub

se
t s

iz
e

|K
|

0.0 0.2 0.4 0.6 0.8
Tolerance

0

10

20

30

40

50

60

Se
le

ct
ed

 s
ub

se
t s

iz
e

|K
|

Figure 2: Results of running integer programming algorithms to achieve positional propor-
tionality. The dashed red line marks the smallest ϵ for which the existing subset guarantees
PP. The upper and lower bounds are from Theorems 3.2 and 3.3

able to find subsets of a smaller size than the existing subset that can guarantee PP at a
lower ϵ tolerance. This again suggests that there exist more efficient ways to achieve PP.
As with PR, it is also possible to augment the existing subset to achieve PP. This was most
apparent with Cal Hospital Compare, where it is possible to achieve a much smaller ϵ by
adding less than five more metrics.

6 Discussion

We conclude by discussing limitations and future directions. In our work, we introduced
two desirable properties that a subset of metrics should have in order to preserve rank
information from the original set of metrics. One limitation is that it is not clear whether
the subset chosen is good for evaluating new alternatives, especially if there is a distribution
shift in the nature of alternatives over time (e.g., major advancements in LLMs). While we
expect that the chosen subset of metrics will be reasonable at evaluating new alternatives in
the short term, we recommend occasionally recomputing the subset as necessary to account
for new metrics joining the overall set or paradigm shifts among the alternatives. As an
open question, it would also be interesting to obtain theoretical guarantees about how well

12

a selected subset of metrics generalizes to evaluating new alternatives.

Throughout our work, we attempt to curate a subset which is reflective of the overall set.
However, if the overall set is biased or some types of metrics are overrepresented, we would
expect that bias to be reflected in our subset as well. The purpose of our work is to select a
good subset of metrics assuming the overall set captures what the user wants. This means
our algorithms are agnostic to how and why the overall set of metrics was selected, which
allows for tremendous flexibility, but also puts some onus on the user to make sure the overall
set achieves the desired objective.

There are several other future directions of note. First, while we provide some case studies
in Section 5, it would certainly be interesting to study other practical settings and the best
choice of parameters g and ϵ in each. In this work, we largely did not discuss what to do
when there is missing data, i.e., if not all metrics rank all alternatives. While one natural
approach is to assume all missing alternatives are tied for last, this is not the only viable
approach, and we leave exploration in this direction to future work. Finally, certain metrics
may have higher costs (e.g., running them may require more computational resources). It
would be interesting to explore how to balance cost and usefulness of metrics when selecting
a representative subset, especially if the user is budget-constrained.

References

Haris Aziz, Markus Brill, Vincent Conitzer, Edith Elkind, Rupert Freeman, and Toby Walsh.
Justified representation in approval-based committee voting. Social Choice and Welfare,
48(2):461–485, 2017.

Rémi Bardenet and Odalric-Ambrym Maillard. Concentration inequalities for sampling with-
out replacement. Bernoulli, 21(3), 2015.

Cal Hospital Compare. Patient safety honor roll. 2025. URL https://

calhospitalcompare.org/programs/patient-safety-honor-roll/.

Ioannis Caragiannis, Evi Micha, and Nisarg Shah. Proportional fairness in non-centroid
clustering. Advances in Neural Information Processing Systems, 37:19139–19166, 2024.

Chandra Chekuri, Kenneth L Clarkson, and Sariel Har-Peled. On the set multicover problem
in geometric settings. ACM Transactions on Algorithms (TALG), 9(1):1–17, 2012.

Xingyu Chen, Brandon Fain, Liang Lyu, and Kamesh Munagala. Proportionally fair clus-
tering. In International conference on machine learning, pages 1032–1041. PMLR, 2019.

Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations
research, 4(3):233–235, 1979.

Pierre Colombo, Nathan Noiry, Ekhine Irurozki, and Stéphan Clémençon. What are the
best systems? new perspectives on nlp benchmarking. Advances in Neural Information
Processing Systems, 35:26915–26932, 2022a.

13

https://calhospitalcompare.org/programs/patient-safety-honor-roll/
https://calhospitalcompare.org/programs/patient-safety-honor-roll/

Pierre Jean A Colombo, Chloé Clavel, and Pablo Piantanida. Infolm: A new metric to
evaluate summarization & data2text generation. In Proceedings of the AAAI conference
on artificial intelligence, volume 36, pages 10554–10562, 2022b.

Anas Himmi, Ekhine Irurozki, Nathan Noiry, Stephan Clemencon, and Pierre Colombo.
Towards more robust nlp system evaluation: Handling missing scores in benchmarks.
arXiv preprint arXiv:2305.10284, 2023.

Qiang-Sheng Hua, Dongxiao Yu, Francis CM Lau, and Yuexuan Wang. Exact algorithms for
set multicover and multiset multicover problems. In Algorithms and Computation: 20th
International Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009.
Proceedings 20, pages 34–44. Springer, 2009.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?
arXiv preprint arXiv:2310.06770, 2023.

David S Johnson. Approximation algorithms for combinatorial problems. In Proceedings of
the fifth annual ACM symposium on Theory of computing, pages 38–49, 1973.

Yusuf Hakan Kalayci, Jiasen Liu, and David Kempe. Full proportional justified representa-
tion. arXiv preprint arXiv:2501.12015, 2025.

Yang Li, Jie Ma, Miguel Ballesteros, Yassine Benajiba, and Graham Horwood. Active
evaluation acquisition for efficient llm benchmarking. arXiv preprint arXiv:2410.05952,
2024.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Ya-
sunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic
evaluation of language models. arXiv preprint arXiv:2211.09110, 2022.

Jǐŕı Matoušek and Jan Vondrák. The probabilistic method: lecture notes. Charles Univ.,
2001.

Evi Micha and Nisarg Shah. Proportionally fair clustering revisited. In 47th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2020), pages 85–1.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

Swaroop Mishra and Anjana Arunkumar. How robust are model rankings: A leaderboard
customization approach for equitable evaluation. In Proceedings of the AAAI conference
on Artificial Intelligence, volume 35, pages 13561–13569, 2021.

Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM journal on
computing, 24(2):227–234, 1995.

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv, Liat Ein-Dor, Eyal Shnarch, Noam
Slonim, Michal Shmueli-Scheuer, and Leshem Choshen. Efficient benchmarking of lan-
guage models. arXiv preprint arXiv:2308.11696, 2023.

14

Dominik Peters, Grzegorz Pierczyński, and Piotr Skowron. Proportional participatory bud-
geting with additive utilities. Advances in Neural Information Processing Systems, 34:
12726–12737, 2021.

Maxime Peyrard, Teresa Botschen, and Iryna Gurevych. Learning to score system summaries
for better content selection evaluation. In Proceedings of the Workshop on New Frontiers
in Summarization, pages 74–84, 2017.

Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail
Yurochkin. tinybenchmarks: evaluating llms with fewer examples. arXiv preprint
arXiv:2402.14992, 2024.

Mark Rofin, Vladislav Mikhailov, Mikhail Florinskiy, Andrey Kravchenko, Elena Tutubalina,
Tatiana Shavrina, Daniel Karabekyan, and Ekaterina Artemova. Vote’n’rank: Revision of
benchmarking with social choice theory. arXiv preprint arXiv:2210.05769, 2022.

Luis Sánchez-Fernández, Edith Elkind, Martin Lackner, Norberto Fernández, Jesús Fisteus,
Pablo Basanta Val, and Piotr Skowron. Proportional justified representation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Piotr Skowron and Piotr Faliszewski. Fully proportional representation with approval ballots:
Approximating the maxcover problem with bounded frequencies in fpt time. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

H. P. Young. Social choice scoring functions. SIAM Journal of Applied Mathematics, 28(4):
824–838, 1975.

Guanhua Zhang and Moritz Hardt. Inherent trade-offs between diversity and stability in
multi-task benchmark. arXiv preprint arXiv:2405.01719, 2024.

15

A Integer Programs

In this section, we present integer programs which for a given instance σN give the small-
est number of metrics necessary to guarantee either positional representation or positional
proportionality

First, we define Sra to be the set of metrics which rank a at least as high as r, i.e. Sra =
{i ∈ N : σi(a) ≤ r}.

The IP for finding the minimum size set that satisfies positional representation is as follows:

min
∑
i∈N

xi

s.t.
∑
i∈Sra

xi ≥
⌊
C(N, r, a)

g

⌋
∀ r ∈ [m], a ∈ A

xi ∈ {0, 1} ∀ i ∈ [n] (3)

The IP for finding the minimum size subset that satisfies positional proportionality is as
follows:

min
∑
i∈N

xi

s.t.
∑
i∈Sra

xi ≥
(
C(N, r, a)

|N |
− ϵ

)(∑
i∈N

xi

)
∀ r ∈ [m], a ∈ A

∑
i∈Sra

xi ≤
(
C(N, r, a)

|N |
+ ϵ

)(∑
i∈N

xi

)
∀ r ∈ [m], a ∈ A

xi ∈ {0, 1} ∀ i ∈ [n] (4)

B General Versions and Set Cover

B.1 Theoretical Results

Our main theoretical results from the previous two sections generalize to this setting. The
main difference is that the log term in the theorem statement will now depend on the size of
G. Intuitively, if G is bigger, then more metrics are needed to guarantee representation for
all G ∈ G. We state the generalizations of the upper bounds in Theorems B.1 and B.2. Note
that in the ranking setting, |G| = m2, so Theorems B.1 and B.2 give a worse upper bound
than Theorems 2.3 and 3.2. This is because for positional representation and positional
proportionality, we have a better upper bound on the total size over all groups.

Theorem B.1. For any σN , collection of groups G, and group size g, the generalized greedy
algorithm (Algorithm 2) terminates in polynomial time and returns a subset K with |K| ≤
n
g
log (|G|) which satisfies generalized representation for group size g .

16

proof. The proof of this result follows as in the proof of Theorem 2.3, except that instead of
Q0 ≤ mα we have that Q0 ≤ |G|α. The rest of the recursion proof follows exactly the same
to give the desired bound.

Theorem B.2. For any σN , collection of groups G, and ϵ > 0, there exists a subset K with
size |K| ≤ 1

2ϵ2
log (4|G|) that satisfies generalized proportionality.

proof. The proof follows as in the proof of Theorem 3.2, except we now have a union bound
over all |G| groups rather than all m2 combinations of a and r.

Because positional representation and positional proportionality are special cases of general
representation and general proportionality, the lower bounds of Theorems 2.2 and 3.3 also
directly generalize to the general versions of these properties.

B.2 Relationship to Set Cover

General representation (Definition 4.1) is closely related to set cover, but has some key
differences. In set cover, the input is a set of elements U and a collection of subsets C where
C ⊆ U for all C ∈ C. The goal is to find the smallest number of subsets from C whose union
is equal to U . Similarly, in order to satisfy general representation, we need to find a subset
of metrics which covers each group sufficiently many times. However, general representation
differs from set cover in that in general representation, the number of times each G (element)
needs to be covered depends on the number of metrics that are in G. For example, if |G| < g,
then G does not need to be covered by K at all. On the other hand, if |G| = ℓg, then G
needs to be covered at least ℓ times in K. Note that general representation also differs from
the set multi-cover problem (where each element has a given number of times it must be
covered) because in that problem, the number of times an element must be covered is not
tied to its frequency (Chekuri et al., 2012; Hua et al., 2009).

More formally, suppose we index G = {G1, ..., Gγ}. Consider the set cover problem with
U = {1, ..., γ} and C = {C1, ..., Cn}, where Ci = {j ∈ [γ] : i ∈ Gj}. The goal of set cover
for this choice of U and C is to find the smallest K ⊆ [N] such that for every u ∈ U ,
|{i ∈ K : u ∈ Ci}| ≥ 1. Using the same notation, the goal of finding the smallest K that
satisfies general representation is equivalent to finding the smallest K ⊆ N such that for

every u ∈ U , |{i ∈ K : u ∈ Ci}| ≥
⌊
|{i∈N :u∈Ci}|

g

⌋
.

It is well-known that there exists an algorithm which achieves a ln(|C|)-approximation for
set cover (Johnson, 1973; Chvatal, 1979). We note that Theorem B.1 is not subsumed by
this result. First, observe that both these theorems guarantee an absolute bound on the
number of benchmarks that are needed to satisfy general representation, rather than an
approximation to the minimum number of benchmarks needed. In set cover, it is impossible
to guarantee an absolute bound better than |C| – consider, for instance, the set cover instance
where ⌋ = {{u} : u ∈ U}. Second, as mentioned earlier, general representation differs from
set cover by requiring representation for an element based on the frequency that element
appears.

17

We show that it is NP-hard to find the minimum size subset that satisfies either Definition
4.1 or Definition 4.2. The proofs of Theorems B.3 and B.4 can be found in Appendix K.1
and K.2 respectively.

Theorem B.3. The problem of finding the smallest set K that satisfies generalized repre-
sentation (Definition 4.1) is NP-hard.

Theorem B.4. The problem of finding the smallest set K that satisfies generalized propor-
tionality (Definition 4.2) is NP-hard.

C Additional Related Works

In the setting of JR, there are n voters and m candidates, and each voter indicates whether
they approve of each candidate. Based on this approval information, the goal is to select
a committee of size k from the candidates. JR considers every cohesive coalition of voters,
which is a group of size at least n/k that all approve the same candidate. A committee
then satisfies JR if at least one member of every such cohesive coalition approves of some
candidate in the committee. Proportional Justified Representation (PJR) introduced by
Sánchez-Fernández et al. (2017) extends JR by requiring further that that larger coalitions
with more agreement will have more representation in the committee. Many other variations
on justified representation have also been studied, including (but not limited to) Extended
Justified Representation (Aziz et al., 2017), Full Justified Representation (Peters et al.,
2021), Full Proportional Justified Representation (Kalayci et al., 2025). Like JR, positional
representation guarantees representation for every sufficiently large “coalition” of metrics
that all rank an alternative a above a position r, with proportionally more representation
for larger coalitions. Unlike in JR, in positional representation there are no external voters;
rather, the metrics serve as both the voters and the candidates. Furthermore (and also
unlike JR), metrics do not indicate whether they approve of other metrics – instead, whether
representation is deserved is based solely on the rankings.

There is also a line of work on proportionally fair clustering that uses similar notions of
coalitions of size n/k (Chen et al., 2019; Micha and Shah, 2020; Caragiannis et al., 2024).
These works differ from our setting in that there is no notion of ranking representation.
Another major difference between these works and our setting is that our set of selected
metrics must be a subset of all metrics, while clustering algorithms are generally able to
choose any points as the centers of the cluster.

D Full Greedy Algorithm

During the algorithm, we assign labels (or “colors”) to metrics. We use the set of natural
numbers as labels, and let c represent the lowest unused natural number. Ci is the set of
labels assigned to metric i. At any point in time, Sj represents the set of metrics that have
already approved alternative j but have not yet been assigned a j-label.

18

Algorithm 2 Greedy for positional representation

1: Input: Preference profile σN , group size g
2: Initialize Sj ← ∅ for all j ∈ [m], Ci ← ∅ for all i ∈ [n], and c← 1
3: for each r ∈ [m] do
4: for each i ∈ [n] do
5: Let j ← σir

6: Add i to Sj

7: if |Sj| = g then
8: for each i′ ∈ Sj do
9: Add c to Ci′

10: end for
11: c← c+ 1
12: Sj ← ∅
13: end if
14: end for
15: end for
16: Let C ← {1, 2, . . . , c− 1}, K ← ∅
17: while C ̸= ∅ do
18: Select i← argmaxi′ |Ci′ |
19: Add i to K
20: for each x ∈ Ci do
21: for each i′ ∈ [n] do
22: if x ∈ Ci′ then
23: Remove x from Ci′

24: end if
25: end for
26: Remove x from C
27: end for
28: end while
29: Return K

E Proof of Theorem 2.3

Proof of Theorem 2.3. First, map each label to a unique color. Greedy adds one metric
to the set K in each iteration of the loop on Line 17 and this loop ends once all colors are
covered. To bound the number of iterations, we analyze how many colors are not yet covered
by K at each step.

Let α = n/g, and let Qt be the number of uncovered colors after t iterations of the loop on
Line 17 of Algorithm 3. Initially, Q0 = m⌊n

g
⌋ ≤ m · α. Each color is covered by exactly g

metrics and is covered at most once by each metric, so if there are strictly more than s · α
colors remaining for any integer s ≥ 1, there must exist a metric covering at least s + 1
uncovered colors. In other words, if there are Qt colors remaining after iteration t, then the
next metric chosen at iteration t+1 must contain at least ⌈Qt/α⌉ distinct colors. This gives

19

the following recurrence:

Qt+1 ≤ Qt − ⌈Qt/α⌉ ≤ Qt · (1− 1/α).

Because Q0 ≤ m · α, this means that

Qt ≤ m · α · (1− 1/α)t. (5)

Once Qt ≤ α, every metric chosen by the algorithm will still contain at least one new
uncovered color, so for Qt ≤ α we have that

Qt+1 ≤ Qt − 1.

This means that once Qt ≤ α, the loop will finish in at most α additional steps.

Now, we will upper bound the number of steps until Qt ≤ α. By Equation (5), we have that
Qt ≤ α for any t satisfying

m · α · (1− 1/α)t ≤ α.

Solving and simplifying this equation gives that Qt ≤ α for any t satisfying

t ≥ log(m)/ log(α/(α− 1)).

Note that

log(α/(α− 1)) = log(α)− log(α− 1) =

∫ α

α−1

1/xdx ≥ 1/α.

Combining the previous two equations, we have that Qt ≤ α for any t satisfying

t ≥ α · log(m).

As we argued above, the algorithm will only add at most α more metrics once Qt ≤ α,
therefore the total number of metrics added to K by Greedy is at most

α + α · log(m) = O

(
n

g
log(m)

)
as desired.

F Proof of Theorem 2.2

Proof of Theorem 2.2. Fix any g ≥ 2. Choose any m and n such that n
g
≥ 3 is an integer

and such that

m = 2

(
n

g

)
.

Construct σN as follows. First, enumerate all
(
n
g

)
distinct subsets ofN of size g as {G1, ..., G(ng)

}.
We will assign 2 distinct alternatives to each of the first

(
n
g

)
ranking places. Let {ar, br} be

the alternatives assigned to rank r for r ∈ [1 :
(
n
g

)
]. Let σir = ar if i ∈ Gr and σir = br if

20

i ̸∈ Gr. Therefore, alternative ar will be ranked r by exactly g metrics while alternative br
will be ranked r by exactly n− g metrics. This means that only alternatives in {ar, br} will
be ranked in position r for any of the metrics.

Now set the rest of the rankings (for positions
(
n
g

)
+ 1 through m) of the metrics arbitrarily

in any valid way. This will not matter for the rest of the proof.

Define α = n/g. Next, we will show that no set of metrics can satisfy positional represen-
tation for group size g in this example with K having size less than (α− 1)g + 1. Proof by
contradiction. Suppose we have a set K such that |K| ≤ (α− 1)g and K satisfies positional
representation for group size g. Then there must be a set of g metrics not included in K.
Denote this set of g metrics as G. Because we used every possible subset of N for the per-
mutations of ar, br in the first

(
n
g

)
positions, there is some position r̂ and some alternative

ar̂ such that ar̂ is ranked exactly r̂ in every metric in G and such that ar̂ does not appear
ranked in the top r̂ in any metric not in G. In order for K to satisfy positional representa-
tion for group size g, at least one of the rankings in G must be included in K, which is a
contradiction.

Therefore, we must have that any K satisfying positional representation for group size g
must satisfy |K| > (α− 1)g.

Furthermore,

log(m) = log

(
2

(
n

g

))
≤ log(2ng) = g log(n) + log(2) ≤ 2g log(n).

The previous equation implies that g ≥ log(m)
2 log(n)

. Using this on the third line below, we have
that for any K satisfying positional representation,

|K| ≥ (α− 1)g

=

(
n

g
− 1

)
g

≥ (n/g − 1) log(m)

2 log(n)

≥
n
2g
log(m)

2 log(n)

=

n
g
log(m)

4 log(n)
. (6)

The last step is to upper bound log(n). By construction,

m = 2

(
n

g

)
≥ 2

(
n

g

)g

= 2αn/α.

Taking the log of both sides,

log(m) ≥ log(2) +
n

α
log(α),

21

which simplifies to

n ≤ α(log(m)− log(2))

log(α)
.

Taking a log of both sides again gives

log(n) ≤ log

(
α(log(m)− log(2))

log(α)

)
≤ log(α log(m)) = log

(
n

g
log(m)

)
.

Combining this with Equation (6), we have the desired result that for any K satisfying
positional representation,

|K| ≥
n
g
log(m)

4 log
(

n
g
log(m)

) .

G Proof of Theorem 3.2

We use the probabilistic method. Suppose we selectK by choosing exactly 1
ϵ2
log(2m) random

metrics from N one-by-one. Consider any fixed alternative a and position r. Let X1, ..., X|K|
be indicator random variables where Xi is 1 if a is ranked in the top r by the ith chosen
metric in K. Then we have that E[Xi] =

C(N,r,a)
|N | for all i. We will use the following version

of Hoeffding’s inequality for random variables chosen without Replacement

Lemma G.1 (Hoeffding’s without replacement Bardenet and Maillard (2015)). Let X =
(x1, . . . , xN) be a finite population of N real numbers, and let X1, . . . , Xn be a random sample
drawn without replacement from X. Define:

a = min
1≤i≤N

xi, b = max
1≤i≤N

xi, µ =
1

N

N∑
i=1

xi.

Then, for all ε > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2nε2

(b− a)2

)
.

Applying Lemma G.1, we have that

Pr

(∣∣∣∣C(N, r, a)

|N |
− C(K, r, a)

|K|

∣∣∣∣ > ϵ

)
= Pr

∣∣∣∣∣∣ 1

|K|

|K|∑
i=1

Xi −
C(N, r, a)

|N |

∣∣∣∣∣∣ > ϵ

≤ 2e−2|K|ϵ2

= 2e−2 log(2m)

=
1

2m2
.

22

By a union bound over all m2 combinations of a and r, we then have that

Pr

(
∃a, r :

∣∣∣∣C(N, r, a)

|N |
− C(K, r, a)

|K|

∣∣∣∣ > ϵ

)
≤ m2 · 1

2m2
= 1/2.

We can then take the complement of the event above to observe that K satisfies positional
proportionality with probability at least 1

2
. This probability is positive, so there must exist

a K with |K| ≤ 1
ϵ2
log(2m) that satisfies positional proportionality.

H Proof of Theorem 3.3

Proof of Theorem 3.3. We will prove this using the probabilistic method. We will show that
there exists a random generation process for σN such that with non-0 probability, no K ⊆ N
with |K| ≤ 1

288ϵ2
log(m) satisfies ϵ-positional proportionality.

First, we will choose n and m such that m is even and n and m are sufficiently large so that
the following three equations hold:

log(m) log(n+ 1)

288ϵ2
−
√
m

60
< − log(2) (7)

log(m) log(n+ 1)

288ϵ2
+ log(m)− 2nϵ2 < − log(2) (8)

1/ϵ ≤ log2
(
30
√
m
)
. (9)

Consider the following random generation process for σN . For metric i ∈ [n], the ranking for
metrics i will be generated as follows. With probability 1/2, metric i will rank alternative
1 in the first position and alternative 2 in the second position, and with probability 1/2
metric i will rank alternative 2 in the first position and alternative 1 in the second position.
Repeat this process for all subsequent pairs of odd/even positions. So for all j ∈ [m

2
], with

probability 1/2 metric i will rank alternative 2j in the 2j position and alternative 2j + 1 in
the 2j + 1 position, and with probability 1/2 metric i will rank alternative 2j + 1 in the 2j
position and alternative 2j in the 2j + 1 position.

We formalize this process as follows. For every j ∈ [m
2
] and i ∈ [1 : n], let Xij ∼

Bernoulli(0.5). If Xij = 0, then metric i ranks alternative 2j in the 2j position and al-
ternative 2j + 1 in the 2j + 1 position. If Xij = 1, then metric i ranks alternative 2j + 1 in
the 2j position and alternative 2j in the 2j + 1 position.

We will now show that with positive probability, no K ⊆ N with |K| ≤ 1
288ϵ2

log(m) will
satisfy ϵ-positional proportionality for the random σN generated as described above.

First, we define an event E, which corresponds to the event that for all j, approximately
1/2 of the metrics rank alternative 2j above alternative 2j+1 and approximately 1/2 of the
metrics rank alternative 2j + 1 above alternative 2j. Formally, define

E :=

{
∀j ∈ [m

2
],

∣∣∣∣∣ 1n
n∑

i=1

(Xij − 0.5)

∣∣∣∣∣ ≤ ϵ

}
.

23

By Hoeffding’s inequality and a union bound,

Pr(¬E) = Pr

(
∃j ∈ [m

2
],

∣∣∣∣∣ 1n
n∑

i=1

(Xij − 0.5)

∣∣∣∣∣ > ϵ

)

≤
m/2∑
j=1

Pr

(∣∣∣∣∣ 1n
n∑

i=1

(Xij − 0.5)

∣∣∣∣∣ > ϵ

)
[Union Bound]

≤ me−2nϵ2 . [Hoeffding’s Inequality] (10)

Now consider any subset K ⊆ N with |K| ≤ 1
288ϵ2

log(m). We will lower bound the proba-
bility that this K does not satisfy positional proportionality.

Pr(K does not satisfy ϵ-positional proportionality)

= Pr

(
∃a ∈ A, r ∈ [m] :

∣∣∣∣C(N, r, a)

n
− C(K, r, a)

|K|

∣∣∣∣ > ϵ

)
= Pr

(
∃j ∈ [m2] :

∣∣∣∣∣ 1

|K|
∑
i∈K

Xij −
1

n

n∑
i=1

Xij

∣∣∣∣∣ > ϵ

)

≥ Pr

({
∀j ∈ [m2],

∣∣∣∣∣ 1n
n∑

i=1

Xij − 0.5

∣∣∣∣∣ ≤ ϵ

}⋂{
∃j ∈ [m2] :

∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

})
[△-ineq.]

= Pr

(
E
⋂{

∃j ∈ [m2] :

∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

})

≥ Pr

(
∃j ∈ [m2] :

∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

)
− Pr(¬E) [Pr(A ∩B) ≥ Pr(A)− Pr(¬B)]

≥ Pr

(
∃j ∈ [m2] :

∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

)
−me−2nϵ2 [Equation (10)]

= 1− Pr

(
∀j ∈ [m2] :

∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ ≤ 2ϵ

)
−me−2nϵ2

= 1−
m/2∏
j=1

Pr

(∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ ≤ 2ϵ

)
−me−2nϵ2 [Ind. of Xij]

≥ 1−
(
1− 1

30
√
m

)m/2

−me−2nϵ2 [Lemma (H.1)]

≥ 1−
(
e
− 1

30
√

m

)m/2

−me−2nϵ2 [1 + x ≤ ex]

= 1− e−
√

m
60 − elog(m)−2nϵ2 . (11)

Using the above equation, we can bound the probability that there exists a |K| with size

24

less than 1
288ϵ2

log(m) that satisfies positional proportionality as follows:

Pr(∃K ⊆ N s.t. |K| ≤ 1

288ϵ2
log(m) and K satisfies ϵ-positional proportionality)

≤
∑

K⊆N,|K|≤ 1
288ϵ2

log(m)

Pr(K satisfies ϵ-positional proportionality) [Union Bound]

≤
∑

K⊆N,|K|≤ 1
288ϵ2

log(m)

(
e−

√
m

60 + elog(m)−2nϵ2
)

[Eq. (11)]

≤ (n+ 1)
1

288ϵ2
log(m)

(
e−

√
m

60 + elog(m)−2nϵ2
)

= e
log(m) log(n+1)

288ϵ2

(
e−

√
m

60 + elog(m)−2nϵ2
)

= Exp

(
log(m) log(n+ 1)

288ϵ2
−
√
m

60

)
+ Exp

(
log(m) log(n+ 1)

288ϵ2
+ log(m)− 2nϵ2

)
< Exp (− log(2)) + Exp (− log(2)) [Eqs (7) and (8)]

= 1/2 + 1/2

= 1.

Therefore, we have shown that with positive probability, there will be no K with size |K| ≤
1

288ϵ2
log(m) that satisfies ϵ-positional proportionality. Finally, we can conclude that there

must exist some ranking σN such that no K with size |K| ≤ 1
288ϵ2

log(m) satisfies ϵ-positional
proportionality.

In the equations above, we used the following inverse of Hoeffding’s inequality.

Lemma H.1. Using the notation and setting of the proof of Theorem 3.3 above, for any K
satisfying |K| ≤ 1

288ϵ2
log(m) and any j ∈ [m

2
],

Pr

(∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

)
≥ 1

30
√
m
.

Proof of Lemma H.1. We will prove this separately for small |K| and for large |K|.

If |K| ≤ 1/ϵ, then

Pr

(∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

)
≥ Pr

(
1

|K|
∑
i∈K

Xij = 1

)
[ϵ ≤ 1/24]

= 2−|K|

≥ 2−1/ϵ

≥ 1

30
√
m
, Equation (9)

which is the desired result.

To prove the desired result when |K| > 1/ϵ, we will use the following proposition from
Matoušek and Vondrák (2001):

25

Proposition H.2 (Proposition 7.3.2 of Matoušek and Vondrák (2001)). Let X1, ..., Xn be
independent Bernoulli random variables with probability 1/2 of being 0 or 1. Let X =
X1 + ...+Xn. Then for any integer t ∈ [0, n/8],

Pr(X ≥ n/2 + t] ≥ 1/30e−16t2/n.

We can apply this proposition to our problem in the following way. If |K| > 1/ϵ, then

Pr

(∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

)

= Pr

(∣∣∣∣∣∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2|K|ϵ

)

≥ Pr

(∣∣∣∣∣∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ ≥ 2|K|ϵ+ 0.5

)

≥ Pr

(∣∣∣∣∣∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ ≥ 3|K|ϵ

)
[|K| > 1/ϵ]

≥ Pr

(∑
i∈K

Xij ≥
|K|
2

+ 3|K|ϵ

)

≥ 1

30
e−16(3|K|ϵ)2/(|K|) [Prop H.2 with t = 3|K|ϵ]

=
1

30
e−144|K|ϵ2

≥ 1

30
e−144 1

288ϵ2
log(m)ϵ2

=
1

30
e− log(m)/2

=
1

30
√
m
, (12)

which is the desired result. Note that we could apply Proposition H.2 because 3|K|ϵ ≤ |K|/8
for ϵ ≤ 1/24.

I Proof of Theorem 3.4

proof. If a subset K satisfies ϵ positional proportionality for set N , then∣∣∣∣C(N, r, a)

n
− C(K, r, a)

|K|

∣∣∣∣ ≤ ϵ ∀r, a.

26

Consider a scoring rule with scoring vector s, i.e. that gives score sr to an alternative in
position r. Define ∆r = sr − sr+1 (where sm+1 = 0). Then by definition of scoring rule, we
have that

fs(a, σN) =
1

n

n∑
i=1

sσi(a) =
1

n

m∑
r=1

C(N, r, a)∆r.

and

fs(a, σK) =
1

|K|
∑
i∈K

sσi(a) =
1

|K|

m∑
r=1

C(K, r, a)∆r.

Combining this with the first equation, we have that

|fs(a, σN)− fs(a, σK)| ≤
m∑
r=1

∣∣∣∣C(N, r, a)

n
− C(K, r, a)

|K|

∣∣∣∣∆r

≤
m∑
r=1

ϵ∆r

= ϵ
m∑
r=1

(sr − sr+1)

= ϵ (s1 − sm+1)

= ϵ,

where the last line follows from the fact that WLOG s1 = 1.

J General Greedy Algorithm

27

Algorithm 3 Greedy for General Representation

1: Input: Preference profile σN , collection of groups G, group size g
2: Initialize S ← ∅, Ci ← ∅ for all i ∈ [n], and c← 1
3: for each G ∈ G do
4: for each i ∈ [n] do
5: if i ∈ G then
6: Add i to S
7: end if
8: if |S| = g then
9: for each i′ ∈ S do
10: Add c to Ci′

11: end for
12: c← c+ 1
13: S ← ∅
14: end if
15: end for
16: end for
17: Let C ← {1, 2, . . . , c− 1}, K ← ∅
18: while C ̸= ∅ do
19: Select i← argmaxi′ |Ci′ |
20: Add i to K
21: for each x ∈ Ci do
22: for each i′ ∈ [n] do
23: if x ∈ Ci′ then
24: Remove x from Ci′

25: end if
26: end for
27: Remove x from C
28: end for
29: end while
30: Return K

K NP-Hardness Proofs

K.1 Proof of Theorem B.3

proof. Suppose we have an instance of set cover, i.e. a collection of sets C = {C1, ..., Cκ} for
which we want to find the smallest set that contains every distinct element in the sets of C.
Let U =

⋃
C∈C C. We want to map this to an instance of our problem, which consists of

an N , G, and g for which we would like to find the smallest subset K that satisfies general
representation.

The key idea of the proof is to construct an instance of our problem where every group in
G has the same size. Every element in u ∈ U will have a corresponding group Gu in G. We

28

start with each Gu initialized to be the indices of the elements in C that contain u. However,
this results in the Gu having different sizes. We then add new tasks to N that are only
contained in a single group Gu until all groups in G have the same size.

Formally, we construct N , G, and g as follows:

Algorithm 4 Constructing N,G, g
1: Input: U, {Ci}i∈[κ]
2: Gu ← {i : u ∈ Ci} for all u ∈ U
3: g ← maxu |Gu|
4: i← κ
5: for u ∈ U do
6: while |Gu| < g do
7: i← i+ 1
8: Add i to Gu

9: end while
10: end for
11: Return G = {Gu}u∈U , N = [i], and g

By construction, |Gu| = g for all u.

We will now show that the set cover instance (U, C) has a solution of size less than or equal
to k if and only if there exists a solution of size less than or equal to k that satisfies general
representation for N,G, g. Suppose the set cover instance has a solution C̃ with |C̃| ≤ k. Then
this C̃ covers every element in U at least once. By construction, this K = {i ≤ κ : Ci ∈ C̃}
is a solution to the general representation problem, because general representation for group
size g where every group in G has size g requires that |Gu ∩K| ≥ 1 for all groups Gu ∈ G.

For the opposite direction, suppose we have some K ⊆ N with |K| ≤ k that satisfies general
representation. Define K ′ as in Algorithm 5.

Algorithm 5 Constructing K ′

1: Input: K
2: K ′ ← K ∩ [κ]
3: for i ∈ K \ [κ] do
4: u← u such that i ∈ Gu

5: i′ ← any element of [κ] such that u ∈ Ci′

6: if i′ ̸∈ K ′ then
7: K ′ ← K ′ ∪ {i′}
8: end if
9: end for
10: Return K ′

Note that at the end of this algorithm, |K ′| ≤ |K| because we never add an i′ to K ′ unless
there is a corresponding i ∈ K \ [κ] that is not in K ′. Furthermore, K ′ still covers every

29

group Gu, because the i′ selected in Line 5 covers the Gu that was previously covered by i
in K. Note that such an i′ always exists because every u ∈ U is in at least one subset in C.

Therefore, we have that K ′ still covers every group in Gu and |K ′| ≤ |K| ≤ k. This means
that C̃ = {Ci : i ∈ K ′} is a solution to the set cover instance with size less than or equal to
k.

K.2 Proof of Theorem B.4

proof. We will follow a similar proof structure to the proof of Theorem 1 in Natarajan (1995)
on the NP-hardness of sparse approximate solutions to linear equations. As in Natarajan
(1995), we will reduce from the problem of “exact cover by 3 sets”.

Exact Cover by 3-Sets takes as input a set S with |S| = τ and a collection C = {C1, ..., Cκ}
of subsets of S such that |Ci| = 3 for all i ≤ κ, and the goal is to determine whether or not
there exists a subset of C (denoted C̃) such that C̃ covers every element in S exactly once.

We will next describe how to map an instance of Exact Cover by 3-Sets to an instance of
a decision version of our problem. Specifically, we will consider the problem where we are
given N , G, and ϵ and must decide whether there exists a subset K ⊆ N of size τ/3 that
satisfies ϵ-general proportionality.

Suppose we have an instance of Exact Cover by 3-Sets (S, C). Let ϵ = 1
τ
and let G = {Gs}s∈S

for Gs constructed as follows. We will construct Gs so that |Gs| = 2κ for all s ∈ S. We
will further maintain that for every Ci, we have i ∈ Gs for all s ∈ Ci and that every i > κ
appears in at most two groups Gs.

We formally construct G in Algorithm 6.

Algorithm 6 Constructing G
1: Input: S, C = {Ci}i∈[κ]
2: Gs ← {i : s ∈ Ci} for all s ∈ S
3: i← κ
4: while ∃s ∈ S : |Gs| < 2κ do
5: i← i+ 1
6: if there is exactly one s ∈ S such that |Gs| < 2κ then
7: s← s ∈ S such that |Gs| < 2κ
8: Add i to Gs

9: else
10: s1, s2 ← two distinct values of s such that |Gs| < 2κ
11: Add i to Gs1

12: Add i to Gs2

13: end if
14: end while
15: Return G = {Gs}s∈S

Note that the counter i never exceeds κτ . To see this, observe that the max value of i is

30

equal to

κ+

⌈∑
s∈S (2κ− {i : s ∈ Ci}|)

2

⌉
= κ+

⌈
τκ− 1

2

∑
s∈S

|{i : s ∈ Ci}|

⌉

= τκ+ κ−

⌈
1

2

∑
s∈S

|{i : s ∈ Ci}|

⌉
= τκ+ κ− ⌈1.5κ⌉
≤ τκ.

Therefore, we choose N = [κτ] so that Gs ⊆ N as required.

By construction, we also have that |Gs| = 2κ for all Gs ∈ G, so for all Gs ∈ G,

|Gs|
|N |

=
2κ

κτ
=

2

τ
.

We now show that the Exact Cover by 3-Sets instance has a solution if and only if there
exists a K with |K| ≤ τ/3 which satisfies ϵ-general proportionality for our instance. Suppose
the Exact Cover by 3-Sets has a solution C̃ ∈ C. Then |C̃| = τ/3. Define the set K := {i :
Ci ∈ C̃}. This K must cover every s ∈ S exactly once, which by construction of Gs means

this K covers every Gs ∈ G exactly once. Therefore, we have that |K∩Gs|
|K| = 1

|K| =
3
τ
for all s.

This satisfies ∣∣∣∣ |K ∩Gs|
|K|

− |Gs|
|N |

∣∣∣∣ = 1

τ
= ϵ,

so K satisfies 1/τ -general proportionality.

To show the other direction, suppose we have a set K with size |K| ≤ τ/3 that satisfies
1/τ -general proportionality. Because we chose ϵ = 1

τ
and every Gs satisfies |Gs|/N = 2/τ ,

we must have that |Gs ∩K| ≥ 1 for all s. However, we also know that by construction, any
i ∈ N covers at most three groups Gs. This implies that we must have |K| ≥ τ/3. Since
by assumption |K| ≤ τ/3, we therefore must have that |K| = τ/3. Furthermore, the only
elements of N that cover 3 groups in G are the elements i ∈ [κ]. Therefore, if |K| = τ/3 and
K includes at least one of every group in G, we must have that K ⊆ [κ]. Finally, combining
the facts that every element of K covers exactly three groups, |K| = τ/3, the number of
groups is τ , and every group is covered at least once by K, we must have that every group
is covered exactly once by K.

Therefore, we can conclude that C̃ = {Ci : i ∈ K} must be a solution to the Exact Cover by
3-Sets problem as desired.

L More Details on Empirical Case Studies

Table 3 summarizes the parameters for each case study.

31

Case study n m k for existing subset

BIG-bench 141120 24
HELM 34 67 7
Cal Hospital Compare 50 282 12

Table 3: Summary of case study parameters.

L.1 Case Study Descriptions and Datasets

We describe each case study in more detail below.

Case Study 1: BIG-bench (Srivastava et al., 2022). We consider the problem of
selecting tasks to include in a “Lite” version of BIG-bench . The BIG-bench repository
already includes such a subset of tasks called BIG-bench LITE, which includes 24 tasks.
BIG-bench in general includes both JSON tasks and programmatic tasks, where JSON tasks
are more lightweight to evaluate. Their existing LITE benchmark includes only JSON tasks
for ease of evaluation. Thus, for the purposes of this case study, we consider the problem
of selecting a subset of the JSON tasks to go in a LITE benchmark. Intuitively, one might
want to select the LITE tasks to be representative in some sense of the rest of the JSON
tasks, since all tasks are included in the published leaderboards.

Alternatives: The BIG-bench repository includes evaluations on its JSON tasks for LLMs
of different sizes from three model families: “Big-G”, “Big-G sparse”, and “GPT”. For
each individual model, they also include 0-shot, 1-shot, 2-shot, and 3-shot evaluations. For
simplicity, we treat each model and each shot count as a separate alternative to be ranked.
Thus, we end up with m = 120 alternatives.

Full set: The full set of tasks we consider consists of n = 141 JSON tasks, after filtering
to include only the tasks which were evaluated for all alternatives. We consider only JSON
tasks in the full set as the existing BIG-bench LITE only includes JSON tasks for ease of
evaluation. The list of all tasks is included in the code in the Supplementary Materials. The
metric used was always the preferred score field per task.

Existing subset: We compare to the existing BIG-bench LITE (BBL) set of tasks, which
includes k = 24 JSON tasks as of February, 2025. The list of these tasks is included in the
code in the Supplemenary Materials and also available at https://github.com/google/

BIG-bench/blob/main/bigbench/benchmark_tasks/keywords_to_tasks.md#big-bench-lite.

Dataset: Data was accessed using the Big-bench API available at https://github.com/

google/BIG-bench. Code for processing this data is included with the Supplementary Ma-
terials. Usage is in compliance with the Apache License, Version 2.0.

Case Study 2: HELM (Liang et al., 2022). HELM Classic is another evaluation
platform that ranks LLMs based on multiple scenarios and metrics. We consider the problem
of selecting a subset of scenarios which is in some sense “representative” of the full set.
HELM Lite is an existing variant which includes significantly fewer scenarios than HELM
Classic. Note that it is not directly stated that HELM Lite is meant to be representative

32

https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/keywords_to_tasks.md#big-bench-lite
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/keywords_to_tasks.md#big-bench-lite
https://github.com/google/BIG-bench
https://github.com/google/BIG-bench

of HELM Classic (which includes both Core scenarios and other evaluations), but we make
this assumption for the purposes of this illustration.

Alternatives: We consider m = 67 models that appeared on the HELM Classic leaderboard
as of February, 2025.

Full set: The full set of tasks we consider consists of the accuracy metrics for n = 34
scenarios, for which data was posted on the HELM Classic leaderboard. This includes both
“Core scenarios” and “Targeted evaluations.” A full list of these scenarios is included with
the code in the Supplementary Materials.

Existing subset: Not all tasks from HELM Lite were included in the HELM Classic leader-
board, and not all models on the HELM Classic leaderboard were evaluated on the HELM
Lite leaderboard. Thus, as our existing subset baseline, we selected the subset of HELM
Classic scenarios which were also included as HELM Lite scenarios.

This yielded a set of k = 7 scenarios, which included: NarrativeQA, NaturalQuestions (open-
book), NaturalQuestions (closed-book), OpenbookQA, MMLU (Massive Multitask Language
Understanding), MATH, and GSM8K (Grade School Math).

Dataset: Data was downloaded as HTML tables in February, 2025 from the following links:

• https://crfm.stanford.edu/helm/classic/latest/#/leaderboard/core_scenarios

• //crfm.stanford.edu/helm/classic/latest/#/leaderboard/targeted_evaluations

• https://crfm.stanford.edu/helm/lite/latest/#/leaderboard/core_scenarios

Leaderboard data can also be accessed at https://github.com/stanford-crfm/helm. Only
accuracy metrics were considered. Code for processing this data is included with the Sup-
plemental Materials. Usage is in compliance with the Apache License, Version 2.0.

Case Study 3: Cal Hospital Compare (Cal Hospital Compare, 2025). Finally, we
demonstrate how our methods can apply in evaluation settings beyond LLMs by considering
the problem of hospital quality evaluation. Cal Hospital Compare is a platform that awards
a “patient safety honor roll” status to hospitals in California that perform particularly well
in a set of quality measures collected from the Centers for Medicare and Medicaid Services
(CMS). The honor roll selection procedure considers 12 hospital quality measures drawn from
the CMS Hospital Compare database, which collects hundreds of measures from hospitals
throughout the US. A continuing challenge is selecting these 12 quality measures, which
Cal Hospital Compare identifies as a “an 18-month, multistakeholder process of rigorously
evaluating existing national patient safety measures.”4 For the purposes of this illustration,
we consider the problem of selecting a set of quality measures which is “representative” of
existing patient safety measures available in the CMS Hospital Compare database. According
to the “algorithmic approach,” Cal Hospital Compare awards honor roll status to eligible
hospitals “with two-thirds of their measures above the 50th percentile of good performance
(and none below the 10th percentile).”

4https://calhospitalcompare.org/wp-content/uploads/2025/04/FactSheet_

Patient-Safety-Honor-Roll-List_Cal-Hospital-Compare_2025-1.pdf

33

https://crfm.stanford.edu/helm/classic/latest/#/leaderboard/core_scenarios
//crfm.stanford.edu/helm/classic/latest/#/leaderboard/targeted_evaluations
https://crfm.stanford.edu/helm/lite/latest/#/leaderboard/core_scenarios
https://github.com/stanford-crfm/helm
https://calhospitalcompare.org/wp-content/uploads/2025/04/FactSheet_Patient-Safety-Honor-Roll-List_Cal-Hospital-Compare_2025-1.pdf
https://calhospitalcompare.org/wp-content/uploads/2025/04/FactSheet_Patient-Safety-Honor-Roll-List_Cal-Hospital-Compare_2025-1.pdf

Alternatives: We consider m = 282 hospitals in California which were eligible for algorithmic
evaluation according the criteria specified by Cal Hospital Compare. Specifically, they had
scores for at least 6 of the currently selected 12 measures.

Full set: We consider a full set of n = 50 patient safety measures available through CMS
Hospital Compare. These were selected to include only the measures that were directly
related to the categories from which the original 12 measures were selected, so as not to
include measures unrelated to patient safety. A full list of these measures is included in the
code submission. It is possible that some important measures were missed in this illustration,
and any real practical application should bring in additional domain expertise to carefully
tailor the full set to precise practical goals.

Existing subset: We compare against the existing k = 12 measures currently used by Cal
Hospital Compare for their patient safety honor roll. A full list of these measures is shown
in Figure 3.

Figure 3: Table of Patient Safety Honor Roll Measures published by Cal Hospital Com-
pare (https://calhospitalcompare.org/wp-content/uploads/2025/04/FactSheet_
Patient-Safety-Honor-Roll-List_Cal-Hospital-Compare_2025-1.pdf). As our “ex-
isting subset”, we consider the set of k = 12 measures selected from CMS Hospital Compare.

Dataset: Data was downloaded as CSV files in February, 2025 from the CMS Hospital Com-
pare provider data repository (https://data.cms.gov/provider-data/). A full directory

34

https://calhospitalcompare.org/wp-content/uploads/2025/04/FactSheet_Patient-Safety-Honor-Roll-List_Cal-Hospital-Compare_2025-1.pdf
https://calhospitalcompare.org/wp-content/uploads/2025/04/FactSheet_Patient-Safety-Honor-Roll-List_Cal-Hospital-Compare_2025-1.pdf
https://data.cms.gov/provider-data/

of all available datasets can be found at https://data.cms.gov/provider-data/dataset/
dgmq-aat3#data-dictionary. The specific datasets used were:

• Healthcare_Associated_Infections-Hospital.csv

• Complications_and_Deaths-Hospital.csv

• Timely_and_Effective_Care-Hospital.csv

• HCAHPS-Hospital.csv

• Maternal_Health-Hospital.csv

• Unplanned_Hospital_Visits-Hospital.csv

This data is part of the public domain. Code to aggregate and process these datasets is
included with the Supplemental Materials.

L.2 Integer program computation

Integer programs were solved using CPLEX. A maximum solve time of 10 minutes was set
for each integer program. Thus, it is possible that the integer programming solutions were
suboptimal when this limit was reached. This limit was only reached on BIG-bench.

All experiments were run on a MacBook Pro with an Intel Core i7.

35

https://data.cms.gov/provider-data/dataset/dgmq-aat3#data-dictionary
https://data.cms.gov/provider-data/dataset/dgmq-aat3#data-dictionary

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Model

	2 Positional Representation
	2.1 Lower Bound
	2.2 Algorithm

	3 Positional proportionality
	3.1 Upper and Lower Bounds
	3.2 Approximating Scoring Rules

	4 Generalizations
	5 Empirical Case Studies
	5.1 Results

	6 Discussion
	A Integer Programs
	B General Versions and Set Cover
	B.1 Theoretical Results
	B.2 Relationship to Set Cover

	C Additional Related Works
	D Full Greedy Algorithm
	E Proof of Theorem 2.3
	F Proof of Theorem 2.2
	G Proof of Theorem 3.2
	H Proof of Theorem 3.3
	I Proof of Theorem 3.4
	J General Greedy Algorithm
	K NP-Hardness Proofs
	K.1 Proof of Theorem B.3
	K.2 Proof of Theorem B.4

	L More Details on Empirical Case Studies
	L.1 Case Study Descriptions and Datasets
	L.2 Integer program computation

