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Abstract

In the incentivized exploration model, a principal aims to explore and learn over
time by interacting with a sequence of self-interested agents. It has been recently un-
derstood that the main challenge in designing incentive-compatible algorithms for this
problem is to gather a moderate amount of initial data, after which one can obtain
near-optimal regret via posterior sampling. With high-dimensional contexts, however,
this initial exploration phase requires exponential sample complexity in some cases,
which prevents efficient learning unless initial data can be acquired exogenously. We
show that these barriers to exploration disappear under mild geometric conditions on
the set of available actions, in which case incentive-compatibility does not preclude
regret-optimality. Namely, we consider the linear bandit model with actions in the Eu-
clidean unit ball, and give an incentive-compatible exploration algorithm with sample
complexity that scales polynomially with the dimension and other parameters.
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1 Introduction

The exploration/exploitation trade-off is fundamental to online decision making. This trade-
off is classically exemplified by the multi-armed bandit problem, where a single agent chooses
actions sequentially and learns to improve over time. In this setting, the agent has clear
justification for early exploration because they can reap future rewards by exploiting the
knowledge gained by exploration. But what if agents are unable to reap these future re-
wards, and so each decision must be justifiable on its own terms without taking into account
future rewards? This may occur when actions are recommendations made to different agents
by a central platform based on user feedback, as in e-commerce, traffic routing, movies,
restaurants, etc. In these settings, the agents may have a prior for the rewards of the actions
in addition to the recommendation made by the platform. Therefore, while the platform
makes recommendations with the goal of learning over time, individual myopic agents will
decline to follow any recommendations which seem suboptimal based on their individual
priors.

The incentivized exploration problem was introduced in [KMP14, CH18] to understand this
fundamental tension, and extends the well-studied problem of Bayesian Persuasion in in-
formation design [BM19, Kam19]. The model adopted in these early works consists of a
finite set of actions, each with a (publicly shared) Bayesian prior distribution for rewards.
A sequence of agents arrives one by one, and each agent is recommended an action by a
central planner. The central planner’s recommendations are made using a (publicly known)
randomized algorithm, and the agents are assumed to be selfish and rational, aiming only
to maximize their own expected reward. Given the planner’s recommendation, each agent
computes and chooses the posterior-optimal action (using Bayes’ rule). As observed in the
original works, thanks to the revelation principle of [Mye86], the latter step is equivalent to
assuming that the planner’s recommendations are Bayesian incentive-compatible (BIC) so
that rational agents will always follow the recommendations (at least under the assumption
of agent homogeneity).

Initially, most work on incentivized exploration dealt with small finite sets of actions [MSS20,
MSSW22], exploring economic aspects of the problem such as exogenous payments for ex-
ploration [FKKK14, KKM+17, WH18, AT20, WXL+23], partial data disclosure [IMSW20],
and agent heterogeneity [IMSW19]. See also the surveys [Sli19, Chapter 11] and [IEV23,
Chapter 31]. More recently, extensions to combinatorial action sets, multi-stage reinforce-
ment learning, and linear contexts were also considered in [HNSW22, SS24, Sel23]. In these
more complex machine learning settings, a fundamental question is how the regret scales
with problem parameters such as the size of the action space.

This quantitative dependence was studied in [SS23], which provided a new two-stage algo-
rithm. The algorithm first obtains a constant number of samples from each arm, and then
switches permanently to Thompson sampling. The initial stage enjoys sample-efficiency
thanks to a carefully tuned “exponential exploration” strategy, and Thompson sampling is
BIC after this constant amount of initial exploration (see [GKS24] for a more general per-
spective on the latter property). This yielded polynomial regret dependence on the number
of actions and other natural parameters, and ensured the “price of incentivization” in the re-
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gret is only additive relative to Thompson sampling, which is known to exhibit near-optimal
performance [KKM12, BL13, AG17, RV14, RV16, ZL19, BS22]. Importantly, however, all of
these results require that the rewards for the actions are independent under the prior.

A natural setting to consider dependent actions is the linear bandit model, where Thomp-
son sampling remains a gold-standard algorithm [AG13, DVR18]. For this setting, [Sel23]
showed that Thompson sampling is again BIC after an initial data collection stage under
mild conditions, but that the sample complexity of collecting initial data can scale expo-
nentially with the dimension. In some applications, using exogenous payments for initial
exploration can bypass this exponential barrier, but such workarounds are contingent on
problem-specific regulatory and ethical constraints. In our work, we show that the exponen-
tial barrier disappears when the action set is the d-dimensional unit ball, and we provide an
incentive-compatible initial exploration algorithmic with polynomial sample complexity.

1.1 Our Results

We consider a linear bandit problem where the set A of possible actions is the d-dimensional
unit ball. At each time step t ≥ 1, the algorithm chooses an action A(t) ∈ A and observes a
noisy reward

r(t) = ⟨A(t), ℓ∗⟩+ wt,

where wt ∼ N(0, 1) and wt1 ⊥⊥ wt2 for all t1 ̸= t2. We assume that ℓ∗ is drawn from a known
prior distribution µ on Rd. As our model and algorithm will be rotationally invariant,
we assume for convenience (without loss of generality) that E[ℓ∗i] = 0 for all i > 1 and
E[ℓ∗1] ≥ 0. Importantly, unlike in [SS23], we do not require that ℓ∗i is independent of ℓ∗j
for i ̸= j.

We are interested in exploration via Bayesian Incentive Compatible (BIC) algorithms, defined
formally as follows. As discussed above, an algorithm being BIC implies that agents will
follow the recommendations made by a platform using that algorithm.

Definition 1.1. An action A(t) at time t ≥ 1 is Bayesian Incentive Compatible (BIC) if for
all A ∈ A:

E[⟨ℓ∗, A⟩ | A(t) = A] = sup
A′∈A

E[⟨ℓ∗, A′⟩ | A(t) = A].

Similarly, a bandit algorithm is BIC if for all t ∈ [1, T ] the algorithm recommends a BIC
action A(t).

Our main goal is to develop BIC algorithms that explore the entire action space using poly(d)
samples. Formally, we want our algorithm to choose actions A(1), ...,A(T ) such that for some
constant λ > 0

T∑
t=1

(A(t))⊗2 ⪰ λI, (1)

i.e. all eigenvalues of
∑T

t=1(A
(t))⊗2 are at least λ. This was termed λ-spectral exploration

in [Sel23], where it was shown to imply Thompson Sampling is BIC after time T under mild
conditions.
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For some priors, it is impossible to explore the action space with a BIC algorithm (see
e.g. [MSS20, Section 4] or [SS23, Section 8]). Thus we will require mild non-degeneracy
assumptions on the prior. Roughly speaking, ℓ∗ should not be confined to any half-space
and should have neither minuscule nor enormous fluctuations in any direction.

Assumption 1.2. There exist constants cd, ϵd, cv, K > 0 such that:

1. ℓ∗ is not confined to any half-space: min∥v∥=1 Pr (⟨v, ℓ∗⟩ ≥ cd) ≥ ϵd.

2. ℓ∗ has non-degenerate covariance: min∥v∥=1Var(⟨v, ℓ∗⟩) ≥ cv.

3. ℓ∗ is sub-gaussian: max∥v∥=1 P(|⟨v, ℓ∗⟩| ≥ t) ≤ 2e−t
2/K2

for all t > 0. .

The first two conditions above are both necessary in some form; see Appendix B. The third
is a standard condition on the fluctuations of µ. Our main result is as follows.

Theorem 1.3. Under Assumption 1.2, there exists a BIC algorithm (Algorithm 1) which
almost surely achieves λ̄-spectral exploration in sample complexity

λ̄

(
d

cv +cd

)O(1)

log(1/ϵd). (2)

Note that (2) depends polynomially on cd, cv but only logarithmically on ϵd. This is important
because in typical high-dimensional settings, ϵd will be exponentially small in the dimension
while the other parameters will not. The next two propositions give illustrative but not
exhaustive examples of such high-dimensional distributions. In the first, we take µ to be
uniform on a convex body K with Br(0) ⊆ K ⊆ B1(0) for some 0 < r < 1, and say such µ
is r-regular. This is the main setting considered in [Sel23], and as explained in Section 4,
combining [Sel23] with our results yields an end-to-end low-regret algorithm which is ϵ-
BIC (i.e. with ϵ subtracted from the right-hand side in Definition 1.1) with initial sample
complexity poly(d, 1/r, 1/ϵ). (The combination only satisfies ϵ-BIC because [Sel23] only
shows Thompson sampling is ϵ-BIC unless actions are well-separated.)

Proposition 1.4 (Proof in Appendix L). Any r-regular µ satisfies Assumption 1.2 with
cd = r/3 and ϵd = (r/3)d and cv = Ω(r2/d2) and K = 1.25.

The second example consists of log-concave distributions (e.g. Gaussians). We say a density
dµ(x) ∝ e−V (x)dx is α-log-concave and β-log-smooth for 0 < α ≤ β if

−βId ⪯ ∇2V (x) ⪯ −αId, ∀x ∈ Rd.

Proposition 1.5 (Proof in Appendix M). Let µ be αd-log-concave and βd-log-smooth with

mode x∗ satisfying ∥x∗∥ ≤ γ. Then Assumption 1.2 holds with ϵd ≥ Je−J2βd/2
√
αd

(1+J2βd)
√
2π

for J =

γ + 2√
αd

+ cd and any cd > 0. Further, we may take cv = 1
βd

and K = 2(γ +
√
αd +

(αd)−1/2). Conversely, there exists such µ with ∥x∗∥ = 0 and (α, β) = (1, 2) in which
min∥v∥=1 Pr (⟨v, ℓ∗⟩ ≥ 0) ≤ e−Ω(d).
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We note that if µ has mean 0, then ∥x∗∥ ≤ α−1/2 so the above results apply (see Fact M.1
in the Appendix). In fact when µ has mean 0, one will always have ϵd ≥ Ω(1) for cd = 1
(as noted within the proof of Proposition 1.5). Proposition 1.5 represents the typical case in
that µ can be “mildly off-centered”, for example by centering around a point x drawn from
µ itself (see again Fact M.1).

On the Smoothness of the Action Space in Online Optimization and Learning
Our positive results are in contrast with [Sel23, Proposition 3.9], which shows that eΩ(d) time
can be necessary for BIC exploration for r-regular µ. We believe that our results are not
specific to the unit ball, but that the fundamental distinction between these two examples is
the smoothness of the action set. In [Sel23, Proposition 3.9], the action set is a non-smooth
polytope with corners, and the optimal action under the prior distribution is one of the
corners. This means that given a small amount of new information, the posterior-optimal
action will not change at all. By contrast our main algorithm crucially relies on expansiveness
of the function

ℓ∗ 7→ argmax
x∈A

⟨ℓ∗,x⟩.

In our setting A is the unit ball and so this function is simply ℓ∗/∥ℓ∗∥. However we expect
our methods to generalize to other smooth bodies, and plan to pursue this in future work.

It is worth mentioning that the geometry of the action set has long been understood to play
an important role in high-dimensional learning and optimization. This was exemplified by
the interplay between self-concordant barrier functions [NN94] and linear bandits via online
stochastic mirror descent [AHR08, BCBK12, BCB+12, BCL18, BE19, KRdP21]. Geometric
properties of the action space are also known to yield acceleration for full-information online
learning and offline optimization [GH15, HLGS17, LK19, KdP21, Mha22, Mol23, TI24].

1.2 Additional Notation

We will use the following notation throughout the paper. Unless otherwise specified, ∥·∥
will refer to the ℓ2 norm. We will use ei to refer to the ith vector of the standard basis.
For a random variable X, we say that X is K-sub-gaussian if P(X ≥ t) ≤ 2e−t

2/K2
. We

use the standard f(d) = O(g(d)) to mean that there exists some constant C > 0 such that
f(d) ≤ C · g(d) for all sufficiently large d. We also use PS(u) to represent the projection of
the vector u onto the space S.

1.3 Outline

The rest of the paper will be organized as follows. In Section 2, we present sketches of our
main algorithms and discuss the three key technical ideas behind the algorithm and analysis.
In Section 3, we give the detailed main algorithm, present the two key technical propositions,
and formally state our main theorem bounding the sample complexity of the algorithm.
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2 Algorithm and Technical Overview

In this section, we present pseudocode for the main algorithm and give informal intuition
for the key technical ideas used to show that this algorithm is BIC and satisfies the sample
complexity bound of Theorem 1.3.

2.1 Algorithm Sketch

Before presenting the algorithm, we first state Lemma 2.1, which is the key observation used
by the algorithm to select BIC actions. Informally, this lemma says that for any ψ that is
a function of historical actions and rewards and possibly external randomness (but not on
future information), the action A(t) in the direction of E[ℓ∗ | ψ] is BIC (or any action is BIC
if E[ℓ∗ | ψ] = 0). Thus to prove an action A(t) is BIC, it suffices to find such a ψ so that
A(t) is in the direction of E[ℓ∗ | ψ] whenever E[ℓ∗ | ψ] ̸= 0.

Lemma 2.1 (Proof in Appendix D). Suppose that ψ is a function of the history before time t
and potentially some external independent randomness ξ, i.e. ψ = ψ(A(1), r(t−1)...,A(t−1), r(t−1), ξ).
Let v be any vector in Rd. Define

Exploit(ψ,v) :=

{
E[ℓ∗|ψ]

∥E[ℓ∗|ψ]∥ if ∥E[ℓ∗ | ψ]∥ ≠ 0

v otherwise.

Then A(t) = Exploit(ψ,v) is BIC at time t.

Algorithm 1, together with Algorithms 2–3, presents a high-level sketch of the procedure
used to prove Theorem 1.3. The algorithm first uses the prior-based BIC action (e1) for
poly(d) steps. In order to explore the rest of the action space, Algorithm 1 runs a single
loop that repeatedly checks if λ-spectral exploration has been achieved. If λ-spectral explo-
ration has not yet been achieved, then Algorithm 1 uses the subroutine InitialExploration
to find a BIC action a that has magnitude at least Ω(ϵd) when projected onto the space of
not-yet-sufficiently explored actions. Algorithm 1 then gives a as input to the subroutine
ExponentialGrowth. ExponentialGrowth returns another BIC action that has at least twice
as large of a magnitude when projected onto the not-yet-sufficiently explored space of ac-
tions. Algorithm 1 repeatedly passes the action a through ExponentialGrowth until the BIC
action a has magnitude of at least

√
λ when projected onto the space of not-yet-sufficiently

explored actions. Algorithm 1 then uses this action for poly(d) steps. If λ-spectral explo-
ration has still not been achieved, then Algorithm 1 explores a new direction by repeating
the process of calling InitialExploration followed by repeated calls to ExponentialGrowth.
In Sections 2.2 and 2.3, we discuss the main intuition of the subroutines InitialExploration
and ExponentialGrowth respectively.

2.2 Initial Exploration

The goal of the InitialExploration routine (Algorithm 2) is to find a BIC action that has
sufficient magnitude when projected onto the not-yet-sufficiently explored space of actions
S⊥. To do this, we first design an event E based on the historical actions and rewards Ht

5



Algorithm 1 BIC Exploration Pseudocode

1: Set A(t) = e1 for poly(d) steps
2: while λ-spectral exploration has not yet been achieved do
3: S ← space of actions that have already been sufficiently explored
4: a← InitialExploration(·) ▷ BIC-vector with Ω(ϵd)-magnitude when projected onto
S⊥

5: while magnitude of a when projected onto S⊥ is less than
√
λ do

6: a← ExponentialGrowth(a) ▷ new BIC-vector with double the magnitude when
projected onto S⊥

7: end while
8: Set A(t) = a for poly(d) steps
9: end while

Algorithm 2 InitialExploration Pseudocode

1: M←
∑t−1

i=1

(
A(i)

)⊗2

2: w1, ...,wℓλ ← orthonormal eigenvectors of M with corresponding eigenvalues greater
than λ

3: S ← Span(w1, ...,wℓλ) ▷ Space of already-sufficiently explored actions
4: ŷi ← empirical estimate of ⟨ℓ∗,wi⟩ for i ≤ ℓλ
5: z← E[ℓ∗ | ŷ]
6: f ← function of z such that E[zf(z)] = 0 and f(z) ∈ [Ω(ϵd), 1].
7: E ← {Bernoulli(f(z)) = 1}
8: Set A(t) = Exploit(1E,v) for v ∈ S⊥ ▷ A(t) explores a new direction with probability
f(z)

9: r ← r(t) if we explored and otherwise r ← N(0, 1)
10: return Exploit(sign(r),v) ▷ where v is in S⊥

Algorithm 3 ExponentialGrowth Pseudocode

1: S ← space of actions that have already been sufficiently explored
2: Set A(t) = a for poly(d) steps to observe a set of rewards {r(t)}.
3: R ← average of rewards from the component of a projected onto the space of not-yet-

sufficiently explored actions (S⊥)
4: return Exploit(sign(R),v) ▷ where v is in S⊥

6



and external randomness such that P(E | Ht) ≥ Ω(ϵd) for all histories Ht and such that
conditional on E, ℓ∗ has 0 expectation when projected onto any direction in S. We then
choose the BIC action A(t) in Line 8 so that A(t) explores S⊥ whenever event E holds. More
concretely, the second condition on E implies that the action A(t) = Exploit(1E,v) for any
v ∈ S⊥ will satisfy A(t) ∈ S⊥ whenever event E holds, and A(t) is BIC by Lemma 2.1. Using
this BIC action on Line 8 therefore explores S⊥ whenever event E holds. We define the
signal r as the reward at time t if event E holds and otherwise as independent N(0, 1) noise.
We next show that, conditional on the sign of r, the expectation of ℓ∗ always has sufficient
magnitude when projected onto S⊥ (see Lemma A.1). This implies that for any v ∈ S⊥, the
action Exploit(sign(r),v) will have sufficient magnitude when projected onto S⊥ as desired.
Therefore, we can return the action Exploit(ψ,v), which is BIC by Lemma 2.1.

All that remains is to define the event E from the previous paragraph. Formally, we want
an event E that is a function of the historical actions and rewards and independent random
variable ξ such that E[⟨ℓ∗,wi⟩ | E] = 0 for all i ≤ ℓλ and such that P(E | Ht) ≥ Ω(ϵd)
for all histories Ht. The key to constructing E is Lemma 2.2, which implies that for any
random variable x not confined to any half-spaces, there exists a function f such that x has
expectation equal to 0 conditional on the event {Bernoulli(f(x)) = 1}

Lemma 2.2 (Proof in Appendix G). Let µ be a probability distribution on Rd with finite
first moment and suppose for 0 < ϵ ≤ 1/2 we have that

min
∥v∥=1

Ex∼µ[⟨v,x⟩+] ≥ ϵ.

Then there exists a Borel measurable function f : Rd →
[

ϵ
4max(∥E[x]∥,1) , 1

]
with E[xf(x)] = 0.

If we knew the exact values of the vector x := (⟨ℓ∗,w1⟩, ..., ⟨ℓ∗,wℓλ⟩), then we could di-
rectly apply Lemma 2.2 to x and use the resulting function f to define the event E =
{Bernoulli(f(x)) = 1}. This event E would satisfy the desired property that E[⟨ℓ∗,wi⟩ |
E] = 0 for i ≤ ℓλ and that Pr(E | Ht) = Ω(ϵd) for all Ht. However, we do not know the
exact values of ⟨ℓ∗,w1⟩, ..., ⟨ℓ∗,wℓλ⟩ because we do not know ℓ∗, and therefore this event E is
not a function of historical actions and rewards. Instead, we can estimate ⟨ℓ∗,wi⟩ as ŷi using
the historical actions and returns. These estimates will be relatively accurate because these
directions are already well-explored. Defining z = E[ℓ∗ | ŷ], we show that z also satisfies
the assumption of Lemma 2.2 (Lemma A.4). Therefore, applying Lemma 2.2 to z gives a
function f such that f(z) ≥ Ω(ϵd) for all z. z is a function of historical actions and rewards
and external randomness as desired. Defining the event E = {Bernoulli(f(z)) = 1}, we have
as desired that E[⟨ℓ∗,wi⟩ | E] = 0 for all i ≤ ℓλ and that P(E | Ht) = Ω(ϵd) for all Ht.

2.3 Exponential Growth

The goal of the ExponentialGrowth routine (Algorithm 3) is to take a BIC action a and
return a new BIC action that has twice as large of a magnitude when projected onto the
not-yet-sufficiently explored space of actions S⊥. Using Lemma 2.1, we will find a signal R
such that for any v ∈ S⊥, the action Exploit(R,v) will have twice as large magnitude when
projected onto S⊥ as a has.
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The key intuition is that because the action space is curved, conditioning on noisy information
about the sign of ℓ∗ in a specific direction will increase the magnitude of the expectation
of ℓ∗ projected in that direction. Consider the following simplified example. Suppose that
d = 2. Also suppose we already know ℓ∗1, and the goal is to explore ℓ∗2. Furthermore,
assume that the initial BIC action is A(t) shown in the left-most diagram of Figure 1 that
has ϵ as the y-coordinate. Using this action gives a rewards r(t). Because we know the
value of ℓ∗1, we can remove this component of the reward r(t), and we are left with a signal
r = ϵℓ∗2 +N(0, σ2) for some σ2 > 0. If we take A(t+1) to be the unit vector in the direction
of E[ℓ∗ | r], then we will have that the new y-coordinate is 2ϵ. By Lemma 2.1, this choice
of A(t+1) is BIC, which is an important consequence of the curved action space. We then
observe r(t+1), and we can repeat this process again to find a BIC action A(t+2) that has
y-coordinate of 4ϵ. Therefore, in this simplified example we are able to exponentially grow
the y-coordinate for BIC actions, which is a consequence of the curvature of the action space.
This process is demonstrated in Figure 1.

x

y

A(t)
ϵ x

y

A(t+1)
2ϵ

x

y

A(t+2)
4ϵ

Figure 1: Diagram illustrating exponentially growing exploration. First, we have a BIC
action A(t) with y-coordinate ϵ. Using r(t), we design a signal conditional on which the
expectation of ℓ∗2 doubles. Exploit(·) then gives a BIC action A(t+1) with y-coordinate 2ϵ.
Using r(t+1), we again double the conditional expectation of ℓ∗2 and get BIC action A(t+2)

with y-coordinate 4ϵ. Increasing the conditional expectation of ℓ∗2 gives a BIC action with
a larger y-coordinate, and this action’s feedback gives a stronger signal that more rapidly
increases the conditional expectation of ℓ∗2. This allows us to “bootstrap” an exponentially
weak starting signal all the way to constant signal strength without suffering exponential
sample complexity.

Equipped with the intuition of the previous paragraph, we now analyze Algorithm 3. Recall
that S is the space of actions that have already been sufficiently explored. Algorithm 3 first
uses the action A(t) = a for poly(d) steps. Taking an average of the rewards {r(t)} from these
actions gives a close estimate of ⟨a, ℓ∗⟩. Using the previous observed actions and rewards,
we can remove the component of ⟨a, ℓ∗⟩ that comes from a projected onto S. This leaves a
signal R which is the average of rewards from the component of a projected onto just S⊥.
Using concentration laws for conditional probabilities (Lemmas A.2 and A.3), we formalize
the intuition from the previous paragraph to show that for any v ∈ S⊥, the projection of
Exploit(R,v) onto S⊥ will always have magnitude at least 2PS⊥(a). The action Exploit(R,v)
is BIC by Lemma 2.1. Therefore, we have found a new BIC action Exploit(R,v) that has
twice as large magnitude when projected onto S⊥ as a.
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2.4 Pushing eigenvalues upwards

An important step of the proof of Algorithm 1 is showing that the while loop will terminate
in polynomial time. To show this, we show that the action a used for poly(d) steps at
the end of each round of the while loop sufficiently increases the eigenvalues of M(t) :=∑t

i=1

(
A(i)

)⊗2
. Note that at each time t, the matrix M(t) increases by a rank-1 update, i.e.

M(t+1) = M (t) +
(
A(t+1)

)⊗2
. In order to show that we will eventually achieve λ-spectral

exploration, we must show that the small eigenvalues of M(t+1) increase relative to the small
eigenvalues of M(t) after each round of the while loop. Although we do not follow this route,
we mention that [Gol73] provides exact descriptions for the eigenvalues of rank-one updates
as above, giving a rational function ω(x) (with coefficients depending on M(t) and A(t+1))
which has roots equal to the eigenvalues of M(t+1). However, it is not clear how helpful this
is for the quantitative estimates we require.

At first glance, we might hope that we can sufficiently increase all of the eigenvalues of
M(t) in just d rounds if in each round we partially explore a new not-yet-explored direction.
However, this unfortunately is not always the case. For example, suppose in the first round
we use BIC action A(1) = (1, 0, 0, ..., 0). Writing φ = 1/

√
5, we then in the next d − 1

actions use the BIC actions A(2) = (2φ,−φ, 0, 0, ..., 0), A(3) = (0, 2φ,−φ, 0, 0, ..., 0), and so
on until A(d) = (0, 0, ..., 0, 2φ,−φ). Then each A(i) has distance φ = Ω(1) from the span of
the preceding actions, so we might hope that this already yields Ω(1)-spectral exploration.
However, note that the vector x = (1, 2, 4, . . . , 2d−1) satisfies ⟨x,A(i)⟩ = 1i=1 ≤ 2−(d−1)∥x∥
for all 1 ≤ i ≤ d. It follows that the matrix M(d) =

∑d
i=1

(
A(i)

)⊗2
has smallest eigenvalue

which is exponentially small in d (since ⟨x,M(d)x⟩/∥x∥2 is exponentially small).

We show that our algorithm terminates in poly(d) steps using the linear algebraic Lemma
2.3 below, which may be of independent interest. Informally, this lemma says that if u
has non-negligible projection onto the space orthogonal to the large-or-medium eigenvalues
of M, then the rank-1 update of M + u⊗2 increases the total sum of the small-or-medium
eigenvalues non-negligibly.

Lemma 2.3 (Proof in Appendix E). Let v1,v2, ...vj ∈ Rd such that ∥vi∥ = 1. Define
M =

∑j
i=1 v

⊗2
i . Suppose w1, ...,wd are orthonormal eigenvectors of M with corresponding

eigenvalues λ1 ≥ ... ≥ λd ≥ 0. Define ℓϵ as the largest index such that λj ≥ ϵ for some 0 <
ϵ < 1, and define S = Span(w1, ...,wℓϵ). Suppose u is a vector such that ∥PS⊥(u)∥22 ≥ ϵ, and
define M′ = M+u⊗2. Let w′

1, ...w
′
d be the orthonormal eigenvectors of M′ with corresponding

eigenvalues λ′1 ≥ ... ≥ λ′d. Finally, let ℓ be the largest index such that λℓ ≥ 200d3

ϵ2
. Then

d∑
i=ℓ+1

λ′i ≥ ϵ/2 +
d∑

i=ℓ+1

λi.
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3 Main Results

In this section, we will formally state our main algorithms and theorems. For presentation
purposes, for the formal algorithms and theorems we will define

λ := min

(
1,min(δLA.2, δLA.3, 1/cLA.3)

2 (cv /
√
8π)2

4d(K
√
π + 1)2

)
= Ω(cv /d),

where δLA.2 is a constant from Lemma A.2 and δLA.3, cLA.3 are constants from Lemma A.3.
Note that if we can do λ-spectral exploration in T rounds with this value of λ, then for any
λ̄ we can do λ̄-spectral exploration in ⌈ λ̄

λ
⌉ · T rounds by simply repeating the algorithm ⌈ λ̄

λ
⌉

times. Therefore, if we can ensure λ-spectral exploration for the λ value described above in
poly(d) rounds, then we can also ensure λ̄-spectral exploration in λ̄ · poly(d) rounds for any
λ̄ ≥ λ.

3.1 Algorithms

Our main algorithm is presented in Algorithm 4, with subroutines in Algorithms 5 and
6. Note that these three algorithms directly correspond to the pseudocode presented in
Algorithms 1–3.

Lemma 3.1 shows that the application of Lemma 2.2 (in the form of Lemma A.4) in Algorithm
5 is valid.

Lemma 3.1 (Proof in App C). Every time Algorithm 5 (Line 2) calls Algorithm 4 to define

ŷℓ, we have ŷℓ
d
= x∗ℓ +N(0, cLA.4

λ
λℓ
). Thus, z(ŷ) (Line 4) satisfies the assumptions of Lemma

2.2 with ϵ = ϵdcd
4
.

3.2 Propositions and Theorem

As discussed in Section 2.2, the main purpose of Algorithm 5 is to find a BIC action a
that has sufficiently high magnitude when projected onto the space of not-yet-sufficiently
explored actions. This is formalized in Proposition 3.2. As discussed in Section 2.3, the
main purpose of Algorithm 6 is to double the magnitude of a when projected onto the space
of not-yet-sufficiently explored actions. This is formalized in Proposition 3.3.

Proposition 3.2 (Proof in Appendix I). The action a returned by Algorithm 5 satisfies

∥PS⊥(a)∥ ≥ cLA.1 cv
2.5 ϵdcd

16 (K
√
π + 1)

:= cP3.2
2.5
cv ϵdcd.

Proposition 3.3 (Proof in Appendix J). The action returned by Algorithm 6 satisfies

∥PS⊥(b)∥ ≥ 2 ∥PS⊥(a)∥ .

We can now state our main theorem bounding the sample complexity of Algorithm 4.

10



Algorithm 4 BIC Exploration

Input: λ

1: κ← max
(

1
λcLA.4

,
4d(K

√
π+1)(1+ 1

λ
)

cv2 /(8π)

)
2: v1 ← e1
3: for t ∈ [0 : κ) do
4: Set A(t) = v1

5: qt1 ← r(t)

6: end for
7: t← κ
8: j ← 1
9: while minimum eigenvalue of M =

∑j
i=1 v

⊗2
i is smaller than λ do

10: w1, ...,wd ← orthonormal eigenvectors of M with corresponding eigenvalues λ1 ≥
... ≥ λd.

11: ℓλ ← max{i : λi ≥ λ}
12: S ← Span(w1, ...,wℓλ)
13: a, t← InitialExploration({wi}di=1, {λi}

ℓλ
i=1, {vi}

j
i=1, {{qt

′
i }κ−1

t′=0}
j
i=1, t)

14: while ∥PS⊥(a)∥ ≤
√
λ do

15: a, t← ExponentialGrowth(a, {wi}ℓλi=1, {λi}
ℓλ
i=1, {vi}

j
i=1, {{qt

′
i }κ−1

t′=0}
j
i=1, t)

16: end while
17: vj+1 ← a
18: for t′ ∈ [0 : κ) do
19: Set A(t+t′) = a
20: qt

′
j+1 ← r(t+t

′)

21: end for
22: t← t+ κ
23: j ← j + 1
24: end while

11



Algorithm 5 InitialExploration

Input: {wi}di=1, {λi}
ℓλ
i=1, {vi}

j
i=1, {{qt

′
i }κ−1

t′=0}
j
i=1, t

1: Define x∗ ∈ Rℓλ as x∗ℓ = ⟨ℓ
∗,wℓ⟩.

2: Define ŷ ∈ Rℓλ as ŷℓ = λcLA.4
∑ 1

λcLA.4
−1

t′=0

∑j
k=1

⟨vk,wℓ⟩
λℓ

qt
′

k ▷ ŷℓ ∼ x∗ℓ +N(0, cLA.4
λ
λℓ
) by

Lemma A.5 via Lemma 3.1
3: z(y)← E[x∗ | ŷ = y]
4: f ← function from Lemma 2.2 for z(ŷ) with ϵ = ϵdcd

4
. ▷ f exists by Lemma A.4 via

Lemma 3.1
5: Ψ← Bernoulli (f(z(ŷ)))
6: Set A(t) = Exploit(Ψ,wℓλ+1)

7: R←

{
r(t) w.p. ϵdcd

16(K
√
π+1)f(z(ŷ))

if Ψ = 1

N(0, 1) otherwise
▷ The above equation involves valid

probabilities by Lemma 2.2 and because max(∥E[z(ŷ)]∥ , 1) ≤ ∥E[x∗]∥+ 1 ≤ K
√
π + 1

8: a← Exploit(1R>0,wℓλ+1).
9: return a, t+ 1

Algorithm 6 ExponentialGrowth

Input: a, {wi}ℓλi=1, {λi}
ℓλ
i=1, {vi}

j
i=1, {{qt

′
i }κ−1

t′=0}
j
i=1, t

1: S ← Span(w1, ...,wℓλ)

2: x← P
S⊥ (a)

∥PS⊥ (a)∥
3: ck ←

∑ℓλ
i=1

⟨PS(a),wi⟩⟨vk,wi⟩
λi

for k ∈ [1 : j] ▷ PS(a) =
∑j

k=1 ckvk by Lemma A.5

4: L← 4d(E[ℓ∗1]+1)2(1+
∑j

k=1 c
2
k)

c2LA.2

5: For t′ ∈ [t, t+ L), set A(t′) = a
6: t← t+ L

7: R←
∑t+L−1

t′=t

(
r(t

′) −
∑j

k=1 ckq
t′

k

)
8: b← Exploit(1R>0,wℓλ+1)
9: return b, t

12



Theorem 3.4 (Proof in Appendix K). Algorithm 4 is BIC and has sample complexity

O

(
log

(
1

cv ϵdcd

)(
d5

λ4 cv2
+

d4

c2dλ
4

))
.

As discussed above, for any λ̄, we can repeat Algorithm 4 for
⌈
λ̄/λ

⌉
times to get λ̄-spectral

exploration. This is because trace is additive, and therefore if running Algorithm 4 once
gives λ-spectral exploration, then running it

⌈
λ̄/λ

⌉
times will give λ̄-spectral exploration.

Multiplying the bound from Theorem 3.4 by
⌈
λ̄/λ

⌉
gives that λ̄-spectral exploration is

achievable in λ̄
(

d
cv +cd

)O(1)

log(1/ϵd) rounds, matching the desired result of Theorem 1.3.

4 Discussion

We conclude with a more detailed discussion on how our results can be combined with the
results of [Sel23] to achieve end-to-end guarantees for incentivized exploration. Here we focus
on r-regular µ as assumed in that work, which is encapsulated by Proposition 1.4. Recall
[Sel23, Theorem 3.5] shows that for ϵ > 0, if an algorithm has already achieved Õ(d4/r2ϵ2)-
spectral exploration at time t, then running Thompson sampling from time t onward will
be ϵ-BIC (where ϵ-BIC relaxes Definition 1.1 by subtracting an ϵ term from the right-hand
side).

Our main result (Theorem 1.3) efficiently achieves the necessary spectral exploration, with
at most poly(d, 1/r, 1/ϵ) sample complexity (and thus additional regret). Note that our algo-
rithm actually gives a stronger guarantee than in [Sel23] (BIC rather than ϵ-BIC). If we only
need to guarantee the initial exploration is ϵ-BIC, then we no longer need the InitialExplo-
ration phase of the algorithm, and therefore can drop Assumption 1. Combining our result
with [Sel23] and the analysis of Thompson sampling in [DVR18] or [AG13], we therefore
obtain an end-to-end ϵ-BIC algorithm with respectively Bayesian regret poly(d, 1/r, 1/ϵ) +
Õ(d
√
T ) or frequentist regret poly(d, 1/r, 1/ϵ) + Õ(d3/2

√
T ). Namely, one first runs our al-

gorithm for poly(d, 1/r, 1/ϵ) steps to guarantee the required spectral exploration, and then
uses Thompson Sampling for all remaining steps. Since the regret from the initial explo-
ration phase is constant relative to T (and polynomial in d), this combined algorithm will
asymptotically obey the state-of-the-art regret bounds for Thompson Sampling.
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A Technical Lemmas

In this appendix, we introduce a series of technical lemmas that form the basis of our results.
Our proofs rely on carefully analyzing how the conditional expectation of ℓ∗ changes when
conditioning on different signals ψ. Lemmas A.1-A.4 are the main tools we use to analyze
the behavior of these conditional expectations.

Lemma A.1 says that for random variable X, if we have some signal R that is equal to X
plus noise with some small probability and is just pure noise otherwise, then the conditional
expectation of X given the sign of R has magnitude that is Ω(ϵ). In the “initial exploration“
phase of our algorithm we explore a new (not previously explored) direction with very small
probability. Lemma A.1 implies that this exploration will lead to the conditional expectation
of ℓ∗ in the newly-explored direction having magnitude proportional to the probability of
exploration.

Lemma A.1. Suppose X is a real-valued K-sub-gaussian random variable such that E[X] =
0, E[X2] = σ2

X . Let R ∼ X + N(0, 1) with probability ϵ and R ∼ N(0, 1) with probability
1− ϵ. Then there exists cLA.1 independent of X such that

|E[X | 1R>0]| ≥ cLA.1σ
5
Xϵ.

The proof of Lemma A.1 can be found in Appendix H.1.

Lemmas A.2 and A.3 are the main technical tools that allow for us to exponentially grow
the amount of exploration in any new direction. Informally, Lemma A.2 says that even if
X forms only an ϵ fraction of the signal r, conditioning on the sign of r will increase the
conditional expectation of X by a multiplicative factor. This lemma will be applied to the
expectation of ℓ∗ in the new direction we are trying to explore. Lemma A.3 says that any
random variable conditioned on the sign of r cannot have conditional expectation increase by
more than O(ϵ). This will be applied to the expectation of ℓ∗ in all of the directions that we
have already explored. These two lemmas combined allow our algorithm to multiplicatively
increase the magnitude of the expectation of ℓ∗ in an unexplored direction relative to the
already explored directions.

Lemma A.2. Let X be a K-sub-gaussian random variable satisfying E[X] = 0 and E[X2] =
σ2
X ≥ cv. For Z ∼ N(0, σ2) such that Z ⊥⊥ X and ϵ > 0, define r = ϵX + Z. Then there

exists a constant δLA.2 such that if ϵ/σ ≤ δLA.2,

|E[X | 1r>0]| ≥
ϵσ2

X

2σ
√
2π
≥ cv ϵ√

8πσ
:=

cLA.2ϵ

σ
.

The proof of Lemma A.2 can be found in Appendix G.1.

Lemma A.3. For K-sub-gaussian random variables X, Y such that E[X] = E[Y ] = 0
and for Z ∼ N(0, σ2) independent of X and Y , let r ∼ ϵX + Z. Suppose ϵ

σ
≤ δLA.3 :=

min

(
1, 1

2K
√

log(2)

)
. Then there exists a constant cLA.3 > 0 such that

|E[Y | 1r>0]| ≤ cLA.3ϵ/σ.
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The proof of Lemma A.3 can be found in Appendix G.2.

Lemma A.4 is a more technical lemma that allows us to better understand the distribution
of ℓ∗ when we condition on averages based on previous rewards. More specifically, this allows
us to apply Lemma 2.2 to the random variable z as described in Section 2.2. The proof of
Lemma A.4 can be found in Appendix H.

Lemma A.4. For random variable X in Rd, define Y = X+W where W ∼ N(0,Diag(s))
and W is independent of X. Define Z(Y) = E[X | Y]. If min∥v∥=1 Pr (⟨X,v⟩ ≥ cd) ≥ ϵd

and for all i ∈ [1 : d], si ≤ cLA.4 :=
c2d/32

log(4/ϵd)
then

min
∥v∥=1

E[(⟨Z(Y),v⟩)+] ≥ ϵdcd
4
.

The final lemma for this section says that any vector in the span of the top eigenvectors
of a positive semi-definite matrix can be represented as a linear combination of these top
eigenvectors with coefficients that are not too large. The proof of Lemma A.5 can be found
in Appendix F.

Lemma A.5. Let v1,v2, ...vj ∈ Rd such that ∥vi∥ = 1. Define M =
∑j

i=1 v
⊗2
i . Suppose

w1, ...,wd are orthonormal eigenvectors of M with corresponding eigenvalues λ1 ≥ ... ≥
λd ≥ 0. Suppose λℓ ≥ ϵ. Then for any u ∈ Span(w1, ...,wℓ) such that ∥u∥ ≤ 1, we have

u =
∑j

i=1 civi, where ci :=
∑ℓ

k=1

(
⟨u,wk⟩⟨vi,wk⟩

λk

)
. Furthermore,

∑j
i=1 c

2
i ≤ 1

ϵ
.

B Discussion on Assumptions

Here we illustrate why the first two conditions in Assumption 1.2 are important, by presenting
an example where each is absent.

To see why Condition 1 (that ℓ∗ is not confined to any half-space) is necessary, suppose d = 2
and that ℓ∗1 ∼ Uniform(0.5, 2) and ℓ∗2 ∼ Uniform(−1, 1) and ℓ∗1 ⊥⊥ ℓ∗2. This example
violates Condition 1, because Pr (⟨−e1, ℓ∗⟩ ≥ 0) = 0. However, the only BIC action will for
every t be A(t) = e1. This is because E[ℓ∗2] = 0, and E[ℓ∗1 | Ψ] > 0 for any signal Ψ based on
any historical actions and rewards. Condition 1 is also not overly restrictive so as to make λ-

spectral exploration in poly(d) steps trivial. For example, suppose ℓ∗1 =

{
−1 w.p. e−d

1 w.p. 1− e−d
and ℓ∗2 ∼ Uniform(−1, 1). This prior distribution satisfies Condition 1, but there is still
an exponentially small probability that the optimal action is not A∗ = (1, 0). Therefore, in
this example it is not trivial to guarantee λ-spectral exploration in a polynomial number of
samples.

To see why Condition 2 (that ℓ∗ has non-degenerate covariance) is needed, consider the
following example. Suppose d = 2 and that the coordinates of ℓ∗ are independent with:

ℓ∗1 =

{
−1 w.p. e−d

1 w.p. 1− e−d
, ℓ∗2 =


−2 w.p. e−d

0 w.p. 1− 2e−d

2 w.p. e−d
.
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Intuitively, this example once again requires exponentially many samples to λ-spectrally ex-
plore, because in order to explore ℓ∗2 we need to find a signal based on the history where
the expectation of ℓ∗2 is not exponentially smaller than the expectation of ℓ∗1. However, we
cannot do exponential growth on the conditional expectation of ℓ∗2, as we would need expo-
nentially many samples to sufficiently increase the conditional expectation of ℓ∗2. Similarly,
we would need exponentially many samples to decrease the conditional expectation of ℓ∗1.

We also note that any sub-gaussian random variable X satisfying P(|X| > t) ≤ 2e−t
2/K2

for
all t ≥ 0 (as in Condition 3) satisfies the following bounds on the moments of X:

E[X] ≤ E[|X|] =
∫ ∞

0

P (|X| > t) dt ≤
∫ ∞

0

2e−t
2/K2

dt = K
√
π, (3)

E[X2] =

∫ ∞

0

P(X2 > t)dt ≤
∫ ∞

0

2e−t/K
2

dt = 2K2. (4)

C Proof of Lemma 3.1

Proof of Lemma 3.1. Recall that the input parameters from Algorithm 5 come from their

use in Algorithm 4. We compute as follows, with
d
= indicating equality in distribution.

ŷℓ = λcLA.4

1
λcLA.4

−1∑
t′=0

j∑
k=1

⟨vk,wℓ⟩
λℓ

qt
′

k

d
= λcLA.4

1
λcLA.4

−1∑
t′=0

j∑
k=1

⟨vk,wℓ⟩
λℓ

⟨vk, ℓ∗⟩+ λcLA.4

1
λcLA.4

−1∑
t′=0

j∑
k=1

⟨vk,wℓ⟩
λℓ

N(0, 1)

d
=

〈
ℓ∗,

λcLA.4
1

λcLA.4
−1∑

t′=0

j∑
k=1

⟨vk,wℓ⟩
λℓ

vk

〉+N

(
0, λcLA.4

j∑
k=1

⟨vk,wℓ⟩2

λ2ℓ

)

d
=

〈
ℓ∗,

λcLA.4
1

λcLA.4
−1∑

t′=0

wℓ

〉+N

(
0,
λcLA.4
λ2ℓ

w⊤
ℓ Mwℓ

)
[Lemma A.5 (u = wℓ)]

d
= x∗ℓ +N

(
0, cLA.4

λ

λℓ

)
. (5)

We will apply Lemma A.4 with X = x∗, Y = ŷ, and Z(Y) = z(ŷ). As shown above, (and
using that λ

λℓ
≤ 1 for all ℓ ≤ ℓλ) we have that Y −X has the appropriate distribution. The
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last thing we need to show is that

min
∥q∥=1

Pr (⟨X,q⟩ ≥ cd) = min
∥q∥=1

Pr

(
ℓλ∑
ℓ=1

⟨ℓ∗,wℓ⟩qℓ ≥ cd

)

= min
∥q∥=1

Pr

(〈
ℓ∗,

(
ℓλ∑
ℓ=1

qℓwℓ

)〉
≥ cd

)
≥ min

∥v∥=1
Pr (⟨ℓ∗,v⟩ ≥ cd)

≥ ϵd. [Assumption 1].

This means we can apply Lemma A.4 to get that

min
∥v∥=1

E[⟨z(ŷ),v⟩+] ≥ ϵdcd
4
.

We have therefore shown that z(ŷ) satisfies the assumptions of Lemma 2.2 with ϵ = ϵdcd
4
.

D Proof of Lemma 2.1

Proof of Lemma 2.1. The BIC optimal action given ψ is

A∗ = argmax
A∈Sd−1

E[⟨A, ℓ∗⟩ | ψ]

= argmax
A∈Sd−1

⟨A,E[ℓ∗ | ψ]⟩.

Therefore, the BIC action is A∗ = E[ℓ∗|ψ]
∥E[ℓ∗|ψ]∥ if ∥E[ℓ∗ | ψ]∥ ̸= 0. If ∥E[ℓ∗ | ψ]∥ = 0, then any

action is BIC including v.

E Proof of Lemma 2.3

We will prove the following equivalent lemma.

Lemma E.1. In the setting of Lemma 2.3,

ℓ∑
i=1

λ′i ≤ (1− ϵ/2) +
ℓ∑
i=1

λi

We first observe that Lemma E.1 implies the desired Lemma 2.3.

Proof of Lemma 2.3. By linearity of trace,

d∑
i=1

λ′i = 1 +
d∑
i=1

λi.
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Therefore, Lemma E.1 implies the desired result that

d∑
i=ℓ+1

λ′i ≥ ϵ/2 +
d∑

i=ℓ+1

λi.

Proof of Lemma E.1. First, note the following, where the max is over x1, ...,xℓ that are
orthonormal.

ℓ∑
i=1

λ′i = max
x1,...,xℓ

ℓ∑
i=1

xTi M
′xi = max

x1,...,xℓ

(
ℓ∑
i=1

x⊤
i Mxi +

ℓ∑
i=1

⟨xi,u⟩2
)
. (6)

Define

x∗
1, ...,x

∗
ℓ = argmax

x1,...,xℓ

ℓ∑
i=1

x⊤
i M

′xi. (7)

We will now prove (by contradiction) that for all i ≤ ℓ, ∥PS⊥(x∗
i )∥

2
2 ≤

ϵ2

100d2
. Suppose that

there exists some i′ ∈ 1, ..., ℓ such that ∥PS⊥(x∗
i′)∥

2
2 >

ϵ2

100d2
. Then we find

ℓ∑
i=1

(x∗
i )

⊤M′x∗
i =

ℓ∑
i=1

(x∗
i )

⊤Mx∗
i +

ℓ∑
i=1

⟨x∗
i ,u⟩2

≤ 1 +
ℓ∑
i=1

(x∗
i )

⊤Mx∗
i [x∗

i orthonormal so
ℓ∑
i=1

⟨x∗
i ,u⟩2 ≤ ∥u∥

2 ≤ 1]

= 1 +
ℓ∑
i=1

(
PS⊥(x∗

i )
⊤MPS⊥(x∗

i ) + PS(x∗
i )

⊤MPS(x∗
i )
)

= 1 +
ℓ∑
i=1

PS⊥(x∗
i )

⊤MPS⊥(x∗
i ) +

ℓ∑
i=1

PS(x∗
i )

⊤MPS(x∗
i )

= 1 + dϵ+
ℓ∑
i=1

PS(x∗
i )

⊤MPS(x∗
i ) [S⊥ = span of evectors with evalues ≤ ϵ]

= 1 + dϵ+
ℓ∑
i=1

(
ℓϵ∑
k=1

⟨x∗
i ,wk⟩wk

)⊤

M

(
ℓϵ∑
k=1

⟨x∗
i ,wk⟩wk

)

= 1 + dϵ+
ℓ∑
i=1

ℓϵ∑
k=1

⟨x∗
i ,wk⟩2w⊤

kMwk

= 1 + dϵ+
ℓ∑
i=1

ℓϵ∑
k=1

⟨x∗
i ,wk⟩2λk. (8)

Because x∗
i are orthonormal, we know that

∑ℓ
i=1⟨x∗

i ,wk⟩2 ≤ ∥wk∥22 = 1. Because we assumed

that ∥PS⊥(x∗
i′)∥

2
2 >

ϵ2

100d2
, we know that

∑ℓ
i=1

∑ℓϵ
k=1⟨x∗

i ,wk⟩2 =
∑ℓ

i=1 ∥PS(x∗
i )∥

2 ≤ ℓ− ϵ2

100d2
.

Combining these two statements with the fact that λk is decreasing in k,

ℓ∑
i=1

ℓϵ∑
k=1

⟨x∗
i ,wk⟩2λk =

ℓϵ∑
k=1

ℓ∑
i=1

⟨x∗
i ,wk⟩2λk ≤

(
1− ϵ2

100d2

)
λℓ +

ℓ−1∑
i=1

λi.
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Continuing where we left off with Equation (8), we have that

= 1 + dϵ+
ℓ∑
i=1

ℓϵ∑
k=1

⟨x∗
i ,wk⟩2λk ≤ 1 + dϵ+

(
1− ϵ2

100d2

)
λℓ +

ℓ−1∑
i=1

λi

≤ 1 + dϵ− ϵ2

100d2
λℓ +

ℓ∑
i=1

λi

≤ 1 + dϵ− 2d+
ℓ∑
i=1

λi [λℓ ≥
200d3

ϵ2
]

<
ℓ∑
i=1

λi [ϵ < 1]

=
ℓ∑
i=1

w⊤
i Mwi ≤

ℓ∑
i=1

w⊤
i M

′wi.

Therefore, we have a contradiction, as x∗
1, ...,x

∗
ℓ cannot be a solution to Equation (7) because

these vectors are strictly beaten by w1, ...,wℓ.

Therefore, we have shown that ∥PS⊥(x∗
i )∥

2
2 ≤

ϵ2

100d2
for all i.

In the following equation, we define PS as the projection matrix for projecting a vector onto
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S. Now, we have that

ℓ∑
i=1

λ′i =
ℓ∑
i=1

(x∗
i )

⊤Mx∗
i +

ℓ∑
i=1

⟨x∗
i ,u⟩2

≤
ℓ∑
i=1

λi +
ℓ∑
i=1

⟨x∗
i ,u⟩2

≤
ℓ∑
i=1

λi +
ℓ∑
i=1

(
⟨PS(x∗

i ),PS(u)⟩+ ⟨PS⊥(x∗
i ),PS⊥(u)⟩

)2
≤

ℓ∑
i=1

λi +
ℓ∑
i=1

(|⟨PS(x∗
i ),PS(u)⟩|+

ϵ

10d
)2 [∥PS⊥(x∗

i )∥
2
2 ≤

ϵ2

100d2
]

=
ℓ∑
i=1

λi +
ℓ∑
i=1

(
⟨PS(x∗

i ),PS(u)⟩2 +
ϵ

5d
|⟨PS(x∗

i ),PS(u)⟩|+
ϵ2

100d2

)

≤
ℓ∑
i=1

λi +
ℓ∑
i=1

(
⟨PS(x∗

i ),PS(u)⟩2 +
ϵ

5d
+

ϵ2

100d2

)

≤
ℓ∑
i=1

λi +
ϵ

5
+

ϵ2

100d
+

ℓ∑
i=1

⟨PS(x∗
i ),PS(u)⟩2

=
ℓ∑
i=1

λi +
ϵ

5
+

ϵ2

100d
+

ℓ∑
i=1

(
(x∗

i )
⊤P⊤

S PSu
)2

=
ℓ∑
i=1

λi +
ϵ

5
+

ϵ2

100d
+

ℓ∑
i=1

(
(x∗

i )
⊤PSu

)2
=

ℓ∑
i=1

λi +
ϵ

5
+

ϵ2

100d
+

ℓ∑
i=1

⟨x∗
i ,PS(u)⟩2

≤
ℓ∑
i=1

λi +
ϵ

5
+

ϵ2

100d
+ ∥PS(u)∥22

≤
ℓ∑
i=1

λi +
ϵ

5
+

ϵ2

100d
+ 1− ϵ

≤
ℓ∑
i=1

λi + (1− ϵ/2).

This completes the proof of Lemma E.1.
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F Proof of Lemma A.5

Proof of Lemma A.5. Define A ∈ Rj×d with rows corresponding to v1, ...,vj. Then M =
A⊤A. We want to write u = A⊤c for c ∈ Rj.

Because w1, ...,wℓ are orthonormal and u ∈ Span(w1, ...,wℓ), we have that

u =
ℓ∑
i=1

⟨u,wi⟩wi

Because wi is an eigenvector of M with eigenvalue λi, we know that for any i ≤ ℓ

λiwi = Mwi = A⊤Awi

Rearranging terms and multiplying both sides by ⟨u,wi⟩, we have that for any i ≤ ℓ

⟨u,wi⟩wi = A⊤
(
⟨u,wi⟩Awi

λi

)
.

Therefore, we have that

u =
ℓ∑
i=1

⟨u,wi⟩wi =
ℓ∑
i=1

A⊤
(
⟨u,wi⟩Awi

λi

)
= A⊤

ℓ∑
i=1

(
⟨u,wi⟩Awi

λi

)
.

Now, we can define

c =
ℓ∑
i=1

(
⟨u,wi⟩Awi

λi

)
= A

ℓ∑
i=1

⟨u,wi⟩wi

λi
.

This implies that

∥c∥22 =

∥∥∥∥∥A
ℓ∑
i=1

⟨u,wi⟩wi

λi

∥∥∥∥∥
2

2

=

(
ℓ∑
i=1

⟨u,wi⟩wi

λi

)⊤

M

(
ℓ∑
i=1

⟨u,wi⟩wi

λi

)

=
ℓ∑
i=1

λi

(
⟨u,wi⟩
λi

)2

[w⊤
i Mwi = λi]

=
ℓ∑
i=1

⟨u,wi⟩2

λi

≤ ∥u∥
2
2

ϵ

≤ 1

ϵ
.

This vector c therefore satisfies the desired properties.
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G Proof of Lemma 2.2

We begin by proving the following lemma.

Lemma G.1. Let µ be a probability distribution on Rd with finite first moment and suppose

min
∥v∥=1

Ex∼µ[⟨v,x⟩+] ≥ ϵ.

Then for any w with ∥w∥ < ϵ there is a [0, 1]-valued measurable function f such that
E[xf(x)] = w.

Proof of Lemma G.1. Let K be the set of possible vectors E[xf(x)] where f is a a [0, 1]-
valued measurable function. Then for any a,b ∈ K, there exist corresponding [0, 1]-valued
functions fa and f b such that E[xfa(x)] = a and E[xf b(x)] = b. Therefore for any t ∈ [0, 1],
ta+ (1− t)b ∈ K because E[xf t(x)] = ta+ (1− t)b for f t(x) = tfa(x) + (1− t)f b(x). This
implies that K is convex.

We will now prove the desired result by contradiction. Suppose w ̸∈ K. Because K is
convex, if w /∈ K then there is a “separating hyperplane” unit vector v such that

sup
u∈K
⟨v,u⟩ ≤ ⟨v,w⟩.

(Note that we do not argue here that K is closed.) Because by assumption we have that
∥w∥ < ϵ, this implies that

sup
u∈K
⟨v,u⟩ < ϵ.

For any v, by definition of K and linearity of expectation we have that

sup
u∈K
⟨v,u⟩ = sup

f :Rd→[0,1]

⟨v,Ex∼µ[xf(x)]⟩

= sup
f :Rd→[0,1]

Ex∼µ[f(x)⟨v,x⟩]

= Ex∼µ[⟨v,x⟩+]
≥ ϵ.

where the last line followed from the assumption of the lemma. This gives a contradiction,
and therefore w ∈ K must be true.

Proof of Lemma 2.2. Applying the above lemma with w = 0, there exists f 0 : Rd → [0, 1]

such that E[xf 0(x)] = 0. Define the function f ′ as f ′(x) = f0(x)+2ϵ
4max(∥E[x]∥,1) . By this construc-

tion,

∥E[xf ′(x)]∥ =
∥∥∥∥E[xf 0(x)] + 2ϵE[x]

4max(∥E[x]∥ , 1)

∥∥∥∥ =
2ϵ ∥E[x]∥

4max(∥E[x]∥ , 1)
≤ ϵ

2
.

Therefore, w := −E[xf ′(x)] satisfies ∥w∥ < ϵ. Applying the above lemma again, there

exists fw : Rd → [0, 1] such that E[xfw(x)] = −E[xf ′(x)]. Now define f(x) = f ′(x)+fw(x)
2

.
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By construction, we have that 1 ≥ f(x) ≥ f ′(x)
2
≥ ϵ

4max(∥E[x]∥,1) . Furthermore, by linearity of
expectation and the construction of fw we have that

E[xf(x)] = E
[
x
f ′(x) + fw(x)

2

]
=

1

2
(E[xf ′(x)] + E[xfw(x)]) =

1

2
(E[xf ′(x)]− E[xf ′(x)]) = 0.

Therefore, f(x) is a
[

ϵ
4max(∥E[x]∥,1) , 1

]
-valued function that satisfies E[xf(x)] = 0 as desired.

G.1 Proof of Lemma A.2

Lemma G.2. Let ΦC(x) = P(Z > x) for Z ∼ N(0, 1). Then for |x| ≤ 1,∣∣∣∣ΦC(x)−
(
1

2
− 1√

2π
x

)∣∣∣∣ ≤ |x3|/15. (9)

Proof of Lemma G.2. A third order Taylor expansion shows the error is at most

|x3| ·
sup|y|≤1 |(ΦC)′′′(y)|

6
.

For |y| ≤ 1 we easily compute

|(ΦC)′′′(y)| = |y
2 − 1| e−y2/2√

2π
≤ 1/

√
2π ≤ 2/5.

Lemma G.3. If X is K-sub-gaussian, then for any event E and any P(E) ≥ a > 0, we
have

E[X21E] ≤ K2 Pr(E) log(2/a) +K2a, (10)

E[X1E] ≤ O(Pr(E) log(1/a)). (11)

Proof of Lemma G.3. We prove both estimates using the tail-sum formula. For the truncated
second moment,

E[X21E] =

∫ ∞

0

Pr(|X21E| ≥ t)dt

≤
∫ ∞

0

min(Pr(E),Pr(X2 ≥ t))dt

≤
∫ ∞

0

min(Pr(E), 2e−t/K
2

)dt

≤ Pr(E) log(2/a)K2 +

∫ ∞

log(2/a)K2

2e−t/K
2

dt

= K2 Pr(E) log(2/a) +K2a.
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Similarly for the truncated first moment,

E[X1E] =

∫ ∞

0

Pr(|X1E| ≥ t)dt

≤
∫ ∞

0

min(Pr(E),Pr(X ≥ t))dt

≤
∫ ∞

0

min(Pr(E), 2e−t
2/K2

)dt

≤ Pr(E)
√

log(3/a)K +

∫ ∞

√
log(3/a)K

2e−t
2/K2

dt

= O(Pr(E) log(1/a)).

Proof of Lemma A.2. Let dµX be the law of X and dµX|r>0 be the conditional law of X
given the event r > 0. Then by Bayes rule,

dµX|r>0(x) =
Pr(r > 0 | X = x)dµX(x)

Pr(r > 0)

=
Pr (N(ϵx, σ2) > 0) dµX(x)

Pr(r > 0)
(12)

=
ΦC(−ϵx/σ)dµX(x)

Pr(r > 0)
.

Note that

E[X | r > 0] =

∫ ∞

−∞
xdµX|r>0(x) =

1

Pr(r > 0)

∫ ∞

−∞
xΦC(−ϵx/σ)dµX(x).

Since Pr(r > 0) ≤ 1 it suffices to lower-bound the latter integral by a suitable positive value.

As long as ϵ/σ ≤ δLA.2 ≤
√

1
4σ2

X

√
2π
, we have

∫ ∞

−∞
xΦC(−ϵx/σ)dµX(x)

=

∫ ∞

−∞
x

(
1

2
+

1√
2π

ϵx

σ

)
dµX(x)

+

∫ ∞

−∞
x

(
ΦC(
−ϵx
σ

)− 1

2
− 1√

2π

ϵx

σ

)
dµX(x)

=

(
ϵE[X2]

σ
√
2π

+

∫ ∞

−∞
x

(
ΦC(
−ϵx
σ

)− 1

2
− 1√

2π

ϵx

σ

)
dµX(x)

)
[E[X] = 0]

≥
(

ϵσ2
X

σ
√
2π
− 2E[X4]ϵ3

σ3

)
[Inequality (13) Below]

≥ ϵσ2
X

2σ
√
2π
. [

ϵ2

σ2
≤ σ2

X

4E[X4]
√
2π

]
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Above we used the following estimate (13). For sufficiently small δLA.2,∫ ∞

−∞
x

(
ΦC(
−ϵx
σ

)− 1

2
− 1√

2π

ϵx

σ

)
dµX(x)

=

∫
|x|≤ σ

10ϵ

x

(
ΦC(
−ϵx
σ

)− 1

2
− 1√

2π

ϵx

σ

)
dµX(x) +

∫
|x|> σ

10ϵ

x

(
ΦC(
−ϵx
σ

)− 1

2
− 1√

2π

ϵx

σ

)
dµX(x)

≥
∫
|x|≤ σ

10ϵ

x

(
ΦC(
−ϵx
σ

)− 1

2
− 1√

2π

ϵx

σ

)
dµX(x)−

∫
|x|> σ

10ϵ

(
|x|
2

+
ϵx2

σ
√
2π

)
dµX(x)

≥ −
∫
|x|≤ σ

10ϵ

|x|
∣∣∣ϵx
σ

∣∣∣3 dµX(x)− ∫
|x|> σ

10ϵ

(
|x|
2

+
ϵx2

σ
√
2π

)
dµX(x) [Lemma G.2]

= −E[X4]ϵ3

σ3
−
∫
|x|> σ

10ϵ

(
|x|
2

+
ϵx2

σ
√
2π

)
dµX(x)

≥ −E[X4]ϵ3

σ3
−
∫
|x|> σ

10ϵ

x2dµX(x) [if ϵ/σ ≤ δLA.2 ≤ 1/10]

≥ −E[X4]ϵ3

σ3
−
(
K2 Pr(E) log(2/a) +K2a

)
[Lemma G.3, E := {|x| > σ

10ϵ
}, a = 2e−

σ2

100ϵ2K2 ]

≥ −E[X4]ϵ3

σ3
− 2K2e−

σ2

100K2ϵ2

(
σ2

100ϵ2K2
+ 1

)
[Pr(E) ≤ 2e−σ

2/(100ϵ2K2)]

≥ −2E[X4]ϵ3

σ3
[2K2e−

σ2

100K2ϵ2

(
σ2

100ϵ2K2
+ 1

)
≤ (σ2

X)
2ϵ3

σ3
≤ E[X4]ϵ3

σ3
]

(13)

where the second to last line holds for sufficiently small ϵ/σ.

G.2 Proof of Lemma A.3

Proof of Lemma A.3. First, we observe that E[Y | r > 0] = E[Y 1{r>0}]
P(r>0)

. If ϵ
σ
K
√
log(4) ≤ 1/2,

we also have that

Pr(r > 0)

≥ Pr(r > 0 | X ≥ −K
√
log(4)) Pr(X ≥ −K

√
log(4))

≥ ΦC(
ϵ

σ
K
√

log(4)) Pr(X ≥ −K
√
log(4))

≥ ΦC(
ϵ

σ
K
√

log(4))
(
1− 2e−K

2 log(4)/K2
)

≥ ΦC(1/2)1/2 [
ϵ

σ
K
√

log(4) ≤ 1/2]

≥ 1/8.

Therefore, it is sufficient to upper bound |E[Y 1{r > 0}]|. By law of total expectation,

E[Y 1{r > 0}] = E[E[Y 1{r > 0} | X]] = E
[
E[Y | X]P(Z > − ϵ

σ
X)
]
.
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Define Q(X) = E[Y | X]. Because Y is sub-gaussian, the random variable Q(X) must also
be sub-gaussian with parameter

√
18K (see [VH14, Exercise 3.1]). Furthermore, E[Q(X)] =

E[E[Y | X]] = E[Y ] = 0. Now, we have the following

|E[Y 1{r > 0}]|

=
∣∣∣E [E[Y | X]P(Z > − ϵ

σ
X)
]∣∣∣

=

∣∣∣∣∫ ∞

−∞
Q(x)ΦC(−ϵx

σ
)dµX(x)

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞

1

2
Q(x)dµX(x) +

∫ ∞

−∞
Q(x)

(
ΦC(−ϵx

σ
)− 1

2

)
dµX(x)

∣∣∣∣
=

∣∣∣∣12 E[Q(X)] +

∫ ∞

−∞
Q(x)

(
ΦC(−ϵx

σ
)− 1

2

)
dµX(x)

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞
Q(x)

(
ΦC(−ϵx

σ
)− 1

2

)
dµX(x)

∣∣∣∣
≤
∫
|x|≤ σ

10ϵ

|Q(x)|
(
|ϵx|
σ
√
2π

+
∣∣∣ϵx
σ

∣∣∣3) dµX(x)
+

∫
|x|> σ

10ϵ

Q(x)

(
ΦC(−ϵx

σ
)− 1

2

)
dµX(x) [Lemma G.2]

≤ ϵ

σ

∫ ∞

−∞
|Q(x)|

(
|x|√
2π

+ |x3|
)
dµX(x) +

1

2

∫
|x|> σ

10ϵ

|Q(x)|dµX(x) [ϵ/σ ≤ 1]

≤ ϵ

σ

√√√√E[Q(X)2]E

[(
|x|√
2π

+ |x3|
)2
]
+

1

2
O

(
σ

10ϵK
(2e−

σ2

100ϵ2K2 )

)
[Lemma G.3 Equation (11)]

≤ O(ϵ/σ).

where in the second to last line we used that Pr(|X| > σ
10ϵ

) ≤ 2e−
σ2

100ϵ2K2 and that Q(X) is

K
√
18-sub-gaussian. The last line again uses that both X and Q(X) are sub-gaussian.

Therefore, we have shown that

|E[Y | r > 0]| =
∣∣∣∣E[Y 1{r > 0}]

P(r > 0)

∣∣∣∣ ≤ 8 |E[Y 1{r > 0}]| = O(ϵ/σ).

By symmetric arguments to the ones above, we have the same bound on |E[Y | r ≤ 0]|.

H Proof of Lemma A.4

Proof of Lemma A.4. Fix any v such that ∥v∥ = 1. First, we will show that

Pr(|v · (Z(Y)−X)| ≥ cd/2) ≤ ϵd/2.
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To do this, we will show that ⟨v, (Z(Y)−X)⟩ is a sub-gaussian random variable. Let X̂ be
a draw from the distribution of X | Y. Then we have that

⟨v, X̂−X⟩ = ⟨v, X̂−Y⟩+ ⟨v,Y −X⟩.

By standard properties of posterior samples, ⟨v, X̂ − Y⟩ and ⟨v,Y − X⟩ are identically
distributed with distribution N(0, σ2) for σ2 =

∑d
i=1 v

2
i si (here one averages over all ran-

domness). Therefore, we have that

E [exp (t⟨v,Z(Y)−X⟩)]

= E
[
exp

(
t⟨v,E[X̂]−X⟩

)]
≤ E

[
exp

(
t⟨v, X̂−X⟩

)]
[Jensen]

= E
[
exp

(
t⟨v, X̂−Y +Y −X⟩

)]
≤
√

E
[
exp

(
2t⟨v, X̂−Y⟩

)]
E [exp (2t⟨v,Y −X⟩)] [Cauchy-Schwarz]

≤ e2t
2σ2

.

Therefore, ⟨v, (Z(Y)−X)⟩ is sub-gaussian and satisfies the tail bound

Pr(|⟨v, (Z(Y)−X)⟩| > t) ≤ 2e−t
2/(8σ2).

Taking t = cd/2, because σ
2 =

∑d
i=0 v

2
i si ≤ maxi si ≤

c2d/32

log(4/ϵd)
, we have that

Pr(|⟨v, (Z(Y)−X)⟩| > cd
2
) ≤ 2e−c

2
d/(32σ

2) = ϵd/2. (14)

Now, we can prove the desired result that

E[(⟨Z(Y),v⟩)+]

≥ E
[
(⟨Z(Y),v⟩)+

∣∣∣|⟨v, (Z(Y)−X)⟩| ≤ cd
2
, ⟨X,v⟩ ≥ cd

]
Pr
(
|⟨v, (Z(Y)−X)⟩| ≤ cd

2
, ⟨X,v⟩ ≥ cd

)
≥ E

[cd
2

∣∣∣|⟨v, (Z(Y)−X)⟩| ≤ cd
2
, ⟨X,v⟩ ≥ cd

]
Pr
(
|⟨v, (Z(Y)−X)⟩| ≤ cd

2
, ⟨X,v⟩ ≥ cd

)
=
cd
2
Pr
(
|⟨v, (Z(Y)−X)⟩| ≤ cd

2
, ⟨X,v⟩ ≥ cd

)
≥ cd

2

(
Pr (⟨X,v⟩ ≥ cd)− Pr

(
⟨v, (Z(Y)−X)⟩| > cd

2

))
≥ cd

2

(
ϵd −

ϵd
2

)
[Eq (14) and lemma assum]

=
cdϵd
4
.

H.1 Proof of Lemma A.1

Proof of Lemma A.1. Let B be a Bernoulli random variable such that Pr(B = 1) = ϵ and
let Z ∼ N(0, 1) be independent of B and X. Then we can write R ∼ X ·B + Z.
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Then we have that

E[X | R > 0]

= E[X | R > 0, B = 1]Pr(B = 1 | R > 0) + E[X | R > 0, B = 0]Pr(B = 0 | R > 0)

= E[X | X + Z > 0] Pr(B = 1 | R > 0)

= E[X | X + Z > 0]
Pr(R > 0 | B = 1)Pr(B = 1)

Pr(R > 0)

≥ E[X | X + Z > 0] Pr(R > 0 | B = 1)Pr(B = 1)

= E[X | X + Z > 0] Pr(X + Z > 0)ϵ. (15)

Next, we need to lower bound E[X | X +Z > 0] Pr(X +Z > 0). Applying Baye’s rule gives

E[X | X + Z > 0] Pr(X + Z > 0)

= Pr(X + Z > 0)

∫ ∞

−∞
xdµX|X+Z>0(x)

=

∫ ∞

−∞
x
(
ΦC(−x)

)
dµX(x)

=

∫ ∞

−∞
x
(
ΦC(−x)− 1/2

)
dµX(x) [E[X] = 0]

Note that
(
ΦC(−x)− 1/2

)
has the same sign as x and has magnitude increasing in |x|. Therefore,

≥
∫
x≥ σX√

10

σX√
10

P
(
0 ≤ Z ≤ σX√

10

)
dµX(x) +

∫
x≤− σX√

10

σX√
10

P
(
0 ≤ Z ≤ σX√

10

)
dµX(x)

=
σXP(0 ≤ Z ≤ σX√

10
)

√
10

P(|X| > σX√
10

)

≥
σXP(0 ≤ Z ≤ σX√

10
)

√
10

 4σ2
X

5K2 log
(

20K2

σ2
X

)
 . [Equation (17) below]

≥ Ω(σ5
X). (16)

Combining Equations (15) and (16) gives the desired result of the lemma.

It remains to show the lower bound on P(|X| > σX√
10
) used in the penultimate line above.

Define a = K2 log
(

20K2

σ2
X

)
≥ σ2

X log(10)/2 > σ2
X/10 (using Equation (4) ). Next, we observe
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that

E[X2]

=

∫ ∞

0

P(X2 > t)dt

=

∫ ∞

0

P(X >
√
t)dt

=

∫ σ2
X/10

0

P(X >
√
t)dt+

∫ a

σ2
X/10

P(X >
√
t)dt+

∫ ∞

a

P(X >
√
t)dt

≤ σ2
X/10 +

∫ a

σ2
X/10

P(X >
√
t)dt+

∫ ∞

a

2e−t/K
2

dt

= σ2
X/10 +

∫ a

σ2
X/10

P(X >
√
t)dt+ 2K2e−a/K

2

= σ2
X/5 +

∫ a

σ2
X/10

P(X >
√
t)dt [Def of a]

≤ σ2
X/5 +

(
a− σ2

X

10

)
P
(
X >

σX√
10

)
. [P(X >

√
t) monotone decr.]

Since E[X2] = σ2
X , this implies that(

a− σ2
X

10

)
P
(
X >

σX√
10

)
≥ 4σ2

X

5
.

Therefore, we can conclude that

P
(
X >

σX√
10

)
≥ 4σ2

X/5

a− σ2
X/10

≥ 4σ2
X/5

a
=

4σ2
X

5K2 log
(

20K2

σ2
X

) . (17)

By symmetry, identical logic as above gives the desired upper bound on E[X | R ≤ 0].
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I Proof of Proposition 3.2

Proof of Proposition 3.2. We first show that A(t) on Line 6 satisfies A(t) ∈ S⊥ when Ψ = 1.
Recall x∗ defined as x∗ℓ = ⟨ℓ

∗,wℓ⟩ and recall that z(y) = E[x∗ | ŷ = y]. By construction,

E[x∗ | Ψ = 1]

=

∫
E[x∗ | Ψ = 1, ŷ = y]dµŷ|Ψ=1(y)

=

∫
E[x∗ | ŷ = y]

Pr(Ψ = 1 | ŷ = y)

Pr(Ψ = 1)
dµŷ(y) [Ψ = 1 is a function of ŷ]

=
1

Pr(Ψ = 1)

∫
E[x∗ | ŷ = y]f (z(y)) dµŷ(y)

=
1

Pr(Ψ = 1)

∫
z(y)f(z(y))dµŷ(y)

=
1

Pr(Ψ = 1)
E [z(ŷ)f(z(ŷ))]

= 0. [Definition of f ]

Because x∗ℓ = ⟨ℓ∗,wℓ⟩ for ℓ ≤ ℓλ, this implies that E[⟨ℓ∗,wℓ⟩ | Ψ = 1] = 0 for ℓ ≤ ℓλ.
Therefore, we must have that E[ℓ∗ | Ψ = 1] ∈ S⊥. By construction of A(t) in Line 6, this
implies that A(t) ∈ S⊥ when Ψ = 1.

Define

A =

{
E[ℓ∗|Ψ=1]

∥E[ℓ∗|Ψ=1]∥2
if E[ℓ∗ | Ψ = 1] ̸= 0

wℓλ+1 otherwise,

in other words A is equal to A(t) when Ψ = 1.

By the choice of f , we have that P(Ψ = 1) ≥ ϵdcd
16max(∥E[z(ŷ)]∥,1) ≥

ϵdcd
16(K

√
π+1)

, where in the last

line we used that Equation (3) implies

max(∥E[z(ŷ)]∥ , 1) = max(∥E[x∗]∥ , 1) ≤ max (∥E[ℓ∗]∥ , 1) ≤ max
(
K
√
π, 1
)
≤ K
√
π + 1.

By construction, we therefore have that for any realization of z(ŷ), the probability that
R = r(t) = ⟨ℓ∗,A(t)⟩+ wt = ⟨ℓ∗,A⟩+ wt is exactly

ϵdcd
16(K

√
π+1)

and otherwise R ∼ N(0, 1).

We can now apply Lemma A.1 with X = ⟨ℓ∗,A⟩, and ϵ = ϵdcd
16(K

√
π+1)

to get that either

a = wℓλ+1 or

|⟨A, a⟩| = |⟨A,E[ℓ∗ | 1R>0]⟩| = |E[⟨ℓ∗,A⟩ | 1R>0]| ≥
cLA.1ϵdcdVar(⟨ℓ∗,A⟩)2.5

16 (K
√
π + 1)

≥ cLA.1ϵdcd cv
2.5

16 (K
√
π + 1)

,

where in the last inequality we used Assumption 2.

Because A ∈ S⊥ and ∥A∥ = 1, the previous equation implies the desired result that

∥PS⊥(a)∥ ≥ cLA.1ϵdcd cv2.5

16(K
√
π+1)

.
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J Proof of Proposition 3.3

Proof of Proposition 3.3. The first step is to rewrite R from Algorithm 6 Line 7 so that we
can apply Lemmas A.2 and A.3.

Define

W :=
t+L−1∑
t′=t

(
wt′ −

j∑
k=1

(ckq
t′

k − ck⟨vk, ℓ∗⟩)

)
=

t+L−1∑
t′=t

(
wt′ −

j∑
k=1

ckq
t′

k

)
+ L

j∑
k=1

ck⟨vk, ℓ∗⟩.

Note that W is normally distributed with mean 0 and variance σ2
W := L(1 +

∑j
k=1 c

2
k). By

construction, we can rewrite R as

R =
t+L−1∑
t′=t

(
r(t

′) −
j∑

k=1

ckq
t′

k

)

=
t+L−1∑
t′=t

(
(⟨a, ℓ∗⟩+ wt′)−

j∑
k=1

ckq
t′

k

)

=
t+L−1∑
t′=t

⟨a, ℓ∗⟩ − L
j∑

k=1

ck⟨vk, ℓ∗⟩+W

= L⟨a, ℓ∗⟩ − L⟨PS(a), ℓ∗⟩+W [Lemma A.5 implies PS(a) =
j∑

k=1

ckvk]

= L⟨(a− PS(a)), ℓ∗⟩+W

= L⟨PS⊥(a), ℓ∗⟩+W

= L ∥PS⊥(a)∥ ⟨x, ℓ∗⟩+W. (18)

Therefore, R is exactly in the form necessary to apply Lemmas A.2 and A.3. In order to

apply these lemmas, we need that
L∥PS⊥ (a)∥

σW
≤ δLA.2 and

L∥PS⊥ (a)∥
σW

≤ δLA.3 respectively.

To see this, note that PS⊥(a) ≤
√
λ (as otherwise ExponentialGrowth would not have been

called), and therefore

L ∥PS⊥(a)∥
σW

≤ L
√
λ√

L(1 +
∑j

k=1 c
2
k)

=

√
4λd(E[ℓ∗1] + 1)2

c2LA.2

≤

√
4λd(K

√
π + 1)2

(cv /
√
8π)2

[Equation (3), Assum 2]

≤ min(δLA.2, δLA.3, 1/cLA.3), (19)

where in the last line we used λ ≤ min(δLA.2, δLA.3, 1/cLA.3)
2 (cv /

√
8π)2

4d(K
√
π+1)2

by our assumption

on λ.
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Applying Lemmas A.2 and A.3 gives the following two bounds. Define y = E[ℓ∗ | 1R>0].
The first is a lower bound on |⟨x,y⟩|. Importantly, we can apply Lemma A.2 for X = ⟨x, ℓ∗⟩
because of Equations (18) and (19).

|⟨x,y⟩| = |⟨x,E[ℓ∗ | 1R>0]⟩|
= |E[⟨x, ℓ∗⟩ | 1R>0]|

≥ cLA.2L ∥PS⊥(a)∥
σW

[Lemma A.2]

=
cLA.2

√
L ∥PS⊥(a)∥√

1 +
∑j

k=1 c
2
k

= cLA.2

√
4d(E[ℓ∗1] + 1)2

c2LA.2
∥PS⊥(a)∥

=
√
4d(E[ℓ∗1] + 1)2 ∥PS⊥(a)∥

= 2
√
d(E[ℓ∗1] + 1) ∥PS⊥(a)∥ . (20)

The next equation is an upper bound on ∥yi∥ for all i ∈ [d]:

|yi| = E[ℓ∗i | 1R>0]

≤ E[ℓ∗i] + cLA.3L ∥PS⊥(a)∥ /σW [Lemma A.3]

≤ E[ℓ∗i] + 1. [Equation (19)]

Using the above equation, we can bound ∥y∥2 as follows. Because E[ℓ∗1] ≥ E[ℓ∗i] for all i,

∥y∥2 ≤

√√√√ d∑
i=1

(E[ℓ∗i] + 1)2 ≤
√
d(E[ℓ∗1] + 1).

Equation (20) implies that y ̸= 0. This implies by construction that b = Exploit(1R>0,wℓλ+1) =
y

∥y∥ . Putting everything together, we have that

|⟨x,b⟩| = |⟨x,y⟩|
∥y∥2

≥ 2
√
d(E[ℓ∗1] + 1)) ∥PS⊥(a)∥√

d(E[ℓ∗1] + 1)
≥ 2 ∥PS⊥(a)∥ .

Finally, because x ∈ S⊥, this implies the desired result that

∥PS⊥(b)∥ ≥ |⟨x,b⟩| ≥ 2 ∥PS⊥(a)∥ .

K Proof of Theorem 3.4

Proof of Theorem 3.4. We begin by proving that Algorithm 4 is BIC. There are four places
where we set A(t). The first is in the Line 4 of Algorithm 4, where we set A(t) = e1. This
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is BIC because we assumed (without loss of generality) that E[ℓ∗i] = 0 for all i > 1 and
E[ℓ∗1] ≥ 0.

The second place we set A(t) is in Line 6 of Algorithm 5. This choice of A(t) is BIC with the
signal Ψ by construction and Lemma 2.1.

The third place we set A(t) is in Line 5 of Algorithm 6. In order for this to be BIC, we
must show that every input a to Algorithm 3 is BIC. The first time Algorithm 6 is used
for any fixed value of j, the input action a is the action returned by Algorithm 5. This is
BIC for signal R defined on Line 7 of Algorithm 5 by construction. Each subsequent call to
Algorithm 6 for a fixed value of j uses an action a that is returned by the previous call to
Algorithm 6. This is BIC for signal R defined on Line 7 of Algorithm 6.

The final time we set an action is on Line 19 of Algorithm 4 This action is again an action
returned by the last call to Algorithm 6, which as argued above is BIC for signal R.

The rest of the proof will focus on bounding the sample complexity of Algorithm 4.

First, we will bound the number of times the inner while loop (Line 14) calls Algorithm 6 for
each value of j. By Proposition 3.2, the action returned by Algorithm 5 satisfies ∥PS⊥(a)∥ ≥
cP3.2 cv

2.5 ϵdcd. Furthermore, by Proposition 3.3, ∥PS⊥(a)∥ doubles with each call to Algo-

rithm 6. Therefore, ∥PS⊥(a)∥ ≥
√
λ will be satisfied after at most log2

( √
λ

cP3.2 cv2.5 ϵdcd

)
=

O
(
log( 1

cv ϵdcd
)
)
calls to Algorithm 6.

Next we will bound the number of steps in each call to Algorithm 6, which is equivalent
to bounding the L defined on Line 4 of Algorithm 6. To do this, we note that the ci in
Algorithm 6 are the same as the ci in Lemma A.5 with ϵ = λ, ℓ = ℓλ, u = PS⊥(a), and
v1, ...,vj. This implies that

j∑
k=1

c2k ≤
1

λ
. [Lemma A.5]

Therefore, we can bound L as follows:

L =
4d(E[ℓ∗1] + 1)(1 +

∑j
k=1 c

2
k)

c2LA.2
≤

4d(E[ℓ∗1] + 1)(1 + 1
λ
)

c2LA.2

≤
4d(K

√
π + 1)(1 + 1

λ
)

cv2 /(8π)
[Assum 2, Eq (3)] (21)

= O

(
d

λ cv2

)
.

For each loop of the while loop on Line 9, we also have κ = O( log(1/ϵd)
λc2d

+ d
λ cv2

) steps in the

loop on Line 18. All together, this gives that each iteration of the loop on Line 9 takes at
most

O

(
d log( 1

cv ϵdcd
)

λ cv2
+

log(1/ϵd)

λc2d

)
= O

(
log

(
1

cv ϵdcd

)(
d

λ cv2
+

1

λc2d

))
(22)
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steps. Next, we will bound the number of iterations of the while loop on Line 9.

For each j, we will apply Lemma 2.3 with ϵ = λ, u = vj+1, and the vectors v1, ...,vj. By
construction of the algorithm, S⊥ is non-empty because the algorithm has not yet terminated,
and ∥PS⊥(vj+1)∥2 ≥ λ by the termination condition of the while loop on Line 14 of Algorithm
4. Therefore, this satisfies the assumption of Lemma 2.3. Define λj1, ..., λ

j
d as the eigenvalues

of Mj :=
∑j

i=1 v
⊗2
i and define ℓj as the largest index such that λj

ℓj
≥ 200d3/λ2 (and ℓj = 0

if all eigenvalues of Mj are less than 200d3/λ2). Now define

∆j =
d∑

i=ℓj+1

(
200d3

λ2
− λi

)
.

Note that for any fixed i, the ith eigenvalue does not decrease between Mj and Mj+1.
Because of this monotonicity, Lemma 2.3 implies that for every round j, either

ℓj+1 ≥ ℓj + 1 or ∆j+1 ≤ ∆j − λ

2
.

Because ℓ1 ≥ 0 and ∆1 ≤ 200d3

λ2
· d = 200d4

λ2
, this implies that after

200d4

λ2

λ/2
+ d applications of

Lemma 2.3, either ℓj = d or ∆j = 0. This means that after 400d4

λ2
+ d applications of Lemma

2.3, the smallest eigenvalue of Mj must be at least 200d3/λ2 ≥ λ. However, this means
that the algorithm must terminate before round 400d4/λ3 + d. Therefore, the number of
iterations of the while loop on Line 9 is less than O(d4/λ3). Putting everything together,
the total number of steps needed for λ-exploration is upper bounded by

O

(
log

(
1

cv ϵdcd

)(
d

λ cv2
+

1

λc2d

))
·O
(
d4

λ3

)
= O

(
log

(
1

cv ϵdcd

)(
d5

λ4 cv2
+

d4

c2dλ
4

))
.

L Proof of Proposition 1.4

Proof of Proposition 1.4. First, for any unit vector v, we have Br/3(2rv/3) ⊆ K ⊆ B1(0).
Therefore

µ(Br/3(2rv/3)) = Vol(Br/3(2rv/3))/Vol(K) ≥ Vol(Br/3(2rv/3))/Vol(B1(0)) = (r/3)d.

Since ⟨x,v⟩ ≥ r/3 for all x ∈ Br/3(2rv/3), this confirms the values (cd, ϵd) = (r/3, (r/3)d).

The bound on cv follows by [Sel23, Lemma 3.2] and Jensen’s inequality since K has width
at least 2r in any direction. The bound on K is trivial since 2e−(t/1.25)2 ≥ 1 for |t| ≤ 1.

M Proof of Proposition 1.5

We first recall several useful facts on log-concave distributions. Throughout we take µ to be
α-log-concave and β-log-smooth with mode x∗ and mean x̄, possibly in dimension 1. (The
proof will use 1-dimensional projections of the original measure µ.) We will write x ∼ µ
instead of ℓ∗ ∼ µ.
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Fact M.1 ([DCWY19, Lemma 5], [DM19, Theorem 1]). For x ∼ µ, we have E[∥x−x∗∥2] ≤
1/α and with probability 1− δ:

∥x− x∗∥2 ≤ 2α−1/2

(
1 +

√
log(1/δ)

d
+

4

√
log(1/δ)

d

)
. (23)

Fact M.2 ([CP23, Lemma 2]). We have the covariance bounds

Id
αd
⪰ Cov(µ) ⪰ Id

βd
. (24)

Fact M.3. Any 1-dimensional projection of µ is also αd-log-concave and βd-log-smooth.

Proof. Preservation of strong log-concavity under projection is well known, see e.g. [SW14,
Theorem 3.8]. For log-smoothness, supposing for convenience that the projection is onto
the first coordinate axis, the claim is proved by the following standard computation. With
e−f(x) the density of µ and e−g(x) the density of the projection of µ to the first coordinate
axis, one may compute as in [SW14, Proof of Proposition 7.1] that

g′′(x) = Eµ[∂1,1f(x)|x1 = x]− Varµ[∂1f(x)|x1 = x] ≤ Eµ[∂1,1f(x)|x1 = x] ≤ βd.

This completes the proof.

Proof of Proposition 1.5. We have cv ≥ 1
βd

directly from (24).

For ϵd, let x̄ be the mean under µ and note that from (24), we find

∥x̄− x∗∥ = sup
∥w∥=1

⟨x̄− x∗,w⟩

= sup
∥w∥=1

Ex∼µ[⟨x− x∗,w⟩]

≤
√

sup
∥w∥=1

Ex∼µ[⟨x− x∗,w⟩2]

≤
√
⟨Cov(µ),w⊗2⟩

≤ 1/
√
αd.

Fixing a unit vector v as in Assumption 1.2, we consider the projection P onto the 1-
dimensional subspace spanned by v, and let P (µ) be the pushforward of µ under the projec-
tion (to which Fact M.3 applies). Identifying P (Rd) isometrically with R, let x̂ be the mode
of P (µ). Then the same argument as above applies to P (µ) shows ∥P (x̄) − x̂∥ ≤ 1/

√
αd,

and so

∥x̂∥ ≤ ∥x∗∥+ 2√
αd
≤ γ +

2√
αd
.

(Note that if x̄ = 0 then this shows ∥x̂∥ ≤ 1/
√
αd, which following the arguments below

leads to ϵd ≥ Ω(1) as mentioned below Proposition 1.5.)
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Write f : R → R+ for the density of P (µ), and g(x) = log f(x). We have f ′(x̂) = 0 and so
g′(x̂) = 0 also. By Fact M.3, we have g′′(x) ∈ [−βd,−αd] for all x, so for x ≥ x̂ we have:

g′(x) = g′(x)− g′(x̂) =
∫ x

x̂

g′′(y)dy ∈ [−βd(x− x̂),−αd(x− x̂)].

Integrating again, we find

g(x)− g(x̂) =
∫ x

x̂

g′(y)dy ∈ [−βd(x− x̂)2/2,−αd(x− x̂)2/2].

Identical reasoning gives the same conclusion for x ≤ x̂. Translating back to f = eg, we
conclude that for each x ∈ R:

e−βd|x−x̂|
2/2 ≤ f(x)

f(x̂)
≤ e−αd|x−x̂|

2/2.

It follows that for x = ℓ∗ ∼ µ and x ∼ P (µ):

Pr[⟨v,x⟩ ≥ cd] ≥ Pr[x ≥ γ +
2√
αd

+ cd].

Letting J = γ + 2√
αd

+ cd, the latter probability is at least∫∞
J
e−βdz

2/2dz∫
R e

−αdz2/2dz
=
√
α/β · ΦC(J

√
βd) ≥ Je−J

2βd/2
√
αd

(1 + J2βd)
√
2π
.

The last inequality follows from the classical bound ΦC(κ) ≥ φ(κ)κ
1+κ2

where φ is the standard
Gaussian density [Gor41]. This confirms the value of ϵd.

For K we consider a similar projection, and note that by Fact M.3 and the Bakry-Emery
theory for strongly log-concave measures (see e.g. [AGZ10, Lemma 2.3.3], we have

E[eλ⟨v,x−x̄⟩] ≤ eλ
2αd/2, ∀λ ∈ R.

Thus with J0 = γ + 1√
αd
≥ ∥⟨x̄,v⟩∥, we have (using λJ0 ≤ 1+λ2J2

0

2
):

E[eλ⟨v,x⟩] ≤ e(λ
2αd/2)+λJ0 ≤ e0.5 · eλ2(J2

0+αd)/2 ≤ 2eλ
2(J2

0+αd)/2.

It follows by the usual Markov inequality arguments that

Pr[|⟨v,x⟩| ≥ t] ≤ 4e
− t2

2(J2
0+αd) .

Since probabilities are at most 1 and a ≤
√
a for a ≤ 1 we find

Pr[|⟨v,x⟩| ≥ t] ≤ 2e
− t2

4(J2
0+αd)

which completes the verification of K since (J2
0 + αd)1/2 ≤ J0 +

√
αd .

For the counterexample, we may take (α, β) = (1, 2) and let ν be the distribution on R with
density proportional to e−dx

2·(1+1x≥0)/2. Then let µ = ν⊗d, so that x ∼ µ has IID coordinates
with law ν. Then the mode x∗ is indeed zero but the mean of ν is non-zero, so taking
v = (1, 1, . . . , 1)/

√
d, a Chernoff estimate shows Prx∼µ[⟨x,v⟩ ≥ 0] ≤ e−Ω(d).
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