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Abstract

Understanding how to efficiently learn while adhering to safety constraints is essen-
tial for using online reinforcement learning in practical applications. However, proving
rigorous regret bounds for safety-constrained reinforcement learning is difficult due to
the complex interaction between safety, exploration, and exploitation. In this work, we
seek to establish foundations for safety-constrained reinforcement learning by studying
the canonical problem of controlling a one-dimensional linear dynamical system with
unknown dynamics. We study the safety-constrained version of this problem, where the
state must with high probability stay within a safe region, and we provide the first safe
algorithm that achieves regret of ÕT (

√
T ). Furthermore, the regret is with respect to

the baseline of truncated linear controllers, a natural baseline of non-linear controllers
that are well-suited for safety-constrained linear systems. In addition to introducing
this new baseline, we also prove several desirable continuity properties of the optimal
controller in this baseline. In showing our main result, we prove that whenever the
constraints impact the optimal controller, the non-linearity of our controller class leads
to a faster rate of learning than in the unconstrained setting.

1 Introduction

1.1 Background and Motivation

Online reinforcement learning (RL) algorithms are powerful tools for interacting with and
learning about unknown environments [Levine et al., 2016, Lillicrap et al., 2015, Tewari and
Murphy, 2017]. The core idea behind many successful RL algorithms is carefully balancing
exploration and exploitation. However, in many real world applications, online RL algo-
rithms must satisfy a set of safety constraints. Importantly, these safety constraints must be
satisfied even while the algorithm learns, leading to a complex interaction between safety and
learning. Safety constraints reduce an algorithm’s ability to explore because the algorithm
must take actions that are known to be safe. Similarly, safety constraints reduce an algo-
rithm’s ability to exploit because actions that exploit known information may lead to unsafe
states. As an example, consider a self-driving car that uses online RL to learn how to navi-
gate a new environment in real time. To do this, an RL algorithm must make adjustments to
speed and acceleration that account for unknown environmental factors such as wind speed
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and friction. However, the algorithm controlling a car in the real world must keep the car in
safe states and avoid crashing into other objects. Therefore, it is critical that the algorithm
learns while being safe. A better understanding of the relationship between learning and
safety constraints is crucial for deploying online reinforcement learning algorithms in the
real world. In this paper, we focus on understanding how safety and learning interact for
a canonical learning problem in control theory known as online linear quadratic regulator
(LQR) learning. While online LQR learning is one of the simplest learning problems with
a continuous action space, this problem highlights the inherent differences between learning
without safety constraints and learning with safety constraints.

1.2 Setting and Motivation

In this paper, we study the problem of learning and controlling a discrete-time linear dynam-
ical system when the dynamics of the system are unknown and safety must be maintained
during online learning. At each time step, the algorithm observes the current state and
chooses a control (action). The state at the next time step then depends on the current
state, the chosen control, and random noise. The way in which the next state depends on
the current state and chosen control is referred to as the dynamics of the system. The goal of
the problem is to choose actions that minimize a quadratic cost by keeping the state close to
the origin while using minimal control. This model is used, e.g., in the field of robotics when
a robot (drone, submarine, rocket, etc.) attempts to stay close to a single point while being
subject to random environmental forces [Rubio et al., 2016]. In practice, the dynamics of
the system (such as air resistance) are not known a priori. Therefore, we study this problem
when the dynamics are unknown, and the algorithm must minimize cost while learning the
unknown dynamics. To model safety in this setting, we assume that the state must stay
within a predefined ‘safe region.’ For example, the robot described above cannot move to
states that make the robot crash into other objects.

When the dynamics are known and there are no safety constraints, the optimal algorithm
is the Linear Quadratic Regulator, which is well-studied in the field of control theory [Rawl-
ings and Mayne, 2009]. However, the addition of state constraints significantly complicates
even this simple problem, and there no longer exists a closed-form solution for the con-
strained version of this problem with known dynamics [Rawlings and Mayne, 2009]. In order
to make the problem more tractable, we study this problem when both states and controls
are one-dimensional; Schiffer and Janson [2024] take the same approach in analyzing the
one-dimensional constrained linear systems. One-dimensional linear systems have been fre-
quently studied as a first step toward understanding other complex aspects of control theory,
see e.g. Fefferman et al. [2021], Abeille and Lazaric [2017]. Furthermore, some real-world
problems can be represented as one-dimensional LQR problems. As an example, consider
the simple setting of controlling the temperature of a room, a common problem in control
[Oldewurtel et al., 2008]. The possible actions include adding different amounts of hot air
or cold air to the room, and a natural goal is to minimize costs (the amount of energy used)
while also keeping the room close to a specific temperature. In this setting, state constraints
would consist of constraining the temperature to stay within a ‘safe’ region of temperatures
that are not too hot and not too cold.
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1.3 Our Contribution

The overarching goal of this paper is to provide foundations for analyzing safety-constrained
LQR learning using non-linear baselines of controllers that are better suited for the con-
strained problem. Our main result is the first algorithm for safety-constrained one-dimensional
LQR with unknown dynamics that with high probability guarantees ÕT (

√
T ) regret. In this

setting, our work improves upon the previous best regret results, in particular Li et al.
[2021b], Dean et al. [2019] prove ÕT (T

2/3) regret bounds and only for bounded noise distri-
butions.

The rate of ÕT (
√
T ) matches the optimal rate of regret in the unconstrained LQR learning

problem. Note that unconstrained LQR learning is a special case of constrained LQR learning
with sufficiently loose constraints. Therefore, because the lower bound for unconstrained
LQR learning is Ω̃T (

√
T ) regret [Ziemann and Sandberg, 2024], it is impossible to in general

do better than Ω̃T (
√
T ) regret for the constrained problem. In addition to improving the

rate of regret, the ÕT (
√
T ) regret is also with respect to a stronger baseline than previous

works. More specifically, the regret is defined with respect to the best controller from the
baseline class of truncated linear controllers, which consists of linear controllers corrected
to obey the safety constraints. This baseline is naturally well-suited for safe control and
is a significantly stronger baseline than studied in previous works (see Section 2.3 for more
details). Because the controllers in this class are frequently non-linear, we also introduce
new theoretical tools for analyzing this type of non-linear controller. Therefore, our ÕT (

√
T )

regret result is strictly stronger than the previous ÕT (T
2/3) regret results of Li et al. [2021b],

Dean et al. [2019] applied to our setting, in both the regret baseline and the rate of regret.
Note that these previous works also assume bounded noise distribution, while our results
hold for any sub-gaussian distribution.

Informally, our main theorem can be stated as follows:

Theorem 1 (Informal). For safety-constrained one-dimensional LQR with unknown dy-
namics and any sub-gaussian noise distribution, there exists an algorithm that with high
probability is safe and has regret of ÕT (

√
T ) compared to the best truncated linear controller

with known dynamics.

To prove Theorem 1, we show that either the constraints are tight enough to give faster
learning rates or loose enough that the problem is approximately unconstrained. This di-
chotomy is the main conceptual idea behind our algorithm being able to achieve ÕT (

√
T )

regret for all possible noise distributions. We also show that the class of truncated linear
controllers satisfies multiple desirable continuity properties, which may be of independent
interest.

1.4 Related Work

Safe reinforcement learning has been studied in many different contexts with various def-
initions of safety, including reachability of safe sets and long term stability [Ganai et al.,
2024, Garg et al., 2024, Gu et al., 2022, Moldovan and Abbeel, 2012, Wachi et al., 2018,
2024, Yao et al., 2024]. Specifically in control theory, there exist many methods that satisfy
different notions of safety for specific control tasks [Fulton and Platzer, 2018, Cheng et al.,
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2019, Marvi and Kiumarsi, 2021, Fisac et al., 2018]. The work on safe RL in control has
primarily focused on feasibility of safety, i.e. providing an algorithm that satisfies notions of
safety such as returning to safe sets or remaining stable around the origin. However, these
works do not study the theoretical regret analysis of their algorithms, and therefore do not
provide bounds on how much worse the algorithm is when compared to the optimal baseline.
Another general line of work that is related but less directly comparable to our results is
the area of model predictive control and system identification [Bemporad and Morari, 2007,
Köhler et al., 2019, Lu et al., 2021, Oldewurtel et al., 2008, Mesbah, 2016, Bemporad et al.,
2002, Muthirayan et al., 2022, Lorenzen et al., 2019, Simchowitz et al., 2018, Zhao and Li,
2022, Mania et al., 2019, Li et al., 2023]. However, the results in these areas tend to focus
more on feasibility and empirical performance rather than theoretical regret bounds, and
therefore are less directly related to our work.

The LQR learning problem has recently gained significant attention after Abbasi-Yadkori
and Szepesvári [2011] showed that ÕT (

√
T ) regret is possible in the unconstrained LQR learn-

ing problem. Subsequent works have built on these results with many variations and more
efficient algorithms [Dean et al., 2018, Mania et al., 2019, 2020, Simchowitz et al., 2018, Co-
hen et al., 2019, Wang and Janson, 2021, 2022, Mania et al., 2019, Abeille and Lazaric, 2017,
Zheng and Li, 2020, Sun et al., 2020, Khosravi and Smith, 2020, Sattar and Oymak, 2022,
Faradonbeh et al., 2018a, 2017, Oymak and Ozay, 2019, Ye et al., 2024, Athrey et al., 2024,
Ziemann and Sandberg, 2024, Lee et al., 2024]. One particular result from this line of work
that we want to highlight is that certainty equivalent estimation gives the asymptotically
best rate of regret for the LQR learning problem [Simchowitz and Foster, 2020, Faradonbeh
et al., 2018b, Mania et al., 2019, Wang and Janson, 2022]. Certainty equivalence algorithms
consist of estimating the true dynamics and finding the optimal controller for these estimated
dynamics. Our main algorithm uses a certainty equivalence approach to achieve the same
rate of regret in the safety-constrained LQR setting.

Less closely related to this paper, there is also a line of work studying optimal control with
adversarial disturbances, where the goal is still to minimize regret but the system dynamics
are known (see e.g. [Agarwal et al., 2019, Hazan and Singh, 2022]). Li et al. [2021a] also
study optimal constrained control but again assume that the dynamics are known. The
techniques and results of these lines of work with known dynamics are substantially different
from our paper. This is because the key difficulty of our problem is that we do not know
how to be safe apriori and must be safe while learning, which is not an issue with known
dynamics.

Two previous works have focused on regret bounds for variants of the constrained LQR
learning problem. Dean et al. [2019] and Li et al. [2021b] both consider the problem of
constrained LQR learning specifically with bounded noise distributions. These works both
give algorithms that achieve ÕT (T

2/3) regret for this problem, and their regret results are
with respect to the baseline of the best safe linear controller. While the results in these
works hold in higher dimensions, our work improves on these results in two ways. The first
is that the regret rate we achieve is with respect to the baseline of the best truncated linear
controller, which is a strictly stronger (and often significantly stronger) baseline than the
best safe linear controller. Furthermore, the regret of our algorithm is ÕT (T

1/2).
This paper is the second part of a two part series of papers on safe LQR learning.

The first part of this series [Schiffer and Janson, 2024] provides more general results but
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with weaker regret bounds that apply to any baseline class of controllers satisfying a set
of assumptions. Specifically, Schiffer and Janson [2024] shows that for any baseline class
of controllers satisfying certain natural but abstract assumptions, it is possible to achieve
ÕT (T

2/3) regret with respect to that baseline. That paper also shows that ÕT (
√
T ) is

possible for such a baseline in the special case when the noise distribution has sufficiently
large support. Importantly, however, that paper does not provide any concrete examples of
baselines satisfying its assumptions as doing so would have rendered its appendix unreadably
long. This paper establishes just such a concrete example of a baseline class that satisfies the
assumptions of Schiffer and Janson [2024], namely, the class of truncated linear controllers.
This class of controllers is well-adapted to safe LQR yet, due to its nonlinearity, presents a
number of significant technical challenges (see Appendices C and D). Furthermore, Theorem
2 is a strictly stronger result than those in Schiffer and Janson [2024] for truncated linear
controllers, and Algorithm 2 requires a number of new technical ideas and tools that are
specific to the class of truncated linear controllers (see Section 3 and Appendix E).

2 Preliminaries

2.1 Dynamics and Cost

Let T be the number of steps. For t ∈ [T ], we denote the state at time t as xt ∈ R and
the control at time t as ut ∈ R. Unless otherwise stated, we let x0 = 0. Denote the
(unknown) dynamics of the system as θ∗ = (a∗, b∗) ∈ R2. Then the state at time t + 1 is

xt+1 = a∗xt + b∗ut + wt, where wt
i.i.d.∼ D and D is a known continuous distribution with

mean 0, variance σ2
D = 1, cumulative distribution function FD, and bounded probability

density function fD (bounded by constant BP ). Note that the assumptions that the noise
distribution is mean 0 and sub-gaussian are standard in LQR learning [Abbasi-Yadkori and
Szepesvári, 2011, Li et al., 2021b, Dean et al., 2019]. The assumption of unit variance is
made only for expositional simplicity, and our main results still hold for noise distributions
with arbitrary variances. Define W = {wt}T−1

t=0 as the set of noise random variables for the
T steps. The goal of the algorithm is to minimize the total cost over all T steps, where the
cost at time t is qx2

t + ru2
t for known q, r ∈ R>0.

A controller C at time t chooses a control ut = C(Ht), where Ht is the history up to time
t and is defined as Ht := (x0, u0, ..., ut−1, xt). The average cost over T steps for controller C
starting at state x0 under dynamics θ is defined as

J(θ, C, T, x0,W ) :=
1

T

(
qx2

T +
T−1∑
t=0

qx2
t + ru2

t

)
, (1)

where ut = C(Ht), xt+1 = axt + but + wt, wt
i.i.d.∼ D.

J(·) is an average cost, and therefore the total cost over T steps of controller C is T ·
J(θ, C, T, x0,W ). We also define the expected cost of controller C as J∗(θ, C, T, x0) =
E[J(θ, C, T, x0,W ) | θ, C, T, x0]. Finally, for ease of notation we define J∗(θ, C, T ) = J∗(θ, C, T, 0).
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2.2 Safety Constraints

As described in the introduction, the key difficulty of our problem is learning the unknown
dynamics efficiently while maintaining safety. In this paper, we formulate safety as con-
straints on the expected state. In this section, we formally introduce our safety definition
and show that our definition is strictly more general than the safety definitions studied in
previous works [Li et al., 2021b, Dean et al., 2019]. More specifically, when the noise dis-
tribution is bounded, our safety definition is equivalent to the safety definition in Li et al.
[2021b], Dean et al. [2019]. However, our safety definition can generalize to unbounded noise
distributions unlike the safety definitions in [Li et al., 2021a, Dean et al., 2019].

Because wt is a mean-0 random variable, we know that the conditional expectation of
the next state given the current state and control is E[xt+1 | xt, ut] = a∗xt+ b∗ut. The safety
constraints as defined in Definition 1 constrain this expected state to always stay within a
known safe region between D

E[x]
L and D

E[x]
U ).

Definition 1. A series of controls {ut}T−1
t=0 are safe for dynamics θ∗ and boundaries (D

E[x]
L , D

E[x]
U )

if for all t,
D

E[x]
L ≤ a∗xt + b∗ut ≤ D

E[x]
U . (2)

Similarly, a controller C is safe for dynamics θ∗ and boundaries (D
E[x]
L , D

E[x]
U ) if the resulting

controls {C(Ht)}T−1
t=0 under true dynamics θ∗ are safe for dynamics θ∗.

Assumption 1. The safety constraint boundaries satisfy that D
E[x]
L < 0 < D

E[x]
U , that

D
E[x]
L , D

E[x]
U = OT (1), and that D

E[x]
U −D

E[x]
L ≥ 1

log(T )
.

The assumptions that the origin is in the safe set and that the boundaries are bounded
above by constants are standard for safety-constrained LQR learning [Li et al., 2021b, Dean
et al., 2019].

Other works such as Li et al. [2021b], Dean et al. [2019] consider a similar constrained
LQR problem but require that the controller satisfies strict constraints on the state. In
these works, the algorithm must choose controls such that for all t, Dx

L ≤ xt ≤ Dx
U for some

Dx
L < 0 < Dx

U. However, these works also require that the noise distribution is bounded.
When the noise distribution D is a bounded distribution (i.e. D satisfies w̄L := infw∼D w >
−∞ and w̄U := supw∼D w <∞), then there exists a one-to-one mapping between Definition
1 and strict state constraints. Formally, when D is a bounded distribution, the expected-
state safety constraints in Definition 1 are equivalent to the strict state constraints that
D

E[x]
L − w̄L ≤ xt ≤ D

E[x]
U − w̄U for all t ∈ [T ]. Therefore, the expected-state constraint

formulation is strictly more general than the safety formulation studied in these previous
works.

The reason that we study expected state constraints is that they allow for more general
noise distributions. For example, if D is normally distributed with mean 0 and variance
1, then Dx

L ≤ xt ≤ Dx
U is impossible to satisfy with probability 1 − oT (1) for any constant

Dx
L, D

x
U. Therefore, for distributions with unbounded support, the expected state constraints

are a natural way to make the problem feasible. For notational simplicity, we will often use
D = (DL, DU) = (D

E[x]
L , D

E[x]
U ) to represent the bounds for the expected-state constraints.
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2.3 Baseline Class

In both Li et al. [2021b] and Dean et al. [2019], the regret baseline for the ÕT (T
2/3) results

is the total cost of the best stationary linear controller of the form ut = −Kxt that is safe
for θ∗ with probability 1. We will refer to the class of stationary linear controllers that
are safe for θ∗ with probability 1 as the class of safe linear controllers. Since not all linear
controllers are safe for dynamics θ∗, this is restricted to K that will maintain safety for θ∗ for
any realization of the noise, and therefore can be a very weak baseline. For example, when
DU and DL are not symmetric, the best linear controller must still behave symmetrically.
Symmetric behavior may be far from optimal for DU and DL that are not symmetric, yet
linear controllers lack the flexibility to behave asymmetrically. As another example, when
the noise distribution is unbounded, there only exists a single safe linear controller (the
K = a∗

b∗
controller).

To evaluate our algorithm, we instead use the baseline of the class of truncated linear
controllers. The class of truncated linear controllers for dynamics θ = (a, b) ∈ Θ is defined
as Cθtr = {Cθ

K}K∈[a−1
b

,a
b
], where Cθ

K is defined as

Cθ
K(x) =


−Kx if D

E[x]
L ≤ (a− bK)x ≤ D

E[x]
U

D
E[x]
U −ax

b
if (a− bK)x > D

E[x]
U

D
E[x]
L −ax

b
if (a− bK)x < D

E[x]
L .

(3)

Note that every controller in the class of truncated linear controllers for dynamics θ is safe
with probability 1 for dynamics θ. Furthermore, the class of truncated linear controllers for
dynamics θ contains every linear controller that is with probability 1 safe for dynamics θ.
Therefore, the class of truncated linear controllers is a strict superset of the class of safe
linear controllers. We use the class of truncated linear controllers as a baseline because these
controllers are computationally tractable while also being better suited for constrained LQR
than standard linear controllers. For example, truncated linear controllers can effectively
handle asymmetric constraints. As noted above, every controller in the baseline class Cθ∗tr is
safe, and therefore this is a fair baseline for our safe algorithm.

To evaluate our algorithm, we compare the total cost of the algorithm to the expected
total cost of the best truncated linear controller when the dynamics of the system are known.
Define

Kopt(θ, T ) := arg min
K∈[a−1

b
,a
b
]
J∗(θ, Cθ

K , T ).

Then the expected total cost of the best truncated linear controller for dynamics θ∗ is

min
C∈Cθ∗

tr

T · J∗(θ∗, C, T ) = T · J∗(θ∗, Cθ∗

Kopt(θ∗,T ), T ). (4)

Therefore, the regret of an algorithm with controller Calg is

Regret(Calg) := T · J(θ, Calg, T, 0,W )− T · J∗(θ∗, Cθ∗

Kopt(θ∗,T ), T ). (5)

Note that as is typical in LQR learning problems [Abbasi-Yadkori and Szepesvári, 2011, Li
et al., 2021b], the regret as defined above is a random variable that depends on {wt}Tt=0 and
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any randomness in Calg. Therefore, in our results we will bound regret with high probability.
Note that these bounds also imply the same bounds on the expected regret due to standard
concentration inequalities and the subgaussian assumption on the noise random variables.

2.4 Initial Uncertainty

Without any prior knowledge about the unknown dynamics θ∗, it is impossible for any
algorithm to satisfy Definition 1 for all possible θ∗ ∈ R2 for any non-trivial noise distribution.
For example, if the noise is normally distributed, then with probability 1 any choice of control
at time t = 1 will violate Definition 1 for some θ∗ ∈ R2. Therefore, we must make some
assumptions about the initial uncertainty in θ∗ in order for the problem to be feasible. As is
standard in LQR learning problems [Abbasi-Yadkori and Szepesvári, 2011, Li et al., 2021b],
we will assume that there exists some known initial uncertainty set Θ ⊆ R2 such that θ∗ ∈ Θ.

Assumption 2. There exists known Θ = Θa × Θb = [a, ā] × [b, b̄] such that θ∗ ∈ Θ and
b̄ ≥ b > 0 and ā ≥ a > 0.

We define the size of the initial uncertainty set Θ as size(Θ) = max(ā − a, b̄ − b). Note
that the assumption that a∗, b∗ > 0 is made only to simplify the proofs, and the same results
hold for general θ∗ such that b∗ ̸= 0 (b∗ = 0 corresponds to a degenerate case). In addition
to assuming knowledge of Θ, we also assume access to a controller C init that allows for some
amount of initial safe exploration. As shown in Schiffer and Janson [2024], this assumption
is asymptotically only slightly stronger than assuming that the problem is feasible. Further-
more, if the noise distribution D is bounded (with bound w̄), then Assumption 3 holds for

a simple linear controller C init as long as Θ satisfies size(Θ) ≤ min(D
E[x]
U ,D

E[x]
L )

2(1+ ā
b̄ (∥DE[x]∥∞+w̄)

.

Assumption 3. There exists a known controller C init such that

∀x ∈
[
D

E[x]
L + F−1

D ( 1
T 4 ), D

E[x]
U + F−1

D (1− 1
T 4 )
]
,

D
E[x]
L +

b∗

log(T )
≤ a∗x+ b∗C init(x) ≤ D

E[x]
U − b∗

log(T )
. (6)

2.5 Problem Statement

Putting everything together, the formal problem statement is the following:

Problem 1 (Safe LQR Learning). Find an algorithm Calg that takes as input D,D,Θ, and
T that satisfy Assumptions 1–3, and achieves regret under linear dynamics with respect to
baseline Cθ∗tr that is as low as possible, while also satisfying

sup
θ∈Θ

P
(
Calg is safe with respect to θ

)
= 1− oT (1/T ).

Informally, supθ∈Θ P
(
Calg is safe with respect to θ

)
= 1−oT (1/T ) is equivalent to saying

that for any θ ∈ Θ, if θ∗ = θ then using Calg will result in a series of controls that satisfy
Definition 1 with high probability. Note that in Problem 1, we only require that Calg is safe
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with high probability rather than safe with probability 1. The reason for this is that requiring
safety with probability 1 would mean that Calg is unable to use any conclusions about θ∗

learned from the history that do not hold with probability 1. For example in the case of
unbounded noise distributions, making any statement about θ∗ from historical data that
holds with probability 1 is impossible. Therefore, we allow a vanishing oT (1/T ) probability
of the algorithm not being safe to allow the algorithm to use historical information when
choosing safe controls. Note that the choice of oT (1/T ) is made for expositional purposes, and
an equivalent result holds when 1−oT (1/T ) is replaced with 1−δ for δ < 1. Throughout this
paper, we use OT (·) and other big-O notation to represent equations that hold for sufficiently
large T , where equations with OT (·) hold for sufficiently large T and contain unwritten
constants that are independent of T and any other variables included in the parentheses.
For expositional purposes in the proofs, we will also assume that log(T 1/12) is an integer,
however simple modifications to the algorithm allow the same result to hold for all T . More
discussion of notation and definitions can be found in Appendix A.

3 Theoretical Results

We now formally state our main result on truncated linear controllers and provide some
general intuition for the proof and algorithm. We present a more detailed proof sketch of
Theorem 2 in Section 4 and the full proof in Appendix E.

Theorem 2. In the setting of Problem 1, there exists an algorithm Calg (Algorithm 2) that
with probability 1 − oT (1/T ) achieves ÕT (

√
T ) regret with respect to baseline Cθ∗tr while also

satisfying supθ∈Θ P
(
Calg is safe with respect to θ

)
= 1− oT (1/T ).

The intuition of Algorithm 2 is outlined in Algorithm 1. The algorithm first explores
for Θ̃T (

√
T ) steps using C init from Assumption 3. Using the data from this exploration, the

algorithm calculates a regularized least-squares estimate of θ∗ (denoted θ̂wu) that is accurate
up to ÕT (T

−1/4). Based on this least-squares estimate, the algorithm then decides if the
support of the noise distribution D is small or large relative to the constraint boundary D.
In the small noise case, the algorithm uses the best unconstrained controller for dynamics
θ̂wu with small modifications to the control as needed to guarantee constraint satisfaction
with high probability. Because the noise is small in this case, the modification is only needed
a small fraction of the time. Therefore, in this case the regret of the algorithm is only slightly
more than the regret of the optimal unconstrained controller for θ̂wu, which can be shown
to be ÕT (

√
T ) using standard certainty equivalence results. In the large noise case, the

algorithm takes inspiration from Schiffer and Janson [2024], and uses a truncated certainty
equivalence approach that guarantees ÕT (

√
T ) regret with high probability. Intuitively, in

this case the noise is large enough to force the algorithm to a constant fraction of the time
be non-linear by a constant amount. This non-linearity allows the algorithm to learn the
unknown dynamics at a faster rate of 1/

√
t, which in turn leads to regret of ÕT (

√
T ).

In proving Theorem 2, we also show that the class of truncated linear controllers satisfies
two natural assumptions of continuity first proposed in Schiffer and Janson [2024], formalized
in the following two lemmas. Informally, Lemma 1 says that the cost of the optimal trun-
cated linear controller is Lipschitz continuous in the dynamics. Therefore, using the optimal
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Algorithm 1 Outline of Algorithm 2 for proof of Theorem 2

Explore for Θ̃T (
√
T ) steps using controller C init from Assumption 3.

θ̂wu ← regularized least-squares estimate of θ∗.
Using θ̂wu, determine if support of noise distribution D is large or small relative to boundary
D.
if support of D is small relative to D then

For the rest of the steps, use the optimal unconstrained linear controller for dynamics
θ̂wu with small modifications to the control as necessary to enforce constraint satisfaction
w.h.p.

end
if support of D is large relative to D then

1 for s ∈ [0 : log(
√
T )− 1] do

θ̂s ← regularized least-squares estimate of θ∗ using data seen so far
ϵs ← high probability bound on ∥θ∗ − θ̂s∥∞
Calg

s ← optimal truncated linear controller for dynamics θ̂s
2 For next

√
T2s steps, use controller Calg

s modified at each step to be safe for all

dynamics θ satisfying ∥θ − θ̂s∥∞ ≤ ϵs
end

end

controller for dynamics θ that are close to the true dynamics θ∗ does not incur significantly
higher cost.

Lemma 1. There exists ϵL1 = Ω̃T (1) such that for any ∥θ − θ∗∥∞ ≤ ϵL1 and t ≤ T ,

|J∗(θ∗, Cθ
Kopt(θ,t), t)− J∗(θ∗, Cθ∗

Kopt(θ∗,t), t)| ≤ ÕT

(
∥θ − θ∗∥∞ +

1

T 2

)
.

The proof of Lemma 1 can be found in Appendix D. Next, informally, Lemma 2 says
that the cost of using a truncated linear controller is Lipschitz continuous in the starting
state. Therefore, if |x − y| is sufficiently small, then the difference in total cost of starting
at x versus y is linear in |x− y|.

Lemma 2. There exist ϵL2, δL2 = Ω̃T (1) such that for any θ satisfying ∥θ − θ∗∥∞ ≤ ϵL2 the
following holds. For t < T , let W ′ = {wi}t−1

i=0. Then for any K ∈ [a−1
b
, a
b
], there exists a set

YL2 ∈ Rt that depends only on Cθ
K such that the following holds. Define EL2

(
Cθ

K ,W
′) as the

event that W ′ ∈ YL2. Then P(EL2

(
Cθ

K ,W
′)) ≥ 1−oT (1/T

10) and for any |x|, |y| ≤ 4 log2(T )
such that |x− y| ≤ δL2, conditional on event EL2

(
Cθ

K ,W
′),∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ ≤ ÕT (|x− y|+ ∥θ − θ∗∥∞). (7)

The proof of Lemma 2 can be found in Appendix C. Lemmas 1 and 2 give a concrete
instantiation of the results of Schiffer and Janson [2024]. Because Schiffer and Janson [2024]
does not give any concrete baselines for their framework, these two lemmas are necessary
to show the applicability of their framework. However, also note that Theorem 2 is strictly
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stronger than the theorems of Schiffer and Janson [2024] would be for truncated linear
controllers.

As discussed above, truncated linear controllers are a natural extension of linear con-
trollers better suited for problems with safety constraints. Because truncated linear con-
trollers are not linear, the analysis of this class requires new theoretical tools (see Appendices
D and C). These proofs and results may be independently interesting in that non-linear con-
trollers have not been well-studied in this setting and therefore little was previously known
about properties of such controller classes.

4 Proof Sketch of Theorem 2

The full proof of Theorem 2 can be found in Appendix E. Before presenting the algorithm
for Theorem 2, we need additional notation. Define Cunc = {Cunc

K }K∈R as the class of
untruncated linear controllers, so Cunc

K (x) = −Kx. For any controller C and dynamics θ,
define J∗(θ, C) = limT−→∞ J∗(θ, C, T ). Define Kopt(θ) = argmaxK J∗(θ, Cθ

K) and Fopt(θ) =
argmaxK J∗(θ, Cunc

K ). Finally, define Cswitch = cE82DU

c2L25
where cE82 = ÕT (1) and is from

Equation (82) and cL25 = Ω(1) from Lemma 25. The algorithm that achieves the regret
bound of Theorem 2 is Algorithm 2.

Algorithm 2 Intuition The main intuition behind the proof of Theorem 2 is to design an
algorithm that combines the faster learning rates under tight constraints from Schiffer and
Janson [2024] with the observation that ÕT (

√
T ) regret is possible in unconstrained LQR

learning with unknown dynamics. Algorithm 2 is broken into two phases. The first phase is a
warm-up exploration phase that allows the algorithm to learn about the unknown dynamics
quickly but potentially incurs high per-step cost. The second phase of the algorithm uses a
form of certainty equivalence. The key is to split the choice of Calg

s into two cases (Line 6)
depending on the estimated dynamics (θ̂wu) at the end of the warm-up period. The first case
in Line 6 corresponds to when the support of the noise is sufficiently small so that we can
bound the regret of the algorithm using the observation that ÕT (

√
T ) regret is possible in

the unconstrained setting. More specifically, this case is when the boundaries are far enough
away from the origin compared to the magnitude of the noise, and therefore the algorithm
can use a controller very close to the optimal unconstrained controller. The second case in
Line 6 corresponds to when the support of the noise is sufficiently large so that we can use the
faster learning rate from Schiffer and Janson [2024]. More specifically, in this case we argue
that the uncertainty bound ϵs will decrease at a rate of ÕT (1/

√
Ts) (Proposition 3). We give

more details on the ÕT (
√
T ) regret of these two cases separately below. The warm-up phase

of Algorithm 2 satisfies the safety constraints with probability 1 − oT (1/T ) by Assumption
3. The second phase satisfies the safety constraint with probability 1− oT (1/T ) because of
the final choice of ut in Line 9. With high probability, ∥θ∗− θ̂wu∥∞ ≤ ϵ0 and ∥θ∗− θ̂s∥∞ ≤ ϵs,
and therefore with high probability usafeU

t and usafeL
t provide upper and lower bounds on a

set of safe controls. Therefore, the choice of ut is safe with probability 1 − oT (1/T ) for all
steps in the exploration phase.
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Algorithm 2 Truncated Linear Controller Safe LQR

Input: D,D,Θ, C init, T, λ
for t← 0 to

√
T − 1 do

ϕt ∼ Rademacher(0.5) Use control ut = C init(xt) +
ϕt

log(T )

end

3 θ̂wu ← (Z⊤√
T
Z√

T + λI)−1Z⊤√
T
X√

T

for s← 0 to log2(
√
T )− 1 do

4 Ts ← 2s
√
T

5 ϵs ← BTs

√
max(V 22

Ts
,V 11

Ts )
V 11
Ts

V 22
Ts

−(V 12
Ts

)2

θ̂pres ← (Z⊤
Ts
ZTs + λI)−1Z⊤

Ts
XTs

θ̂s ← argmax∥θ−θ̂pres ∥≤ϵs
a− bKopt(θ)

6 Calg
s ←

Cunc
Fopt(θ̂wu)

if w̄ +DU − DU

âwu−b̂wuFopt(θ̂wu)
≤ CswitchT

−1/4

C θ̂s
Kopt(θ̂s)

otherwise

for t← Ts to 2Ts − 1 do
if w̄ +DU − DU

âwu−b̂wuFopt(θ̂wu)
≤ CswitchT

−1/4 then

usafeU
t ← max

{
u : max

∥θ−θ̂wu∥∞≤ϵ0

axt + bu ≤ DU

}
usafeL
t ← min

{
u : min

∥θ−θ̂wu∥∞≤ϵ0

axt + bu ≥ DL

}
end
else

7 usafeU
t ← max

{
u : max

∥θ−θ̂s∥∞≤ϵs

axt + bu ≤ DU

}
8 usafeL

t ← min

{
u : min

∥θ−θ̂s∥∞≤ϵs

axt + bu ≥ DL

}
9 Use control ut = max

(
min

(
Calg

s (xt), u
safeU
t

)
, usafeL

t

)
end

end

end

Sufficiently small noise case In this case, we let Calg
s = Cunc

Fopt(θ̂wu)
, i.e. the optimal

unconstrained controller based on the data in the warm-up period. First, we show that the
controller Cunc

Fopt(θ̂wu)
has ÕT (

√
T ) more expected total cost for Ts steps than the baseline

controller Cθ∗

Kopt(θ∗,Ts)
(Lemma 11). Intuitively, this follows from the fact that Cunc

Fopt(θ̂wu)
has

similar expected cost to the best infinite-time unconstrained controller for θ∗, and the best
infinite-time controller and the best finite-time controller for Ts steps have similar expected
cost. Because Cunc

Fopt(θ̂wu)
is an unconstrained linear controller, we can also show that the

realized total cost of using this controller concentrates to within ÕT (
√
T ) of the expected
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total cost with high probability (Lemma 12).
The last (and most subtle) part of this case is to show that enforcing safety in Line 9

only contributes ÕT (
√
T ) regret (Lemma 14). This is where we use the fact that w̄ +DU −

DU

âwu−b̂wuFopt(θ̂wu)
≤ CswitchT

−1/4. When this equation holds, the probability that the algorithm

uses control ut = usafeU
t or ut = usafeL

t is at most ÕT (T
−1/4) for any t. Furthermore, each

time these controls are used, the extra cost compared to using control ut = Calg
s (xt) is

ÕT (T
−1/4). Combining these two facts, the total extra regret from using controls usafeU

t or
usafeL
t is ÕT (

√
T ) with probability 1− oT (1/T ). The warm-up period has regret of ÕT (

√
T )

with probability 1 − oT (1/T ) because the algorithm is safe with high probability and the
length of warm-up is

√
T steps. Putting this all together, we have that with probability

1− oT (1/T ), the total regret of the algorithm in this case is ÕT (
√
T ).

Sufficiently large noise case In this case, we have that Calg
s = C θ̂s

Kopt(θ̂s)
. To prove that

the regret is ÕT (
√
T ) in this case, we will show that with probability 1 − oT (1/T ), the

uncertainty bound satisfies ϵs = ÕT (1/
√
Ts) for every s. To show this, we use Lemma 19, an

uncertainty bound that is based on Lemma 21 in Schiffer and Janson [2024]. Lemma 19 says
that ϵs is upper bounded by ÕT (1/

√
|STs|) with probability 1− oT (1/T ), where |STs| is the

number of times t < Ts that the algorithm uses control usafeU
t and such that the probability

of using the control usafeU
t conditional on the history up until that point is lower-bounded

by a constant. To use this lemma, we show that with probability 1 − oT (1/T ), we have
|STs | ≥ ΩT (Ts) for all s (Lemma 21).

In this case, the key observation is that when using the controller C θ̂s
Kopt(θ̂s)

, there exist

constants ϵ, dϵ > 0 such that at every time step t when the control is not usafeU
t , there is an ϵ

probability that the state increases by dϵ (Lemma 26). Informally, this says that at every step,
either ut = usafeU

t or the state will increase by a constant amount with a constant probability.
Therefore, because D is a constant relative to T , we have that with high probability, every
Ω(1) steps the state will exceed P (θ∗, Kopt(θ̂s), DU) or there will be a t such that ut = usafeU

t .

The control at any time t where xt ≥ P (θ∗, Kopt(θ̂s), DU) is ut = usafeU
t . Therefore, with

high probability every Ω(1) steps there will exist a t such that the algorithm uses control
ut = usafeU

t , and we further show that this happens with constant probability. This implies
that |STs | ≥ Ω(Ts) for every s with high probability. Combining with Lemma 19 gives that
with probability 1− oT (1/T ), ϵs ≤ ÕT (1/

√
Ts).

We finish by bounding each source of regret. The first source of regret is the regret from
using certainty equivalence, i.e. using θ̂s instead of using θ∗ in finding Calg

s . Using Lemma 1,

the expected cost of using C θ̂s
Kopt(θ̂s)

instead of Cθ∗

Kopt(θ∗)
is ÕT (Ts∥θ̂s − θ∗∥∞ + 1/T ). Because

∥θ̂s − θ∗∥∞ ≤ ϵs ≤ ÕT (1/
√
Ts) with high probability, this source of regret is ÕT (

√
T ) with

high probability. The second source of regret is the regret from randomness in the regret
random variable, which can be bounded by ÕT (

√
T ) by a variant of McDiarmids Inequality.

The third source of regret is the regret of enforcing safety with usafeU
t and usafeL

t in the choice
of ut. By construction ut differs from Calg

s by ÕT (ϵs) = ÕT (1/
√
Ts) at every time step.

Therefore by Lemma 2, the regret of enforcing safety by using ut is ÕT (
√
T ) with high

probability. The warm-up period has regret ÕT (
√
T ) as in the small noise case. Finally,

there is one additional component of regret in this proof, as we are using the best infinite
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time controller rather than the best Ts-step controller in round s. However, we can show that
this only adds at most ÕT (

√
T ) extra cost, and therefore the total regret is with probability

1− oT (1/T ) still ÕT (
√
T ) (Lemma 5). See Appendix B for a proof sketch of Lemmas 1 and

2.

5 Discussion

In this section we discuss a few limitations of our results and some open questions. In this
work, we focus on state constraints rather than constraints on the actions themselves. We
expect that very minor modifications to Algorithm 2 will naturally extend these results to
also apply to the setting where the controls ut must satisfy constraints. More specifically,
we would need to choose Calg

s in Algorithm 2 to only choose controls that satisfy control
constraints with an extra buffer of Θ̃T (ϵs). See Schiffer and Janson [2024] for more details on
how results regarding state constraints can generalize to problems with control constraints
as well. We leave formal derivations of this to future work.

Another natural extension of our results is to higher dimensional linear control problems.
Our results focus on the one-dimensional case, but we expect that similar algorithmic ideas
will extend to higher dimensional control problems. While we leave formal study of the
higher dimensional case to future work, we highlight here a few interesting open questions
regarding safety constrained control in higher dimensions. In higher dimensions, the system
may not be one-step controllable, and therefore returning to the safe region in one step may
be impossible. Therefore, for unbounded noise distributions there is not a clear definition
of safety for these systems in higher dimensions. One simple case in which we do expect
the results of this paper to easily generalize is when the system is one-step controllable and
the constraints are symmetric around the origin. However, the question of whether ÕT (

√
T )

regret is possible for all noise distributions in higher dimensions is an open question for
future work. In this paper, we also introduced the class of truncated linear controllers and
proved some desirable properties of this class of controllers. We expect these properties to
still hold in higher dimensions, but we leave formal study of this to future work.

Acknowledgements

The authors would like to thank Na Li and Shahriar Talebi for helpful discussions. B.S. and
L.J. received funding from NSF grant CBET-2112085 and B.S. received funding from the
National Science Foundation Graduate Research Fellowship grant DGE 2140743.

References
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A Notation

We use the same general notation as in Schiffer and Janson [2024].

A.1 Equation Notation

Throughout this paper, we use notation such as oT (·), OT (·), ωT (·), ΩT (·), where the subscript
T highlights that these equations hold for sufficiently large T . The following ways we use
O-notation are relatively standard, and we include them here for completeness. We also use
Ω-notation that is defined equivalently in the other direction. When using this notation, the
functions f(T ) and g(t) will always be non-negative.

• f(T ) = OT (g(T )) if there exists T0 and M ∈ R such that for T ≥ T0, f(T ) ≤M · g(T ).

• f(T ) = ΩT (g(T )) if there exists T0 and M ∈ R such that for T ≥ T0, f(T ) ≥M · g(T ).

• f(T ) = oT (g(T )) if for every constant ϵ > 0 there exists T0 such that for all T ≥ T0,
f(T ) ≤ ϵ · g(T ).

• f(T ) = ωT (g(T )) if for every constant ϵ > 0 there exists T0 such that for all T ≥ T0,
f(T ) ≥ ϵ · g(T ).

• f(T ) = ÕT (g(T )) if there exists T0 and k,M ∈ R such that for T ≥ T0, f(T ) ≤
M · g(T ) · logk(T ).

Whenever equations or inequalities involve random variables, the results hold with almost
surely unless specified otherwise.

A.2 Problem Specifications

Below is a (non-exhaustive) list of notation used throughout the appendix.

• q, r : coefficients for the cost at time t of qx2
t + ru2

t .

• W = {wt}T−1
t=0 : The noise random variables for the T -length trajectory.

• D : Distribution of wt

– BP : Upper bound on the density of D
– FD : Cumulative Density Function (CDF) of D
– w̄: the bound of D when the distribution is bounded.

• Θ = [a, ā] × [b, b̄] : The given initial set of dynamics such that θ∗ ∈ Θ and size(Θ) =
min(ā− a, b̄− b)

• θ∗ = (a∗, b∗) : The true (unknown) dynamics.

• C init : The initial safe controller satisfying Assumption 2.
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• D = (DL, DU) : the expected-state boundary for the safety constraint.

• A set of controls {ut} are safe for dynamics {θt} if for all t, DL ≤ atxt + btut ≤ DU.

• Ht = (x0, u0, x1, u1, ..., ut−1, xt) and Ft = σ(Ht).

• J(θ, C, T, x,W ) : The random variable cost of using controller C starting at state
x0 = x for T time steps under dynamics θ with noise random variables W .

• J∗(θ, C, T ) = J∗(θ, C, T, 0) = E[J(θ, C, T, x,W ) | θ, C, T, x] and J∗(θ, C, T ) = J∗(θ, C, T, 0).

• J∗(θ, C) = J∗(θ, C, 0) = limT→∞ J∗(θ, C, T, 0).

• Cθ = {Cθ
K}K∈[Kθ

L,K
θ
U] : a class of controllers that are safe for dynamics θ that are

parameterized by K ∈ [Kθ
L, K

θ
U]

• Kopt(θ, T ) : The K that maximizes J∗(θ, Cθ
K , T, 0) for K ∈ [Kθ

L, K
θ
U].

• Kopt(θ) : The K that maximizes J∗(θ, Cθ
K) for K ∈ [Kθ

L, K
θ
U].

• Cunc
K : The unconstrained linear controller with parameter K, i.e. such that Cunc

K (x) =
−Kx.

• Fopt(θ) : The K that maximizes J∗(θ, Cunc
K ).

A.3 Algorithm Notation

• se : The number of rounds of the safe exploitation loop.

• Ts = 2s
√
T : The length and starting time of round s of the safe exploitation phase.

Note that T0 =
√
T .

• ϵs : Uncertainty bound for θ∗ in round s of the for loop.

• θ̂s : An estimate of θ∗ that is with high probability within ϵs distance of θ∗

• Calg
s (xt) : the controller that the algorithm uses in round s of the safe exploitation

phase before safety adjustments

• usafeL
t , usafeU

t : bounds to enforce safety on the chosen control, which
is ut = max

(
min

(
Calg

s (xt), u
safeU
t

)
, usafeL

t

)
.

• Calg : The controller of the algorithm.
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A.4 Proof Notation

• Ws = {wi}Ts+1−1
i=Ts

: Noise random variables in the round s of the safe exploitation phase.

• (x′
0, x

′
1, ...) and (u′

0, u
′
1, ...): Unless otherwise specified, these are the states and controls

of the algorithm Calg.

• (x̂T0 , x̂T0+1, ...) : Unless otherwise defined in the theorem/lemma statement, x̂T0 , x̂T0+1, ...

is the sequence of states if the control at each time t ≥ T0 is C θ̂s
Kopt(θ̂s,Ts)

(xt) for

s = ⌊log2
(√

T
)
⌋ and starting at x̂T0 = x′

T0
.

• Esafe = {∀t < T : DL ≤ a∗x′
t + b∗u′

t ≤ DU} : The event that all of the controls satisfy
the safety constraints.

• E1 =
{
∀t < T : |wt| ≤ log2(T )

}
: Event that all noise values have magnitude less than

log2(T )

• E0 =
{
∀s ≤ se : ∥θ∗ − θ̂s∥∞ ≤ ϵs

}
: The event that all of the estimates of θ∗ are within

ϵs of θ
∗.

• E2 = E0

⋂{
maxs∈[0:se] ϵs ≤ ÕT (T

−1/4)
}
.

• Es
2 =

{
∥θ̂s − θ∗∥∞ ≤ ϵs ≤ cT · T−1/4

}
, where cT is the coefficient in the ÕT (T

−1/4) of

the definition of event E2.

• E = Esafe ∩ E1 ∩ E2

• Bx = log3(T ) : Used throughout the appendix to simplify notation.

• Kθ
DU

: the value of K that satisfies the equation DU

a−bKθ
DU

−DU = w̄.
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B Proof sketch of Lemmas 1 and 2

In order to use the results from [Schiffer and Janson, 2024], we must show Lemmas 1 and 2.
While both of these properties are relatively easy to show for the class of linear controllers,
proving them for the class of truncated linear controllers is significantly more complicated.
We first outline the proof of Lemma 2. Lemma 2 compares the cost of two trajectories when
using truncated linear controller Cθ

Kopt(θ,t)
, one trajectory starting at state x and the other

trajectory starting at state x + δ. In the proof of Lemma 2, we show that the difference in
states of the two trajectories will decrease at most (but not all) time steps. The difference
does not decrease at all time steps because the difference between θ̂ and θ∗ leads to low
probability events where the difference between the states of the two trajectories increases
(Lemma 6). We are able to bound the probability of the event that the difference in state
increases, and this gives the desired result (Lemma 3). For Lemma 1, we first show that the
truncated linear controller Cθ

Kopt(θ,t)
under dynamics θ has only ÕT (∥θ − θ∗∥∞) more cost

than the truncated linear controller Cθ∗

Kopt(θ∗,t)
under dynamics θ∗. We then show that for any

K, the truncated linear controller Cθ
K under dynamics θ∗ for t steps has only ÕT (∥θ− θ∗∥∞)

more cost than Cθ
K under dynamics θ for t steps. Combining these two results directly gives

the desired result of Lemma 1. For more details on these two proofs, see Appendices D and
C.

C Proof of Lemma 2

proof. Let δL2 =
1

log10(T )
and ϵL2 =

1
log46(T )

Define ϵ = ∥θ − θ∗∥∞ and δ = |x − y|. In order to bound the cost difference of the two
trajectories, we will first bound the differences in states and controls of the two trajectories.
We begin with the following lemma bounding the difference in future states when starting
at two different initial states.

Lemma 3. In the setting of Problem 1, for any θ ∈ Θ such that ϵ := ∥θ − θ∗∥∞ ≤ 1
log46(T )

,

t ≤ T , W ′ = {wi}t−1
i=0, and any K ∈ [a−1

b
, a
b
], there exists YL3 ∈ Rt that only depends on K and

θ such that the event EL3(K, θ,W ′) := {W ′ ∈ YL3} satisfies P(EL3(K, θ,W ′)) = 1−oT (1/T 10)
and the following holds. Suppose that |x|, |y| ≤ 4 log2(T ) and d := |x− y| ≤ 1

log10(T )
. Define

di as the difference in state at time i when starting at x0 = x versus starting at x0 = y and
using controller Cθ

K ∈ Cθtr with noise variables W ′. Then there exists an L = ÕT (1) such that
for sufficiently large T , conditional on EL3(K, θ,W ′),

di ≤

{
2ξi · d, for L < i ≤ t

4d+ ÕT (ϵ) for 0 ≤ i ≤ L,
(8)

where ξ :=
(
1− 1

log10(T )

)
.

The proof of Lemma 3 can be found in Appendix C.1.
We can also bound the difference in control in terms of the difference in state.
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Lemma 4. In the setting of Problem 1, for any θ ∈ Θ such that ∥θ − θ∗∥∞ ≤ 1
log46(T )

, any

K ∈ [a−1
b
, a
b
], and any x, y such that d := |y − x| ≤ 1

log10(T )
,

|Cθ
K(x)− Cθ

K(y)| = OT (d). (9)

The proof of Lemma 4 can be found in Appendix C.3.
We also will need the following event, which is a subset of the event E1 applied only to

times i < t.

Definition 2. Define the event Et
1 as the event that for all i ≤ t− 1, |wi| ≤ log2(T ).

We can proceed by bounding the difference in total costs conditional on the event
EL3(K, θ,W ′) ∩ Et

1. Let d0, d1, ..., dt and du0 , ..., d
u
t−1 respectively be the absolute difference

in states and controls when starting at x0 = x versus starting at x0 = x + δ and using
controller Cθ

K with noise W ′. Let x0, ..., xt and u0, ..., ut−1 be the states and controls when
using controller Cθ

K starting at x0 = x with noise W ′. Then we have the following result
conditional on EL3(K, θ,W ′) ∩ Et

1 for sufficiently large T :∣∣t · J(θ∗, Cθ
K , t, x,W

′)− t · J(θ∗, Cθ
K , t, x+ δ,W ′)

∣∣
≤ 2qdt|xt|+ qd2t +

t−1∑
i=0

2qdi|xi|+ qd2i + 2r|ui|dui + r (dui )
2

≤ 2qdt|xt|+ qd2t +
t−1∑
i=0

2qdi|xi|+ qd2i + 2r|ui|OT (di) + rOT (di)
2 Lemma 4

= OT

(
t∑

i=0

(di + d2i )

(
|x|+ ∥D∥∞ + max

w∈W ′
|w|
))

Lemma 42

= ÕT

(
t∑

i=0

(di + d2i )

)
[Event Et

1, ∥D∥∞ ≤ log2(T ), |x| ≤ 4 log2(T )]

= ÕT

(
L∑
i=0

(
(4δ + ÕT (ϵ)) + (4δ + ÕT (ϵ))

2
)
+

t∑
i=L+1

(
2ξiδ + 4ξ2iδ2

))
Eq (8)

= ÕT

(
δ + ϵ+ δ

t∑
i=0

ξi + δ2
t∑

i=0

ξ2i

)
= ÕT (δ + ϵ).

The last line comes from the fact that ξ = 1− 1
log10(T )

and the formula for the sum of a geomet-

ric series. The above result holds conditional on event EL2(K, θ,W ′) := EL3(K, θ,W ′) ∩Et
1,

and by a union bound and Equation (160),

P(EL2(K, θ,W ′)) = P(EL3(K, θ,W ′) ∩ Et
1) = 1− oT (1/T

10).
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C.1 Proof of Lemma 3

In order to prove Lemma 3, we will use the following lemma that has a similar result but
holds conditional on an event that depends on x.

Lemma 5. There exists an L = ÕT (1) such that the following holds. Suppose that |x|, |y| ≤
4 log2(T ) and d := |x − y| ≤ 1

log10(T )
. In the setting of Problem 1, for any θ ∈ Θ such that

ϵ := ∥θ − θ∗∥∞ ≤ 1
log46(T )

, t ≤ T , W ′ = {wi}t−1
i=0, and any K ∈ [a−1

b
, a
b
], there exists YL5 ∈ Rt

that only depends on x, K and θ such that the event EL5(x,K, θ,W ′) := {W ′ ∈ YL5} satisfies
P(EL5(x,K, θ,W ′)) = 1 − oT (1/T

20) and the following holds. Define di as the difference in
state at time i ≤ t when starting at x0 = x versus starting at x0 = y and using controller
Cθ

K with noise variables W ′. Then for sufficiently large T , conditional on EL5(x,K, θ,W ′),

di ≤


(
1− 1

log10(T )

)i
· d, if i > L

2d+ ÕT (ϵ) if i ≤ L.
(10)

The proof of Lemma 5 can be found in Appendix C.2.
Now we need to find a single event EL3(K, θ,W ′) such that Equation (8) holds for all

|x|, |y| ≤ 4 log2(T ) under this event. Define the set

G :=

{
−4 log2(T ) + i

log10(T )

}
i∈[0:8 log12(T )]

,

i.e. G is a grid of points evenly spaced 1
log10(T )

apart. Note that |G| = ÕT (1). Now, take

EL3(K, θ,W ′) =
⋂
g∈G

EL5(g,K, θ,W ′).

First, we note that because P(EL5(g,K, θ,W ′)) = 1− oT (1/T
20) for all g and because |G| =

ÕT (1), by a union bound P(EL3) = 1− oT (1/T
10).

Now, consider any |x|, |y| ≤ 4 log2(T ) such that |x − y| ≤ 1
log10(T )

. Then there must

exist some g ∈ G such that max (|x− g|, |y − g|) ≤ 1
log10(T )

. For this g, let dx0 , d
x
1 , ... be the

sequence of differences of states when starting at state g versus x and using controller Cθ
K

with noise W ′, and likewise let dy0, d
y
1, ..., be the sequence of absolute differences of states

when starting at state g versus y and using controller Cθ
K with noise W ′. Conditional on

event EL3(K, θ,W ′), we have by Lemma 5 that {dxi } and {d
y
i } both satisfy Equation (10).

Since {dxi } and {d
y
i } are both distances comparing to the same set of states starting at state

g, we have by the triangle inequality that

di ≤ dxi + dyi .

Therefore, for i ≤ t we have the following, where L is from Lemma 5:

di ≤

2
(
1− 1

log10(T )

)i
· d, if i > L

4d+ ÕT (ϵ) if i ≤ L.
(11)

This is exactly the desired result, and therefore we are done.
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C.2 Proof of Lemma 5

proof. The main tool we will use for this proof is the following lemma that bounds the
difference in future states in three different cases.

Lemma 6. For any x, y, define d = |y − x|. In the setting of Problem 1 and for sufficiently
large T , suppose θ ∈ Θ, K ∈

[
a−1
b
, a
b

]
, and ∥θ − θ∗∥∞ = ϵ ≤ 1

log46(T )
. Then for some

ρ := |a∗ − b∗K|+OT (ϵ),

|a∗x+ b∗Cθ
K(x)− a∗y− b∗Cθ

K(y)| ≤


min (2ρd, ρd+OT (ϵ)(|x|+ ∥D∥∞)) if Z
OT (ϵ)d if W
ρd otherwise

(12)

Z :=

{
min(x, y) ≤ DL

a− bK
≤ max(x, y) ≤ DU

a− bK
or

DL

a− bK
≤ min(x, y) ≤ DU

a− bK
≤ max(x, y)

}
W :=

{
max(x, y) ≤ DL

a− bK
or

DU

a− bK
≤ min(x, y)

}
.

The proof of Lemma 6 can be found in Appendix C.3.
The rest of this proof will be structured as follows. First, we will introduce some addi-

tional definitions that we will use to construct event EL5(x,K, θ,W ′). Then, we will prove
Lemma 5 in two cases.

Define x0, x1, ..., xT as the sequence of states when starting at state x0 = x and using
controller Cθ

K with noise W ′. For i ≤ t, define the event

X(i, x,K, θ,W ′) :=

{
min

(∣∣∣∣xi −
DL

a− bK

∣∣∣∣ , ∣∣∣∣xi −
DU

a− bK

∣∣∣∣) ≤ 3

log10(T )

}
.

Note that whether the event X(i, x,K, θ,W ′) occurs depends on w0, ..., wi−1. For 0 ≤ j ≤ t
and x ∈ R, define the event H(j, x,K, θ,W ′) as

H(j, x,K, θ,W ′) :=

{
|{0 ≤ i ≤ j : X(i, x,Kθ,W ′)}| ≤ log23(T ) +

24BP j

log10(T )

}
.

Define
E∗(x,K, θ,W ′) :=

⋂
0≤j≤t

H(j, x,K, θ,W ′).

Now we will show that P(E∗(x,K, θ,W ′)) = 1 − oT
(

1
T 20

)
. Fix any j ≤ t. If j ≤ log23(T ),

then H(j, x,K, θ,W ′) holds with probability 1 by definition. Now suppose j > log23(T ).
Because D has a density bounded by BP and xi = a∗xi−1 + b∗ui−1 + wi−1, we must have
that P(X(i, x,K, θ,W ′)) ≤ 12BP

log10(T )
for all i. Define Mk =

∑k−1
i=0 1X(i,x,K,θ,W ′) − 12BP

log10(T )
. For

sufficiently large T , Mk is a supermartingale with differences bounded in magnitude by 1.
Therefore, by the Azuma–Hoeffding inequality, with probability 1− oT (1/T

21),

|{0 ≤ i ≤ j : X(i, x,K, θ,W ′)}| ≤ 12BP (j + 1)

log10(T )
+ log(T )

√
j ≤ 24BP j

log10(T )
,
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where the last inequality holds for sufficiently large T and j > log23(T ). Therefore, P(H(j, x,K, θ,W ′)) ≥
1−oT (1/T 21). Taking a union bound over all log23(T ) < j ≤ t gives that P(E∗(x,K, θ,W ′)) =
1− oT (1/T

20).

To prove Lemma 5, will split the range of potentialK into two parts,K ∈
[
a∗−1+ 1

log9(T )

b∗
, a
b

]
and K ∈

[
a−1
b
,
a∗−1+ 1

log9(T )

b∗

]
. We will also use the following bounds.

Lemma 7. For any θ ∈ Θ such that ∥θ − θ∗∥∞ ≤ 1
log10(T )

,

a− 1

b
=

a∗ − 1−OT

(
1

log10(T )

)
b∗

and

a

b
=

a∗ +OT

(
1

log10(T )

)
b∗

.

The proof of Lemma 7 can be found in Appendix C.4.
Now we are ready to proceed with the two cases for K.

Case 1: K ∈
[
a∗−1+ 1

log9(T )

b∗
, a
b

]
For i ≤ t, define

Zi :=

{
min(xi, yi) ≤

DL

a− bK
≤ max(xi, yi) ≤

DU

a− bK
or

DL

a− bK
≤ min(xi, yi) ≤

DU

a− bK
≤ max(xi, yi)

}
and define

κ(j) = |{0 ≤ i ≤ j : Zi}| .

Because Lemma 7 implies that a
b
= a∗

b∗
+OT

(
1

log10(T )

)
, we have for K ∈

[
a∗−1+ 1

log9(T )

b∗
, a
b

]
that

|a∗−b∗K| ≤ 1− 1
log9(T )

. Because ϵ ≤ 1
log46(T )

, this implies that |a∗−b∗K|+OT (ϵ) ≤ 1− 1
2 log9(T )

.

This will allow us to bound the ρ in Lemma 6 by 1 − 2
log9(T )

. Combining this with Lemma

6, we have the following piece-wise upper bound (note that we combined the W and the
“otherwise” case using that OT (ϵ) ≤ 1− 1

2 log9(T )
for suff large T ),

dj+1 ≤

min
(
2
(
1− 1

2 log9(T )

)
dj, dj +OT (ϵ)(|xj|+ ∥D∥∞)

)
if Zj(

1− 1
2 log9(T )

)
dj otherwise.

(13)

Conditional on event Et
1, for all j ≤ t, |xj| ≤ OT (log

2(T )) by Lemma 42 because ∥D∥∞ ≤
log2(T ) and |x| ≤ 4 log2(T ). Starting with the base case that d0 = d, this with Equation
(13) implies the following two relationships both hold for dj+1 conditional on event Et

1 for

sufficiently large T . Equation (14) holds because
(
1− 1

2 log9(T )

)
≤ 1 for sufficiently large T

and using the second term in the min of Equation (13). Equation (15) holds using the first
term in the min of Equation (13).

dj+1 ≤ d+ κ(j) ·OT (ϵ log
2(T )) (14)
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and

dj+1 ≤

((
1− 1

2 log9(T )

)j+1

2κ(j)

)
· d. (15)

Equations (14) and (15) look almost like the desired result, and the remaining step is to
show that κ(j) is sufficiently “small”.

Next, define the event Aj as

Aj :=
{
∀i ≤ min(j, log33(T )) : di ≤ 2d+ϵ log36(T )

}⋂{
∀ log33(T ) < i ≤ j : di ≤

(
1− 1

log10(T )

)i

d

}
.

By this construction, At is exactly what we are trying to show in Lemma 5 with L = log33(T ).
We will now prove that At holds for sufficiently large T conditional on E∗(x,K, θ,W ′)∩Et

1.
For sufficiently large T and any j ≤ t, by construction of Aj and because d ≤ 1

log10(T )
and

ϵ ≤ 1
log46(T )

, we have that

Aj ⊆
{
∀0 ≤ i ≤ j : di ≤

3

log10(T )

}
. (16)

Note that for event Zi to hold, it must be the case that xi is within di of either
DU

a−bK
or

DL

a−bK
. Therefore, conditional on E∗(x,K, θ,W ′) ∩ Aj, we have for j ≥ log33(T ),

κ(j) = |{0 ≤ i ≤ j : Zi}|

≤
∣∣∣∣{0 ≤ i ≤ j : min

(∣∣∣∣xi −
DU

a− bK

∣∣∣∣ , ∣∣∣∣xi −
DL

a− bK

∣∣∣∣) ≤ di

}∣∣∣∣
≤
∣∣∣∣{0 ≤ i ≤ j : min

(∣∣∣∣xi −
DU

a− bK

∣∣∣∣ , ∣∣∣∣xi −
DL

a− bK

∣∣∣∣) ≤ 3

log10(T )

}∣∣∣∣ Equation (16)

= |{0 ≤ i ≤ j : X(i, x,K, θ,W ′)}|

≤ log23(T ) +
24BP j

log10(T )
. E∗(x,K, θ,W ′)

= OT

(
j + 1

log10(T )

)
(17)

We will now use Equations (14) and (15) to show that Aj+1 holds conditional on Et
1 ∩

E∗(x,K, θ,W ′)∩Aj. In order to show that Aj+1 holds conditional on Aj, we must show that
dj+1 satisfies the necessary inequality in the definition of Aj+1. Consider the following two
cases for j ≥ 0.

If j + 1 ≤ log33(T ), for sufficiently large T conditional on Aj ∩ Et
1 ∩ E∗(x,K, θ,W ′),

dj+1 ≤ d+ κ(j) ·OT (ϵ log
2(T )) Equation (14)

= d+OT (jϵ log
2(T )) κ(j) ≤ j + 1

≤ d+OT (ϵ log
35(T ))

≤ d+ log36(T )ϵ

≤ 2d+ log36(T )ϵ. (18)

27



This is the necessary inequality that needs to be shown in order for Aj+1 to hold given that
Aj holds if j + 1 ≤ log33(T ).

If j + 1 > log33(T ), for sufficiently large T conditional on Aj ∩ Et
1 ∩ E∗(x,K, θ,W ′),

dj+1

≤
(
1− 1

2 log9(T )

)j+1

2κ(j) · d Equation (15)

≤
(
1− 1

2 log9(T )

)j+1

2
OT ( j+1

log10(T )
) · d Equation (17)

=

(
1− 1

2 log9(T )

)j+1

e
OT ( j+1

log10(T )
) · d

≤
(
1− 1

2 log9(T )

)j+1(
1 +OT

(
1

log10(T )

)
+OT

(
1

log20(T )

))j+1

· d [ex ≤ 1 + x+ x2 for x ≤ 1]

=

(
1− 1

2 log9(T )

)j+1(
1 +OT

(
1

log10(T )

))j+1

· d

=

(
1− 1

2 log9(T )
+OT

(
1

log10(T )

)
− 1

2 log9(T )
·OT

(
1

log10(T )

))j+1

· d

≤
(
1− 1

2 log9(T )
+OT

(
1

log10(T )

))j+1

· d

≤
(
1− 1

log10(T )

)j+1

· d. for sufficiently large T

(19)

This is the necessary inequality that needs to be shown in order for Aj+1 to hold given that
Aj holds if j + 1 ≥ log33(T ).

Equations (18) and (19) together imply that for sufficiently large T , Aj+1 holds con-
ditional on Aj ∩ Et

1 ∩ E∗(x,K, θ,W ′). Note that A0 always holds by definition because
d0 = d. Therefore, we can conclude by induction that At must hold conditional on Et

1 ∩
E∗(x,K, θ,W ′) for sufficiently large T . Finally, by definition of At, this implies that condi-
tional on E∗(x,K, θ,W ′) ∩ Et

1 for sufficiently large T , for all 0 ≤ j ≤ t,

dj ≤


(
1− 1

log10(T )

)j
· d, if j > log33(T )

d+ ÕT (ϵ), if j ≤ log33(T ).
(20)

Taking EL5(x,K, θ,W ′) = E∗(x,K, θ,W ′)∩Et
1, by a union bound we have that P(EL5(x,K, θ,W ′) ≥

1− oT (1/T
20). This completes the proof of Lemma 5 for Case 1.

Case 2: K ∈
[
a−1
b
,
a∗−1+ 1

log9(T )

b∗

]
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Define

Wj :=

{
min(xj, yj) ≥

DU

a− bK
or max(xj, yj) ≤

DL

a− bK

}
and

λ(j) := |{0 ≤ i ≤ j :Wi}|.

For any K ∈
[
a−1
b
,
a∗−1+ 1

log9(T )

b∗

]
, we have that |a∗ − b∗K| − 1 ≤ OT

(
1

log10(T )

)
by Lemma 7.

This with the fact that ϵ ≤ 1
log46(T )

implies that (a∗ − b∗K) +OT (ϵ) ≤ |a∗ − b∗K|+OT (ϵ) ≤

1 + OT

(
1

log10(T )

)
. This allows us to bound the ρ in Lemma 6 to be 1 + OT

(
1

log10(T )

)
. By

Lemma 6 and plugging this bound in for ρ, this gives the following bound.

dj+1 ≤


OT (ϵ)

(
1 +OT

(
1

log10(T )

))
dj If Wj

min
(
2
(
1 +OT

(
1

log10(T )

))
dj ,
(
1 +OT

(
1

log10(T )

))
(dj +OT (ϵ)(|xj |+ ∥D∥∞))

)
If Zj(

1 +OT

(
1

log10(T )

))
dj Otherwise

(21)

Similar to in the proof of Case 1 above, by Lemma 42 and the assumption that ∥D∥∞ ≤
log2(T ), we have that conditional on event Et

1, Equation (21) implies the following two
relationships. The first relationship comes from using the first term in the min of Equation
(21) and recursing.

dj+1 ≤
(
1 +OT

(
1

log10(T )

))j+1

· 2κ(j) ·OT (ϵ)
λ(j) · d. (22)

The second relationship comes from using the second term in the min of Equation (21) and

bounding
(
1 +OT

(
1

log10(T )

))
(|xj| + ∥D∥∞) = OT (log

2(T )) under event Et
1. This gives the

recursive relationship of

dj+1 ≤
(
1 +OT

(
1

log10(T )

))
(OT (ϵ))

1Wj · dj +OT (ϵ log
2(T ))1Zj

. (23)

In other words, at every step there is a multiplicative factor of
(
1 +OT

(
1

log10(T )

))
. When

Wj holds, there is an additional multiplicative factor of OT (ϵ). When Zj holds, there is an
additive factor of OT (ϵ log

2(T )). Unwrapping Equation (23) gives that, at time j+1, any ad-

ditive factor contributed at time i ≤ j will be scaled by OT (ϵ)
λ(j)−λ(i)

(
1 +OT

(
1

log10(T )

))j−i

.

This gives that

dj+1 ≤
(
1 +OT

(
1

log10(T )

))j+1

OT (ϵ)
λ(j)·d+OT (ϵ log

2(T ))·
j∑

i=0

1ZiOT (ϵ)
λ(j)−λ(i)

(
1 +OT

(
1

log10(T )

))j−i

.

(24)

Again this almost looks like the desired result, except we need to show that the additional
terms involving κ(j) and λ(j) are not “too large”. We will use the following lemma that
lower bounds λ(j) using the same event Aj as defined above in the first case. Similar to
Case 1, we will then use this to show that for sufficiently large T , At holds conditional on
Et

1 ∩ EL8(x,K, θ,W ′) ∩ E∗(x,K, θ,W ′).
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Lemma 8. Suppose |1− (a∗ − b∗K)| = OT

(
1

log9(T )

)
. Then in the setting of Problem 1 and

using the notation and assumptions of Lemma 5, there exists a YL8 ∈ Rt that only depends
on x,K, θ such that the event EL8(x,K, θ,W ′) := {W ′ ∈ YL8} satisfies P(EL8(x,K, θ,W ′)) =
1 − oT (1/T

20) and that for all t1 < t2 ≤ t satisfying t2 − t1 ≥ log8(T ), the following is true
conditional on event At2 ∩ EL8(x,K, θ,W ′) for sufficiently large T :(

1 +OT

(
1

log10(T )

))t2+1−t1

OT (ϵ)
λ(t2)−λ(t1) ≤

(
1− 1

2 log9(T )

)t2+1−t1

.

The proof of Lemma 8 can be found in Appendix C.5.
We will now show that the eventAj+1 holds conditional onEL8(x,K, θ,W ′)∩E∗(x,K, θ,W ′)∩

Et
1 ∩ Aj.
For j < log8(T ), conditional on Et

1 ∩ EL8(x,K, θ,W ′) ∩ E∗(x,K, θ,W ′) ∩ Aj and for
sufficiently large T ,

dj+1

≤
(
1 +OT

(
1

log10(T )

))j+1

OT (ϵ)
λ(j) · d

+OT (ϵ log
2(T )) ·

j∑
i=0

1Zj
OT (ϵ)

λ(j)−λ(i)

(
1 +OT

(
1

log10(T )

))j−i

Eq. (24)

≤
(
1 +OT

(
1

log10(T )

))log8(T )+1

· d+OT (ϵ log
2(T )) ·

j∑
i=0

(
1 +OT

(
1

log10(T )

))j

ϵ ≤ OT (1)

≤
(
1 +OT

(
1

log2(T )

))
· d+OT (ϵ log

2(T )) · (j + 1) ·
(
1 +OT

(
1

log10(T )

))j

Lemma 9

≤
(
1 +OT

(
1

log2(T )

))
· d+OT (ϵ log

2(T )) · (log8(T ) + 1) ·
(
1 +OT

(
1

log10(T )

))log8(T )

≤
(
1 +OT

(
1

log2(T )

))(
d+OT

(
ϵ log10(T )

))
Lemma 9

≤ 2d+OT (ϵ log
10(T )) Suff. large T

≤ 2d+ ϵ log36(T ). Suff. large T

(25)

Above, we used the following result:

Lemma 9. Suppose g(T ) is a non-negative function of T such that g(T ) > 1 for sufficiently
large T . Furthermore, suppose f(T ) is a non-negative function of T that satisfies f(T )g(T ) ≤
1/2 for sufficiently large T . Then we have that

1 + f(T )g(T ) ≤ (1 + f(T ))g(T ) ≤ 1 + 2f(T )g(T ).

This implies that
(1 + f(T ))g(T ) = 1 + ΘT (f(t) · g(T )).

proof. First, we note that for any x ≥ 0 and r > 1, (1 + x)r ≥ 1 + rx. This implies that for
sufficiently large T , we have that

(1 + f(T ))g(T ) ≥ 1 + f(T )g(T ).
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This proves one direction of the desired equation. For the other direction, note that for r > 0
and x ∈ [0, 1/r), we have (1 + x)r ≤ 1

1−rx
. This implies that

(1 + f(T ))g(T ) ≤ 1

1− f(T )g(T )

= 1 +
f(T )g(T )

1− f(T )g(T )

≤ 1 + 2f(T )g(T ).

This proves the other direction of the desired equation. Therefore we have that (1 +
f(T ))g(T ) = 1 + Θ(f(T )g(T )).

For log8(T ) ≤ j < log33(T ), conditional on event Et
1∩EL8(x,K, θ,W ′)∩E∗(x,K, θ,W ′)∩

31



Aj and for sufficiently large T ,

dj+1

≤
(
1 +OT

(
1

log10(T )

))j+1

OT (ϵ)
λ(j) · d

+OT (ϵ log
2(T )) ·

j∑
i=0

1Zj
OT (ϵ)

λ(j)−λ(i)

(
1 +OT

(
1

log10(T )

))j−i

Eq (24)

≤
(
1 +OT

(
1

log10(T )

))j+1−0

OT (ϵ)
λ(j)−λ(0) · d

+OT (ϵ log
2(T )) ·

j∑
i=0

1ZjOT (ϵ)
λ(j)−λ(i)

(
1 +OT

(
1

log10(T )

))j−i

≤
(
1− 1

2 log9(T )

)j+1

d

+OT (ϵ log
2(T )) ·

j∑
i=0

1Zj
OT (ϵ)

λ(j)−λ(i)

(
1 +OT

(
1

log10(T )

))j−i

Lemma 8

≤ d+OT (ϵ log
2(T ))

⌈j−log8(T )⌉−1∑
i=0

1ZjOT (ϵ)
λ(j)−λ(i)

(
1 +OT

(
1

log10(T )

))j+1−i

+OT (ϵ log
2(T ))

j∑
i=⌈j−log8(T )⌉

(
1 +OT

(
1

log10(T )

))j−i

≤ d+OT (ϵ log
2(T )) ·

⌈j−log8(T )⌉−1∑
i=0

(
1Zj
·
(
1− 1

2 log9(T )

)j+1−i
)

+OT (ϵ log
2(T )) ·

j∑
i=⌈j−log8(T )⌉

(
1 +OT

(
1

log10(T )

))j−i

Lemma 8

≤ d+OT (ϵ log
2(T )) ·

⌈j−log8(T )⌉−1∑
i=0

(
1Zj
·OT (1)

)
+OT (ϵ log

2(T )) ·
j∑

i=⌈j−log8(T )⌉

(
1 +OT

(
1

log10(T )

))j−i

≤ d+OT (ϵ log
2(T )) ·

⌈j−log8(T )⌉−1∑
i=0

(
1Zj ·OT (1)

)
+OT (ϵ log

2(T )) ·
j∑

i=⌈j−log8(T )⌉

(
1 +OT

(
1

log10(T )

))log8(T )

≤ d+OT (ϵ log
2(T )) ·

⌈j−log8(T )⌉−1∑
i=0

(
1Zj
·OT (1)

)
+OT (ϵ log

2(T )) ·
j∑

i=⌈j−log8(T )⌉

(
1 +OT

(
1

log2(T )

))
Lemma 9

≤ d+OT (ϵ log
35(T )) +OT

(
ϵ log10(T )

)
≤ d+OT (ϵ log

35(T ))

≤ d+ ϵ log36(T ). Suff large T
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Finally, for j ≥ log33(T ), conditional on event Et
1 ∩ EL8(x,K, θ,W ′) ∩ E∗(x,K, θ,W ′) ∩ Aj

and for sufficiently large T,

dj+1 ≤
(
1 +OT

(
1

log10(T )

))j+1

· 2κ(j) ·OT (ϵ)
λ(j) · d Equation (22)

≤
(
1 +OT

(
1

log10(T )

))j+1−0

·OT (ϵ)
λ(j)−λ(0) · 2κ(j) · d

≤
(
1− 1

2 log9(T )

)j+1

2κ(j) · d Lemma 8

≤
(
1− 1

log10(T )

)j+1

· d. As in Equation (19)

Combining all three cases, we have that for all j ≥ 0, conditional on Et
1∩EL8(x,K, θ,W ′)∩

E∗(x,K, θ,W ′) ∩ Aj, Aj+1 holds. As in Case 1, we can conclude by induction using A0 as
the base case to get that conditional on EL8(x,K, θ,W ′)∩E∗(x,K, θ,W ′)∩Et

1, the event At

holds, which implies that

dj ≤


(
1− 1

log10(T )

)j
· d, if j > log33(T )

2d+ ÕT (ϵ), if j ≤ log33(T ).
(26)

Taking EL5(x,K, θ,W ′) = EL8(x,K, θ,W ′)∩E∗(x,K, θ,W ′)∩Et
1, we have by a union bound

that P(EL5(x,K, θ,W ′)) = 1− oT (1/T
20). This completes the proof of Lemma 5 for Case 2.

C.3 Proof of Lemma 4 and Lemma 6

proof. We have four cases depending on the values of x, y. We will prove the results of
Lemma 4 and Lemma 6 for each of these cases separately. WLOG assume that x ≤ y.

Case 1: DL

a−bK
≤ x ≤ y ≤ DU

a−bK
.

In this case, Cθ
K(x) = −Kx and Cθ

K(y) = −Ky, and therefore the following two equations
hold. Case 1 Lemma 6:

|a∗x+ b∗Cθ
K(x)− a∗y − b∗Cθ

K(y)| = |a∗ − b∗K|d = (|a∗ − b∗K|+OT (ϵ))d.

Case 1 Lemma 4:

|Cθ
K(x)− Cθ

K(y)| = Kd ≤ a

b
· d ≤ ā

b
· d = OT (d).

Case 2: DU

a−bK
≤ x ≤ y or x ≤ y ≤ DL

a−bK
(which is W of Lemma 6).

First, assume the former is true. Then Cθ
K(x) = DU−ax

b
and likewise Cθ

K(y) = DU−ay
b

.
Therefore the following equations hold.
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Case 2 Lemma 6:

|a∗x+ b∗Cθ
K(x)− a∗y − b∗Cθ

K(y)| = d
∣∣∣a∗ − a

b
b∗
∣∣∣

= d

∣∣∣∣a∗b− ab∗

b

∣∣∣∣
≤ d

max ((a+ ϵ)b− a(b− ϵ), |(a− ϵ)b− a(b+ ϵ)|)
b

= d
ϵb+ ϵa

b

≤ d
ϵb̄+ ϵā

b

≤ OT (ϵ)d.

Case 2 Lemma 4:

|Cθ
K(y)− Cθ

K(x)| =
a

b
· d ≤ ā

b
· d = OT (d).

The same logic holds for when x ≤ y ≤ DL

a−bK
.

Case 3: x ≤ DL

a−bK
and y ≥ DU

a−bK

In this case, Cθ
K(x) =

DL−ax
b

and Cθ
K(y) =

DU−ay
b

. We will use the fact that |a− bK|d =
|a− bK||y − x| ≥ |DU −DL| in this case.

Case 3 Lemma 6:

|a∗x+ b∗Cθ
K(x)− a∗y − b∗Cθ

K(y)|

=

∣∣∣∣b∗b (DL −DU) +
(
a∗ − a

b
b∗
)
(x− y)

∣∣∣∣
≤ b∗

b
|DU −DL|+

∣∣∣a∗ − a

b
b∗
∣∣∣ d

≤ b∗

b
|a− bK|d+

∣∣∣a∗ − a

b
b∗
∣∣∣ d

≤ b∗

b
|a∗ − b∗K|d+ b∗

b
|a− a∗ + (b∗ − b)K| d+

∣∣∣a∗ − a

b
b∗
∣∣∣ d

≤ |a∗ − b∗K|d+
∣∣∣∣b∗b − 1

∣∣∣∣ |a∗ − b∗K|d+ b∗

b
|a− a∗ + (b∗ − b)K|d+

∣∣∣a∗ − a

b
b∗
∣∣∣ d

≤ (|a∗ − b∗K|+OT (ϵ)) d. (27)

In the last line we used that |a∗ − b∗K| ≤ a∗ + b∗|K| ≤ ā + b̄ ā+1
b

= OT (1), that | b
∗

b
−

1| ≤ ϵ
b
= OT (ϵ), that |a − a∗ + (b∗ − b)K| ≤ ϵ(1 + |K|) ≤ ϵ(1 + ā+1

b
) = OT (ϵ), and that

|a∗ − a
b
b∗| ≤ ϵ+ a

b
ϵ ≤ ϵ+ ā

b
ϵ = OT (ϵ).

Case 3 Lemma 4:
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|Cθ
K(y)− Cθ

K(x)| =
∣∣∣∣1b (DU −DL) +

a

b
(x− y)

∣∣∣∣
=

1

b
|DU −DL|+

a

b
|x− y|

≤ 1

b
|a− bK|d+ a

b
d

≤ 1

b
d+

ā

b
d

= OT (d).

Case 4: If DL

a−bK
≤ x ≤ DU

a−bK
and y ≥ DU

a−bK
. Note that by symmetry, this is equivalent

to DL

a−bK
≤ y ≤ DU

a−bK
and x ≤ DL

a−bK
. We will first assume the former. For Lemma 6, this case

is equivalent to Z.

Case 4 Lemma 6:
In this case, Cθ

K(x) = −Kx and Cθ
K(y) = DU−ay

b
. Furthermore, in this case |y − x| ≥∣∣y − DU

a−bK

∣∣. Therefore, in this case we have

|a∗x+ b∗Cθ
K(x)− a∗y − b∗Cθ

K(y)|
= |a∗x+ b∗Cθ

K(x)− a∗y − b∗Ky + b∗Ky − b∗Cθ
K(y)|

≤ |(a∗ − b∗K)x− (a∗ − b∗K)y|+ b∗
∣∣∣∣−Ky − DU − ay

b

∣∣∣∣
≤ |(a∗ − b∗K)x− (a∗ − b∗K)y|+ b∗

∣∣∣∣(a− bK)y −DU

b

∣∣∣∣
≤ |(a∗ − b∗K)x− (a∗ − b∗K)y|+ b∗|a− bK|

b

∣∣∣∣y − DU

a− bK

∣∣∣∣
≤ |(a∗ − b∗K)x− (a∗ − b∗K)y|+ b∗|a− bK|

b
|y − x|

= |a∗ − b∗K|d+ |a− bK|b
∗

b
d

≤ |a∗ − b∗K|d+ |a− bK|d+
∣∣∣∣1− b∗

b

∣∣∣∣ |a− bK|d

≤ 2|a∗ − b∗K|d+ |a− bK − (a∗ − b∗K)|d+
∣∣∣∣1− b∗

b

∣∣∣∣ |a− bK|d

≤ 2(|a∗ − b∗K|+OT (ϵ))d. As in Equation (27)

Alternatively, note that in this case,

(a∗ − b∗K)|x| ≤ (a− bK)|x|+OT (ϵ)|x| (28)
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and
(a− bK)x ≤ DU ≤ (a− bK)y. (29)

Therefore,

|(a∗ − b∗K)x−DU | ≤ |(a− bK)x−DU |+OT (ϵ)|x| Equation (28)

≤ |(a− bK)x− (a− bK)y|+OT (ϵ)|x| Equation (29)

≤ |a− bK|d+OT (ϵ)|x|
≤ |a∗ − b∗K|d+OT (ϵ)(d+ |x|). (30)

Therefore we can find an alternative bound on |a∗x + b∗Cθ
K(x) − a∗y − b∗Cθ

K(y)|, using
Equation (30) and that |y| ≤ |x|+ d.

|a∗x+ b∗Cθ
K(x)− a∗y − b∗Cθ

K(y)|

=

∣∣∣∣(a∗ − b∗K)x− b∗

b
DU −

(
a∗ − ab∗

b

)
y

∣∣∣∣
≤ |(a∗ − b∗K)x−DU |+

∣∣∣∣1− b∗

b

∣∣∣∣DU +

∣∣∣∣a∗ − ab∗

b

∣∣∣∣ |y|
≤ |a∗ − b∗K|d+OT (ϵ)(d+ |x|) +

∣∣∣∣1− b∗

b

∣∣∣∣DU +

∣∣∣∣a∗ − ab∗

b

∣∣∣∣ |y| Equation (30)

≤ |a∗ − b∗K|d+OT (ϵ)(d+ |x|) +
∣∣∣∣1− b∗

b

∣∣∣∣DU +

∣∣∣∣a∗ − ab∗

b

∣∣∣∣ (|x|+ d)

≤ (|a∗ − b∗K|+OT (ϵ))d+OT (ϵ)(|x|+DU)

≤ (|a∗ − b∗K|+OT (ϵ))d+OT (ϵ)(|x|+ ∥D∥∞).

where in the last line we once again bounded |1 − b∗

b
| = OT (ϵ) and |a∗ − ab∗

b
| = OT (ϵ).

Therefore, we have shown in this case that

|a∗x+ b∗Cθ
K(x)− a∗y − b∗Cθ

K(y)|
≤ min (2(|a∗ − b∗K|+OT (ϵ))d, (|a∗ − b∗K|+OT (ϵ))d+OT (ϵ)(|x|+ ∥D∥∞))
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Case 4 Lemma 4:

|Cθ
K(x)− Cθ

K(y)| =
∣∣∣∣−Kx− DU − ay

b

∣∣∣∣
≤ |K||x− y|+

∣∣∣∣−Ky − DU − ay

b

∣∣∣∣
≤ |K||x− y|+

∣∣∣∣(a− bK)y −DU

b

∣∣∣∣
≤ |K||x− y|+ |a− bK|

b

∣∣∣∣y − DU

a− bK

∣∣∣∣
≤ |K||x− y|+ |a− bK|

b
|y − x| Equation (29)

= |K|d+ |a− bK|
b

d

≤ ā+ 1

b
d+

1

b
d

= OT (d).

Because these four cases cover all possible situations, we have shown the desired two
lemmas.

C.4 Proof of Lemma 7

proof. For sufficiently large T we have the following two results, using that ∥θ − θ∗∥∞ ≤
1

log10(T )
:

a− 1

b
≥

a∗ − 1
log10(T )

− 1

b∗ + 1
log10(T )

=
a∗ − 1

b∗
· b∗

b∗ + 1
log10(T )

− 1

log10(T )(b∗ + 1
log10(T )

)

=
a∗ − 1

b∗
·

1− 1

log10(T )
(
b∗ + 1

log10(T )

)
− 1

log10(T )(b∗ + 1
log10(T )

)

=
a∗ − 1

b∗
− a∗ − 1

b∗ log10(T )(b∗ + 1
log10(T )

)
− 1

log10(T )(b∗ + 1
log10(T )

)

=
a∗ − 1−OT

(
1

log10(T )

)
b∗

.
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a

b
≤

a∗ + 1
log10(T )

b∗ − 1
log10(T )

=
a∗

b∗
· b∗

b∗ − 1
log10(T )

+
1

log10(T )(b∗ − 1
log10(T )

)

=
a∗

b∗
·

1 +
1

log10(T )
(
b∗ − 1

log10(T )

)
+

1

log10(T )(b∗ − 1
log10(T )

)

=
a∗

b∗
+

a∗

b∗(b∗ − 1
log10(T )

) log10(T )
+

1

log10(T )(b∗ − 1
log10(T )

)

=
a∗ +OT (1/ log

10(T ))

b∗
.

C.5 Proof of Lemma 8

proof. The first step to this proof is to construct event EL8(x,K, θ,W ′). For any t2 > t1 and
t2 − t1 ≥ log8(T ), define the event Et1,t2

L8 as

Et1,t2
L8 =

∃j ∈ [t1 : t2 − ⌈log5(T )⌉ − 1] :

∣∣∣∣∣∣
j+⌈log5(T )⌉∑

i=j

wi

∣∣∣∣∣∣ ≥ 7 log2(T )

 .

Define
EL8(x,K, θ,W ′) := Et

1 ∩
⋂

t1<t2≤t,t2−t1≥log8(T )

Et1,t2
L8 .

First we will show that P(EL8(x,K, θ,W ′)) = 1− oT (1/T
20). Consider any pair t2 > t1 such

that t2 − t1 ≥ log8(T ). Divide the interval [t1 : t2 − 1] into ⌊ t2−t1
⌈log5(T )⌉+1

⌋ consecutive disjoint

intervals of length ⌈log5(T )⌉ + 1. Consider one such interval [s1, s2]. Then the distribution
of 1√

⌈log5(T )⌉+1

∑s2
i=s1

wi converges in distribution to N(0, σ2
D) as T grows, where we recall σ2

D

is the variance of distribution D. The rate of this convergence depends on D. Therefore, for
sufficiently large T , we have that∣∣∣∣∣∣P

∣∣∣∣∣∣ 1√
⌈log5(T )⌉+ 1

s2∑
i=s1

wi

∣∣∣∣∣∣ ≥ σD/2

− P
(
|N(0, σ2

D)| ≥ σD/2
)∣∣∣∣∣∣ ≤ 0.1. (31)

This implies that

P

∣∣∣∣∣∣ 1√
⌈log5(T )⌉+ 1

s2∑
i=s1

wi

∣∣∣∣∣∣ ≥ σD/2

 ≥ P
(
|N(0, σ2

D)| ≥ σD/2
)
− 0.1 ≥ 0.5. (32)
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For sufficiently large T , we have that

√
⌈log5(T )⌉+1σD

2
≥ 7 log2(T ), and therefore this implies

that for sufficiently large T ,

P

(∣∣∣∣∣
s2∑

i=s1

wi

∣∣∣∣∣ ≥ 7 log2(T )

)
≥ 0.5. (33)

Because the random variables in each disjoint interval are independent, we have that each
interval independently satisfies Equation (33) with probability at least 1/2. Therefore, for

sufficiently large T , the probability that Equation (33) fails to hold for all ⌊ |t2−t1|
⌈log5(T )⌉+1

⌋ ≥

log2(T ) intervals is at most (1/2)
⌊ |t2−t1|
⌈log5(T )⌉+1

⌋ ≤ 0.5log
2(T ) = oT (1/T

22). Therefore, we have
shown that

P(Et1,t2
L8 ) ≥ 1− oT (1/T

22).

Since there are less than T 2 pairs (t1, t2) and P(Et
1) ≥ P(E1) = 1 − oT (1/T

20) by Equation
(160), we have by a union bound that

P(EL8(x,K, θ,W ′)) ≥ 1− oT (T
2/T 22)− oT (1/T

20) = 1− oT (1/T
20).

Lemma 10. Using the assumptions and notation of the proof of Lemma 8, for all pairs t1, t2
such that t2 − t1 ≥ log8(T ), conditional on event At2 ∩ EL8(x,K, θ,W ′),

λ(t2)− λ(t1) = ΩT

(
|t2 − t1|
log8(T )

)
. (34)

By Lemma 10, conditional on At2 ∩ EL8(x,K, θ,W ′), we that:(
1 +OT

(
1

log10(T )

))t2+1−t1

OT (ϵ)
λ(t2)−λ(t1)

=

(
1 +OT

(
1

log10(T )

))t2+1−t1

OT (1/ log(T ))λ(t2)−λ(t1) ϵ = OT (1/ log(T ))

≤
(
1 +OT

(
1

log10(T )

))t2+1−t1

·OT

(
1

log(T )

)ΩT

(
|t2−t1|
log8(T )

)
Equation (34)

≤
(
1 +OT

(
1

log2(T )

))(t2+1−t1)/ log
8(T )

·OT

(
1

log(T )

)ΩT

(
|t2−t1|
log8(T )

)
Lemma 9

≤ OT

((
1

log(T )

(
1 +

1

log2(T )

)))ΩT

(
|t2−t1|
log8(T )

)

≤
(
OT

(
1

log(T )

))ΩT

(
|t2−t1|
log8(T )

)

≤

(OT

(
1

log(T )

))ΩT

(
1

log8(T )

)(t2+1−t1)

≤
(
1− 2

log9(T )

)t2+1−t1

. (35)
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This is the desired result. In the last line we used that for sufficiently large T ,(
OT

(
1

log(T )

))ΩT

(
1

log8(T )

)
≤
(
1

2

)ΩT

(
1

log8(T )

)

≤
(
1

2

) 4
log9(T )

≤
(
1− 2

log9(T ))

)
Lemma 9

Note that the first inequality above is a very loose bound, however it is what we need to
prove the desired lemma.

C.6 Proof of Lemma 10

To show Equation (34), we will show that for all t2 ≥ ⌈log8(T )⌉, conditional on event
At2 ∩EL8(x, k, θ,W

′), for every j ≤ t2−⌈log8(T )⌉+1 there exists some i ∈ [j : j+⌈log8(T )⌉)
such that Wi holds, where we recall that

Wi =

{
min(xi, yi) ≥

DU

a− bK
or max(xi, yi) ≤

DL

a− bK

}
.

This in turn implies Equation (34) because we can divide [t1+1 : t2] into ΩT (
|t2−t1|
log8(T )

) disjoint

intervals of the form [j : j+ ⌈log8(T )⌉) where each interval contains an i such thatWi holds.
For the rest of the proof, we will prove by contradiction that conditional on event At2 ∩

EL8(x, k, θ,W
′), for every j ≤ t2 − ⌈log8(T )⌉ there exists some i ∈ [j : j + ⌈log8(T )⌉) such

that Wi holds. Assume that this is not the case, and there exists j such that there are no
i ∈ [j : j + ⌈log8(T )⌉) such that Wi holds.

By definition of Wi, if yi ̸∈
[

DL

a−bK
− di,

DU

a−bK
+ di

]
, then Wi must hold. Recall that

conditional on event At2 , di ≤ 3
log10(T )

for all i ≤ t2. Therefore, conditional on event At2 , if

yi ̸∈
[

DL

a−bK
− 3

log10(T )
, DU

a−bK
+ 3

log10(T )

]
thenWi must hold. Because we assumed that there are

no i ∈ [j : j + ⌈log8(T )⌉) such that Wi holds, this implies that for all i ∈ [j : j + ⌈log8(T )⌉),

yi ∈
[

DL

a− bK
− 3

log10(T )
,

DU

a− bK
+

3

log10(T )

]
. (36)

We also have that for sufficiently large T ,

∥D∥∞
a− bK

≤ ∥D∥∞
a∗ − b∗K −OT

(
1

log10 T

) ∥θ − θ∗∥∞ ≤ 1/ log10(T )

≤ ∥D∥∞
1−OT

(
1

log9 T

) |1− (a∗ − b∗K)| ≤ 1

log9(T )

≤ 2∥D∥∞
≤ 2 log2(T ). (37)
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Therefore, if |yi| ≥ log2(T ) ≥ 2 log2(T ) + 3
log10(T )

for sufficiently large T , then Wi must hold.

For the rest of the proof, we will show that if Equation (36) holds for all i ∈ [j : j+⌈log8(T )⌉),
then at least one such i must satisfy |yi| ≥ 3 log2(T ), which implies that Wi will hold which
is a contradiction.

Lemma 11. Using the notation and assumptions of Lemma 10, conditional on At2∩EL8(x, k, θ,W
′),

if yi ∈
[

DL

a−bK
− 3

log10(T )
, DU

a−bK
+ 3

log10(T )

]
, then yi+1−yi ∈ [wi−OT (1/ log

7(T )), wi+OT (1/ log
7(T ))].

proof. The control at time i is either −Kyi,
DU−ayi

b
, or DL−ayi

b
. If the control is −Kyi, then

under event Et
1,

|yi+1 − yi − wi| = |(a∗ − b∗K)yi − yi|
= |yi||1− (a∗ − b∗K)|

= OT

(
|yi|

log9(T )

)
Assumed in Lemmas 8, 10, and 11

= OT

(
1

log7(T )

)
. Under event Et

1 by Lemma 42.

The control at state yi is
DU−ayi

b
only when yi ≥ DU

a−bK
. Because yi ≤ DU

a−bK
+ 3

log10(T )
, this

implies that
∣∣yi − DU

a−bK

∣∣ ≤ 3
log10(T )

, and because (a − bK) ≤ 1 this implies that |DU − (a −
bK)yi| = OT (1/ log

10(T )). Therefore, under event Et
1, when the control at state yi is

DU−ayi
b

,

|yi+1 − yi − wi| = |a∗yi + b∗
DU − ayi

b
− yi|

≤ |(a∗ − b∗K)yi − yi|+ b∗
∣∣∣∣Kyi +

DU − ayi
b

∣∣∣∣
≤ |(a∗ − b∗K)− 1||yi|+

b∗

b
|DU − (a− bK)yi|

≤ OT

(
|yi|

log9(T )

)
+OT

(
1

log10(T )

)
≤ OT

(
1

log7(T )

)
. Under event Et

1 by Lemma 42

A symmetric result holds if the control at state yi is
DL−ayi

b
(which happens when yi ≤ DL

a−bK
).

This exactly implies the desired result.

Using Lemma 11, for j ≤ i1 < i2 ≤ j + ⌈log8(T )⌉ such that i2 − i1 ≤ ⌈log5(T )⌉ and
sufficiently large T , if yi ∈

[
DL

a−bK
− 3

log10(T )
, DU

a−bK
+ 3

log10(T )

]
for all i ∈ [j : j + ⌈log8(T )⌉),

then

|yi2+1 − yi1| ≥

∣∣∣∣∣
i2∑

j=i1

wj

∣∣∣∣∣−OT

(
|i2 − i1|
log7(T )

)

≥

∣∣∣∣∣
i2∑

j=i1

wj

∣∣∣∣∣− 1

log(T )
. i2 − i1 ≤ ⌈log5(T )⌉ (38)
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By construction, event EL8(x,K, θ,W ′) directly implies that for sufficiently large T , there
exists some i ∈ [j : j + ⌈log8(T )⌉ − ⌈log5(T )⌉ − 1] such that∣∣∣∣∣∣

i+⌈log5(T )⌉∑
j=i

wj

∣∣∣∣∣∣ ≥ 7 log2(T ) ≥ 2 · 3 log2(T ) + 1

log(T )
. (39)

Combining this with Equation (38) for i1 = i and i2 = i + ⌈log5(T )⌉, conditional on At2 ∩
EL8(x, k, θ,W

′),
|yi2+1 − yi1 | ≥ 6 log2(T ).

This implies that either |yi| or |yi+⌈log5(T )⌉+1| is greater than 3 log2(T ). However, as argued
above this implies that Wi or Wi+⌈log5(T )⌉+1 holds, which is a contradiction. This completes
the proof by contradiction.

D Proof of Lemma 1

proof. Let ϵL1 =
1

log46(T )
. We will combine the following two results.

Lemma 12. Under Assumptions 1–3, for any θ such that ∥θ − θ∗∥∞ = ϵ ≤ 1
log46(T )

, the

following holds for the class of truncated linear controllers for t ≤ T :

J̄(θ, Cθ
Kopt(θ,t), t)− J̄(θ∗, Cθ∗

Kopt(θ∗,t), t) = ÕT (ϵ).

The proof of Lemma 12 can be found in Appendix D.1.

Lemma 13. Under Assumptions 1–3, for any ∥θ − θ∗∥∞ = ϵ ≤ 1
log46(T )

, t ≤ T , and K ∈
[a−1

b
, a
b
],

|J̄(θ∗, Cθ
K , t)− J̄(θ, Cθ

K , t)| = ÕT

(
ϵ+

1

T 2

)
. (40)

The proof of Lemma 13 can be found in Appendix D.2.
Putting together Lemma 12 and Lemma 13 with K = Kopt(θ, t), we have the desired

result that

J̄(θ∗, Cθ
Kopt(θ,t), t)− J̄(θ∗, Cθ∗

Kopt(θ∗,t), t) = ÕT

(
ϵ+

1

T 2

)
.

D.1 Proof of Lemma 12

proof. First, we will prove some results about a∗, b∗, Kopt(θ
∗, t). Because b, b∗ ≥ b and ∥θ −

θ∗∥∞ = ϵ ≤ 1
log46(T )

< b/2 for large enough T , we have that∣∣∣∣∣
(
a∗

b∗

)2

−
(a
b

)2∣∣∣∣∣ =
∣∣∣∣(a∗)2b2 − (b∗)2a2

b2(b∗)2

∣∣∣∣ ≤ ϵ2b2 + 2ϵab2 + 2ϵba2 + ϵ2a2

b2(b− ϵ)2
= OT (ϵ). (41)
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∣∣∣∣ab − a∗

b∗

∣∣∣∣ = ∣∣∣∣a∗b− b∗a

bb∗

∣∣∣∣ ≤ ∣∣∣∣ ϵb+ ϵa

b(b− ϵ)

∣∣∣∣ = OT (ϵ). (42)

Let K ′ be the solution to a∗ − b∗Kopt(θ
∗, t) = a− bK ′. Then

K ′ =
(a− a∗) + b∗Kopt(θ

∗, t)

b
= Kopt(θ

∗, t) +
(b∗ − b)Kopt(θ

∗, t)

b
+

a− a∗

b
.

Since Kopt(θ
∗, t) ≤ a∗

b∗
by definition, we have the following two equations:

|K ′ −Kopt(θ
∗, t)| =

∣∣∣∣(b∗ − b)Kopt(θ
∗, t)

b
+

a− a∗

b

∣∣∣∣ ≤ ( a∗

bb∗
+

1

b

)
ϵ = OT (ϵ). (43)

|(K ′)2 − (Kopt(θ
∗, t))2| ≤ |K ′ −Kopt(θ

∗, t)| · |K ′ +Kopt(θ
∗, t)| = OT (ϵ). (44)

By the choice of K ′, using the controller Cθ∗

Kopt(θ∗,t)
under dynamics θ∗ results in the exact

same sequence of states as using the controller Cθ
K′ under dynamics θ. This is because

a − bK ′ = a∗ − b∗Kopt(θ
∗, t), which by construction of truncated linear controllers implies

that ax + bCθ
K′(x) = a∗ + b∗Cθ∗

Kopt(θ∗,t)
for all x. The controls will however be different, and

we will now bound that difference in controls.
Define x0, x1, ..., xt as the sequence of states when using controller Cθ∗

Kopt(θ∗,t)
under dy-

namics θ∗ starting at state x0 = 0. Then we have the following result.

∣∣∣rCθ∗

Kopt(θ∗,t)(xi)
2 − rCθ

K′(xi)
2
∣∣∣ =



∣∣rx2
i

(
(Kopt(θ

∗, t))2 − (K ′)2
)∣∣ if xi ∈ [ DL

a∗−b∗Kopt(θ∗,t) ,
DU

a∗−b∗Kopt(θ∗,t) ]∣∣∣∣r (DU−a∗xi

b∗

)2
− r

(
DU−axi

b

)2∣∣∣∣ if xi >
DU

a∗−b∗Kopt(θ∗,t)∣∣∣∣r (DL−a∗xi

b∗

)2
− r

(
DL−axi

b

)2∣∣∣∣ if xi <
DL

a∗−b∗Kopt(θ∗,t)

(45)

By Equation (44), this implies the following.∣∣∣rCθ∗

Kopt(θ∗,t)(xi)
2 − rCθ

K′(xi)
2
∣∣∣

≤


OT (x

2
i ϵ) if xi ∈ [ DL

a∗−b∗Kopt(θ∗,t) ,
DU

a∗−b∗Kopt(θ∗,t) ]

rD2
U

∣∣∣( 1
b∗

)2 − ( 1b )2∣∣∣+ 2DUr|xi|
∣∣∣ab − a∗

b∗

∣∣∣+ rx2
i

∣∣∣∣(a∗

b∗

)2
−
(
a
b

)2∣∣∣∣ if xi >
DU

a∗−b∗Kopt(θ∗,t)

rD2
L

∣∣∣( 1
b∗

)2 − ( 1b )2∣∣∣+ 2|DL|r|xi|
∣∣∣ab − a∗

b∗

∣∣∣+ rx2
i

∣∣∣∣(a∗

b∗

)2
−
(
a
b

)2∣∣∣∣ if xi <
DL

a∗−b∗Kopt(θ∗,t)

By Equations (41) and (42), we get the following result.

∣∣∣rCθ∗

Kopt(θ∗,t)(xi)
2 − rCθ

K′(xi)
2
∣∣∣ ≤


OT (x

2
i )ϵ if xi ∈ [ DL

a∗−b∗Kopt(θ∗,t)
, DU

a∗−b∗Kopt(θ∗,t)
]

OT (D
2
Uϵ+DU |xi|ϵ) +OT (x

2
i ϵ) if xi >

DU

a∗−b∗Kopt(θ∗,t)

OT (D
2
Lϵ+ |DL||xi|ϵ) +OT (x

2
i ϵ) if xi <

DL

a∗−b∗Kopt(θ∗,t)

(46)
Using that ∥D∥∞ ≤ log2(T ), in all three cases we have that∣∣∣rCθ∗

Kopt(θ∗,t)(xi)
2 − rCθ

K′(xi)
2
∣∣∣ = ÕT

(
1 + |xi|+ |xi|2

)
ϵ. (47)
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The last fact we need is to note that xi is a sequence of states for the controller Cθ∗

Kopt(θ∗,t)
un-

der dynamics θ∗, which by construction will always satisfy thatDL ≤ a∗xi+b∗Cθ∗

Kopt(θ∗,t)
(x∗) ≤

DU . Therefore, since E[|wi−1|] and E[w2
i−1] are constants relative to T that depend on D, for

all i,
E[|xi|] ≤ ∥D∥∞ + E[|wi−1|] = OT (log

2(T )).

E[|xi|2] ≤ ∥D∥2∞ + E[w2
i−1] + 2∥D∥∞ E[|wi−1|] = OT (log

4(T )).

Therefore, we can upper bound the difference in cost as follows:

J̄(θ, Cθ
K′ , t)− J̄(θ∗, Cθ∗

Kopt(θ∗,t), t) ≤ E

[
1

t

t−1∑
i=0

∣∣∣rCθ∗

Kopt(θ∗,t)(xi)
2 − rCθ

K′(xi)
2
∣∣∣]

≤ 1

t

t−1∑
i=0

ÕT

(
1 + E[|xi|] + E[|xi|2]

)
ϵ Equation (47)

≤ 1

t

t−1∑
i=0

ÕT

(
log2(T ) + log4(T )

)
ϵ

= ÕT (ϵ) .

Finally, by definition of Kopt we know that

J̄(θ, Cθ
Kopt(θ,t), t) ≤ J̄(θ, Cθ

K′ , t),

therefore we can conclude that

J̄(θ, Cθ
Kopt(θ,t), t)− J̄(θ∗, Cθ∗

Kopt(θ∗,t), t) = ÕT (ϵ).

D.2 Proof of Lemma 13

proof. For a set of time varying dynamics {θj}t−1
j=0 where θj ∈ Θ for all j, we define the

expected total cost for varying dynamics as

J̄({θj}t−1
j=0, C

θ
K , t) := qx2

t +
t−1∑
j=0

qx2
j + rCθ

K(xj−1)
2,

where x0 = 0 and xj = aj−1xj−1 + bj−1C
θ
K(xj−1) + wj−1. In other words, this is the total

cost if the dynamics at time j < t are θj.
For i ∈ [0 : t], let {θij}t−1

j=0 be a time varying dynamics with θij = θ for all j < i and θij = θ∗

for j ≥ i. We will now compare the costs under dynamics {θij}t−1
j=0 versus under {θi+1

j }t−1
j=0. Let

x0, x1, ...xt be the states when using controller Cθ
K under time-varying dynamics {θij}t−1

j=0 and

x∗
0, ...x

∗
t be the states when using controller Cθ

K under time-varying dynamics {θi+1
j }t−1

j=0 (both
starting at x0 = x∗

0 = 0). Up until time i, the dynamics of these two trajectories are the same
(both equal to θ), and therefore the states and controls of the two trajectories are equivalent
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up until time i. Because Cθ
K is safe with respect to dynamics θ, |x∗

i | = |xi| ≤ ∥D∥∞+ |wi−1|.
Because ∥D∥∞ ≤ log2(T ), this implies that

E[|x∗
i |] = E[|xi|] = ÕT (1). (48)

Also note that by construction of the truncated linear controller, |Cθ
K(xi)| ≤ K|xi| +

∥D∥∞+a|xi|
b

. Therefore, we have that

|xi+1−x∗
i+1| = |axi+bCθ

K(xi)−a∗xi−b∗Cθ
K(xi)| ≤ ϵ|xi|+ϵ|Cθ

K(xi)| ≤ ϵ

(
|xi|+K|xi|+

∥D∥∞ + a|xi|
b

)
.

(49)
Combining Equations (48) and (49) gives that

E[|xi+1 − x∗
i+1|] = ÕT (ϵ). (50)

Consider xi+1. Define the event F = {|xi+1| < log3(T )}. As argued above, |xi| ≤ ∥D∥∞ +
|wi−1| ≤ 2 log2(T ) under event E1. Furthermore, the control Cθ

K(xi) is safe with respect to
dynamics θii and ∥θii − θ∗∥∞ = ∥θ − θ∗∥∞ ≤ 1/ log46(T ) ≤ 1/ log(T ) for sufficiently large T .
Therefore, we can apply Lemma 43 for one step to get that for sufficiently large T , |xi+1| ≤
4 log2(T ) under event E1. Therefore, for sufficiently large T , P(F ) ≥ P(E1) = 1− oT (1/T

11).
By Lemma 40 (using the same logic as in Equation (56) in Schiffer and Janson [2024]), this
implies that

P(|xi+1| ≥ log3(T ))E[|xi+1|2 | |xi+1| ≥ log3(T )] = oT (1/T
10).

The same logic holds for x∗
i+1. We showed above that P(|xi+1| ≤ 4 log2(T )) = 1− oT (1/T

11)
(and the same equation holds for x∗

i+1). Therefore, we can apply Lemma 41 to get that

|t · J∗({θij}t−1
j=0, C

θ
K , t, 0)− t · J∗({θi+1

j }t−1
j=0, C

θ
K , t, 0)|

= E
[
|(t− i)J̄(θ∗, Cθ

K , t− i, xi+1)− (t− i)J̄(θ∗, Cθ
K , t− i, x∗

i+1)|
]

= ÕT

(
E
[∣∣xi+1 − x∗

i+1

∣∣]+ ϵ+
1

T 2

)
Lemma 41

= ÕT

(
ϵ+

1

T 2

)
. Equation (50) (51)

Now, we conclude by noting that

|t · J∗(θ∗, Cθ
K , t)− t · J∗(θ, Cθ

K , t)| =

∣∣∣∣∣
t∑

i=0

t · J∗({θi+1
j }t−1

j=0, C
θ
K , t, 0)− t · J∗({θij}t−1

j=0, C
θ
K , t, 0)

∣∣∣∣∣
= ÕT

(
t

(
ϵ+

1

T 2

))
,

and dividing both sides of the equation by t gives the desired result.
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E Proof of Theorem 2

For the proof of Theorem 2, recall the following notation (which was also defined in the
proof sketch of Theorem 2). Define Cunc = {Cunc

K }K∈R as the class of untruncated linear
controllers, where Cunc

K (x) = −Kx. For any controller C and dynamics θ, define J̄(θ, C) =
limT−→∞ J̄(θ, C, T ). Define Kopt(θ) = arg supK J̄(θ, Cθ

K) and Fopt(θ) = arg supK J̄(θ, Cunc
K ).

By Lemmas 1 and 2, the class of truncated linear controllers satisfies the assumptions of
Theorem 1 in Schiffer and Janson [2024]. If D has infinite support and ∥D∥∞ = OT (1), then
Assumption 9 in Schiffer and Janson [2024] is satisfied. Furthermore, for noise distribution
with infinite support, Algorithm 2 will choose the exact same controls as Algorithm 3 in
Schiffer and Janson [2024]. Therefore, under Assumptions 1–3, if D has infinite support, then
Algorithm 2 with the baseline class of truncated linear controllers has regret of ÕT (

√
T ) by

Theorem 1 in Schiffer and Janson [2024]. Therefore, Theorem 1 in Schiffer and Janson
[2024] directly proves Theorem 2 in the case when D has infinite support. For the rest of this
proof, we will focus on proving Theorem 2 when D has bounded support, therefore making
the following assumption.

Assumption 4. The distribution D has bounded support, i.e. there exists w̄ > 0 such that
Pw∼D(|w| ≤ w̄) = 1.

For the rest of the proof of Theorem 2, we will also assume WLOG that DU ≤ |DL|.
Definition 3. Define Kθ

DU
as the value that satisfies the equation

DU

a− bKθ
DU

−DU = w̄.

For the rest of Appendix E, let Calg be the controller of Algorithm 2 and Cθtr be the class
of truncated linear controllers for dynamics θ as in Equation (3).

Let se = log2(
√
T )− 1, and let

E0 :=
{
∀s ∈ [0 : se] : ∥θ∗ − θ̂pres ∥∞ ≤ ϵs

}
. (52)

The following lemma (Lemma 23 in Schiffer and Janson [2024]) bounds the uncertainty in
θ∗ from regularized least squares estimation.

Lemma 14 (Lemma 23 in Schiffer and Janson [2024], Theorem 1 in Abbasi-Yadkori and
Szepesvári [2011]). Suppose xt and ut are respectively the state and control at time t when
using an arbitrary controller C starting at state x0 = 0. Define zt = (xt, ut) and let λ > 0.
Let Zt ∈ Rt×2 where the ith row is zi−1, let Xt ∈ Rt×1 where the ith element is xi, and let
I ∈ R2×2 be the identity matrix. Then under Assumptions 1–3, with probability 1− oT

(
1
T 2

)
the following holds for all 1 ≤ t ≤ T − 1 and for any S ⊆ [0 : t− 1]:

∥θ∗ − (Z⊤
t Zt + λI)−1Z⊤

t Xt∥∞ ≤

√
max((V S

t )11, (V S
t )22)

det(V S
t )

Bt, (53)

where V S
t = λI +

∑t−1
s=0 zsz

⊤
s 1s∈S, Bt = α

√
log
(
det
(
V

[0:t−1]
t

))
+ log(λ2) + 2 log(T 2) +

√
λ(ā2 + b̄2), and α is from the subgaussian assumption on the noise distribution D, which

implies that there exists an α such that Ew∼D[exp(γw)] ≤ exp(γ2α2/2) for any γ ∈ R.
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By Lemma 14 we have that with probability 1 − oT (1/T
2), for all s, ∥θ∗ − θ̂pres ∥∞ ≤

ϵs.Therefore,
P(E0) = 1− oT (1/T

2).

By construction we also have that ∥θ̂s− θ̂pres ∥∞ ≤ ϵs. This implies by the triangle inequality
that under event E0, ∥θ̂s − θ∗∥∞ ≤ 2ϵs.

We also have the following uncertainty result that is equivalent to Lemma 2 in Schiffer
and Janson [2024]:

Lemma 15. Under Assumptions 1–3, there exists a cL15 = ÕT (1) such that with probability
1− oT (1/T

2)
max
s∈[0:se]

ϵs ≤ cL15T
−1/4 = ÕT (T

−1/4).

The proof of Lemma 2 in Schiffer and Janson [2024] relies only on the first 1/ν2
T steps

and is written agnostic to the choice of νT , and therefore the result of Lemma 15 follows
directly from that proof. Note that we explicitly named the constant in Lemma 15 as we
will use this constant later in the proof. For the rest of this section, define

E2 := E0

⋂{
max
s∈[0:se]

ϵs ≤ cL15T
−1/4 = ÕT (T

−1/4)

}
. (54)

Lemma 15 implies that we have

P(E2) = 1− oT (1/T
2).

Define
E0

2 := {ϵ0 ≤ cL15T
−1/4} ∩ {∥θ∗ − θ̂pre0 ∥∞ ≤ ϵ0} ⊆ E2.

Recall θ̂wu, which is defined in Line 3 of Algorithm 2. Because θ̂wu = θ̂pre0 , by the same logic
as above, under E0

2 we have that ∥θ∗ − θ̂wu∥∞ ≤ 2ϵ0 ≤ 2cL15T
−1/4.

Define E1 as
E1 =

{
∀t < T : |wt| ≤ log2(T )

}
. (55)

and Esafe as the following, where x′
t and u′

t are the states and controls respectively of the
algorithm:

Esafe = {∀t < T : DL ≤ a∗x′
t + b∗u′

t ≤ DU} , (56)

Finally, we define the event
E = E1 ∩ E2 ∩ Esafe.

By a union bound we have that P(E) = 1− oT (1/T
2). Using this new notation and Lemma

15, we can proceed to the main proof.
The desired safety of Calg follows from the following lemma:

Lemma 16. Under Assumptions 1–3 , Algorithm 2 is safe for T steps for dynamics θ∗ with
probability 1− oT (1/T

2).

The proof of Lemma 16 follows exactly as in the proof of Lemma 1 in Schiffer and Janson
[2024] except using Lemma 15 and the above definitions of E0, E1 and E2 with respect to
Algorithm 2. The following result is equivalent to Lemma 3 in Schiffer and Janson [2024]
and is proven in the exact same way using that T−1/4 = oT (1/ log(T )).
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Lemma 17. Under Assumptions 1–3, conditional on E1 ∩ E2 and for sufficiently large T ,
if uT0−1 is safe for dynamics θ∗, then for all t ∈ [T0, T ],

usafeL
t ≤ usafeU

t .

The rest of the proof of Lemma 16 follows directly using Lemma 17.
The rest of this section will focus on proving that the regret of Algorithm 2 is ÕT (

√
T )

with probability 1− oT (1/T ).
Let Cswitch = cE82DU

c2L25
= ÕT (1) where cE82 = ÕT (1) and is defined in Equation (82)

and cL25 = Ω(1) defined in Lemma 25; Equation (82) and Lemma 25 will both appear in
Appendix G.2. Note that Cswitch is used in Line 6 of Algorithm 2. Define the event EE57 as

EE57 :=

{
w̄ +DU −

DU

âwu − b̂wuFopt(θ̂wu)
≤ CswitchT

−1/4

}
. (57)

We will study the regret of Algorithm 2 separately under event EE57 and under event
¬EE57. Informally, if EE57 holds then the optimal linear controller is close to being safe for
dynamics θ∗. If ¬EE57, then the magnitude of the noise is large relative to the constraints,
and therefore an argument similar to that of Theorem 1 in Schiffer and Janson [2024] will
bound the regret.

Proposition 3. Under Assumptions 1–3 and 4, there exists an event EP3 such that EP3 ⊆
¬EE57, such that P(EP3) ≥ P(¬EE57) − oT (1/T ), and such that conditional on event EP3,
Algorithm 2 has ÕT (

√
T ) regret.

The proof of Proposition 3 can be found in Appendix E.1.

Proposition 4. Under Assumptions 1–3 and 4, there exists an event EP4 such that EP4 ⊆
EE57, such that P(EP4) ≥ P(EE57) − oT (1/T ), and such that conditional on event EP4,
Algorithm 2 has ÕT (

√
T ) regret.

The proof of Proposition 4 can be found in Appendix E.2.
Combining these two propositions gives that the regret of Algorithm 2 is ÕT (

√
T ) con-

ditional on EP3 ∪ EP4. Because EP3 ∩ EP4 = ∅ by construction, we have that

P(EP3 ∪EP4) = P(EP3) + P(EP4) ≥ P(E¬57)− oT (1/T ) + P(EE57)− oT (1/T ) = 1− oT (1/T ).

Therefore the desired result holds with unconditional probability 1 − oT (1/T ), completing
the proof of Theorem 2.

E.1 Proof of Proposition 3

proof. We can decompose the regret in the following manner. As in Schiffer and Janson

[2024], for any (K, {Ks}0≤s≤se) whereK,Ks ∈ (a−1
b
, a
b
), define x

(K,{Ks}0≤s≤se)
0 , x

(K,{Ks}0≤s≤se)
1 , ...
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as the states that result from starting at x0 = 0 and at each time t < T0 using controller Cθ∗
K

and at t ≥ T0 uses controller Cθ∗
Ks
, where s = ⌊log2

(
tT−1/2

)
⌋. Define (K∗, {K∗

s}0≤s≤se) as:

(K∗, {K∗
s}0≤s≤se)

:= argmin
(K,{Ks}0≤s≤se)

E

[
√
TJ
(
θ∗, Cθ∗

K ,
√
T , 0, {wt}T0−1

t=0

)
+

se∑
s=0

TsJ(θ
∗, Cθ∗

Ks
, Ts, x

(K,{Ks}0≤s≤se)
Ts

,Ws)

]
.

Define x′
t as the state of the controller of Algorithm 2 at time t. Define x̂T0 , x̂T0+1, ... as the

sequence of random variables representing the sequence of states if the control at each time

t ≥ T0 is C θ̂s
Kopt(θ̂s)

(x̂t) for s = ⌊log2
(
tT−1/2

)
⌋ and starting at x̂T0 = x′

T0
.

T · J(θ∗, Calg, T, 0,W )− T · J̄(θ∗, Cθ∗

Kopt(θ∗,T ), T )

≤ T · J(θ∗, Calg, T, 0,W )− E

[
√
TJ
(
θ∗, Cθ∗

K∗ ,
√
T , 0, {wt}

√
T−1

t=0

)
+

se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]

≤ T · J(θ∗, Calg, T, 0,W )− E

[
se∑
s=0

TsJ̄(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]

=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ̄(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
︸ ︷︷ ︸

R1

+
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s]− se∑

s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]︸ ︷︷ ︸

R1b

+
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s]︸ ︷︷ ︸

R2

+
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts, x̂Ts ,Ws)︸ ︷︷ ︸

R3

+ T · J(θ∗, Calg, T, 0,W )−
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)︸ ︷︷ ︸

R0

. (58)

Informally, we will show that with high probability ϵs = ÕT (1/
√
Ts) for all s.

Lemma 18. Under Assumptions 1–3 and 4, there exists event EL18 such that P(EL18) =
1− oT (1/T ) and such that conditional on ¬EE57 ∩ E ∩ EL18,

max
s∈[0:se]

ϵs
√
Ts = ÕT (1).
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The proof of Lemma 18 can be found in Appendix F.1. Define event E3 as

E3 =

{
max
s∈[0:se]

ϵs
√

Ts = ÕT (1)

}
.

Lemma 18 implies that ¬EE57 ∩E ∩EL18 ⊆ E3. Note that compared to the regret decompo-
sition in Schiffer and Janson [2024], there is an extra regret term R1b. This extra regret term
can be thought of as the extra regret caused by choosing the best infinite horizon controller
instead of the best finite horizon controller. The following lemma bounds the regret of this
term by ÕT (

√
T ).

Proposition 5. Define R1b as

R1b =
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s]− se∑

s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] .

(59)
Under Assumptions 1–3 and 4, conditional on event E ∩ E3,

R1b = ÕT

(√
T
)
.

The proof of Proposition 5 can be found in Appendix F.2. The following propositions
bound the remaining regret terms.

Proposition 6 (Regret from Randomness). Define R2 as

R2 :=
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s

]
.

Then under Assumptions 1–3 and 4 there exists an event EP6 such that P(EP6) = 1−oT (1/T )
and conditional on EP6 ∩ ¬EE57 ∩ E,

R2 = ÕT (
√
T ). (60)

The proof of Proposition 6 can be found in Appendix F.3.

Proposition 7. Define R1 as

R1 :=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
.

Under Assumptions 1–3 and 4, conditional on event E3 ∩ E,

R1 = ÕT

(√
T
)
. (61)

The proof of Proposition 7 can be found in Appendix F.4.

50



Proposition 8. Define R3 as (the random variable)

R3 :=
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts, x̂Ts ,Ws).

Then under Assumptions 1–3 and 4,there exists an event EP8 such that P(EP8) = 1−oT (1/T )
and conditional on EP8 ∩ ¬EE57 ∩ E ∩ E3,

R3 = ÕT (
√
T ). (62)

The proof of Proposition 8 can be found in Appendix F.5.

Proposition 9. Under Assumptions 1–3 and 4, conditional on event E,

T · J(θ∗, Calg, T, 0,W )−
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws) = ÕT (

√
T ). (63)

The proof of Proposition 9 can be found in Appendix F.6.
Using Equation (58) combined with Propositions 9, 5, 6, 7 and 8, conditional on event

¬EE57 ∩ E3 ∩ E ∩ EP8 ∩ EP6 the total regret is upper bounded by

T · J(θ∗, Calg, T )− T · J̄(θ∗, Cθ∗

Kopt(θ∗,T ), T ) ≤ R0 +R1 +R1b +R2 +R3 = ÕT

(√
T
)
.

Combining Propositions 6 and 8, P(EP8 ∩ EP6) = 1− oT (1/T ). Therefore, we have that

P(E3 ∩ E ∩ ¬EE57 ∩ EP8 ∩ EP6)

= P(E3 ∩ E ∩ ¬EE57)− oT (1/T ) Remark 10

≥ P(EL18 ∩ E ∩ ¬EE57)− oT (1/T ) Lemma 18

≥ P(¬EE57)− oT (1/T ). Remark 10

Above, we twice used the following remark:

Remark 10. If two events E1 and E2 satisfy that P(E1) = 1− oT (1/T ), then

P(E1 ∩ E2) = P(E1) + P(E2)− P(E1 ∪ E2) ≥ P(E2)− oT (1/T )

Taking EP3 = E3 ∩ E ∩ ¬EE57 ∩ EP8 ∩ EP6 gives the desired result.

E.2 Proof of Proposition 4

Informally, EE57 implies that the optimal linear controller for θ∗ is close to satisfying the
constraints. Therefore, we will bound the regret by approximating both the best constrained
controller and the controller of Algorithm 2 by the optimal unconstrained linear controller.

We will decompose the regret as follows. Define Calg′ to be the controller of Algorithm
2 after the warm-up period, i.e. starting at time t = T0. Therefore, Calg′

t = Calg
t+T0

. Define

x′
0, x

′
1, ... as the series of states when using algorithm Calg. Define W ′ = {wi}T−1

i=T0
. Recall
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that Cunc
K is the linear controller such that Cunc

K (x) = −Kx. We can decompose the regret
as follows:

T · J(θ∗, Calg, T, 0,W )− T · J̄(θ∗, Cθ∗

Kopt(θ∗,T ), T )

≤ T · J(θ∗, Calg, T, 0,W )− (T − T0) · J̄(θ∗, Cθ∗

Kopt(θ∗,T ), T − T0)

= (T − T0) · J̄(θ∗, Cunc
Fopt(θ̂wu)

, T − T0)− (T − T0) · J̄(θ∗, Cθ∗

Kopt(θ∗,T ), T − T0)︸ ︷︷ ︸
R′

1

+ (T − T0) · J(θ∗, Cunc
Fopt(θ̂wu)

, T − T0, 0,W
′)− (T − T0) · J̄(θ∗, Cunc

Fopt(θ̂wu)
, T − T0)︸ ︷︷ ︸

R′
2

+ (T − T0) · J(θ∗, Cunc
Fopt(θ̂wu)

, T − T0, x
′
T0
,W ′)− (T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0,W

′)︸ ︷︷ ︸
R′

3

+ (T − T0) · J(θ∗, Calg′ , T − T0, x
′
T0
,W ′)− (T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, x

′
T0
,W ′)︸ ︷︷ ︸

R′
4

+ T · J(θ∗, Calg, T, 0,W )− (T − T0) · J(θ∗, Calg′ , T − T0, x
′
T0
,W ′)︸ ︷︷ ︸

R′
5

. (64)

We will now individually analyze each of these components of regret. The first component
of regret (R′

1) is the extra expected cost of using Cunc
Fopt(θ̂wu)

versus Cθ∗

Kopt(θ∗,T ). We will bound

that regret with the following proposition.

Proposition 11. Under Assumptions 1–3 and 4, conditional on event E0
2 ,

(T − T0) · J̄(θ∗, Cunc
Fopt(θ̂wu)

, T − T0)− (T − T0) · J̄(θ∗, Cθ∗

Kopt(θ∗,T ), T − T0) = ÕT (
√
T ). (65)

The proof of Proposition 11 can be found in Appendix H.1.
The next source of regret (R′

2) is the variation in the realization of the T − T0 time step
cost versus the expected cost. We will bound this regret with Proposition 12.

Proposition 12. Under Assumptions 1–3 and 4, there exists an event EP12 such that
P(EP12) = 1− oT (1/T ) and such that conditional on event EP12,∣∣∣(T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0,W

′)− (T − T0) · J̄(θ∗, Cunc
Fopt(θ̂wu)

, T − T0)
∣∣∣ = ÕT (

√
T ).

(66)

The proof of Proposition 12 can be found in Appendix H.2.
The next source of regret (R′

3) comes from the starting state of the controller Cunc
Fopt(θ̂wu)

.

We will bound this regret with Proposition 13.

Proposition 13. Under Assumptions 1–3 and 4, conditional on event E,∣∣∣(T − T0) · J(θ∗, Cunc
Fopt(θ̂wu)

, T − T0, x
′
T0
,W ′)− (T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0,W

′)
∣∣∣ = ÕT (1).

(67)
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The proof of Proposition 13 can be found in Appendix H.3.
The next component of regret (R′

4) is the additional cost of enforcing safety on top of
the controller Cunc

Fopt(θ̂wu)
. Define event Ewu

safe as the event that the first
√
T controls used by

controller Calg are safe for dynamics θ∗.

Proposition 14. Under Assumptions 1–3 and 4, there exists an event EP14 such that
P(EP14 | EE57∩E0

2∩Ewu
safe) = 1−oT (1/T ) and such that conditional on EE57∩E0

2∩Ewu
safe∩EP14,∣∣∣(T − T0) · J(θ∗, Calg′ , T − T0, x

′
T0
,W ′)− (T − T0) · J̄(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, x

′
T0
,W ′)

∣∣∣ = ÕT (
√
T ).

(68)

The proof of Proposition 14 can be found in Appendix H.4.
The last source of regret is the regret from the warm-up period. By Proposition 9, this

source of regret is Õ(
√
T ) conditional on event E, because by definition T ·J(θ∗, Calg, T, 0,W )−

(T−T0)·J(θ∗, Calg′ , T−T0, x
′
T0
,W ′) = T ·J(θ∗, Calg, T, 0,W )−

∑se
s=0 TsJ(θ

∗, Calg
s , Ts, x

′
Ts
,Ws).

Recall that E ⊆ E0
2∩Ewu

safe. Therefore, conditional on EP14∩EP12∩E∩EE57, by Equation
(64) and Propositions 11, 12, 13, 14, and 9, we have that

T · J(θ∗, Calg, T, 0,W )− T · J̄(θ∗, Cθ∗

Kopt(θ∗,T ), T ) = ÕT (
√
T ).

Furthermore, because P(E0
2 ∩ Ewu

safe) ≥ P(E) ≥ 1− oT (1/T ), we have that

P(EP14 ∩ EP12 ∩ E ∩ EE57)

= P(EP14 ∩ E0
2 ∩ Ewu

safe ∩ E ∩ EE57)− oT (1/T ) Remark 10

= P(EP14 ∩ E0
2 ∩ Ewu

safe ∩ EE57)− oT (1/T ) Remark 10

= P(EP14 | E0
2 ∩ Ewu

safe ∩ EE57)P(E0
2 ∩ Ewu

safe ∩ EE57)− oT (1/T )

≥ (1− oT (1/T ))P(E0
2 ∩ Ewu

safe ∩ EE57)− oT (1/T )

= P(E0
2 ∩ Ewu

safe ∩ EE57)− oT (1/T )

= P(EE57)− oT (1/T ). Remark 10

Taking EP4 = EP14 ∩ EP12 ∩ E ∩ EE57 gives the desired result.

F Proofs from Appendix E.1

F.1 Proof of Lemma 18

proof. We will use the following equivalent version of Lemma 26 in Schiffer and Janson
[2024] for Algorithm 2.

Lemma 19. Let xt, ut respectively be the state and control of Calg (the controller of Algorithm
2) at time t starting at x0 = 0. Define Gi = (x0, u0, ..., xi−1, ui−1). For constant γ > 0, define
St as

St =
{
i < t : ui = usafeU

i and P(ui = usafeU
i | Gi, E) ≥ γ

}
. (69)

Then under Assumptions 1–3 and for sufficiently large T , with probability 1− oT (1/T ),

max
s∈[0:se]

ϵs
√
|STs| = ÕT (1) . (70)
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The proof of Lemma 19 can be found in Appendix G.1.
While we have not yet explained the significance of Lemma 20, we state it here because

the definition of ϵ∗ is needed for other definitions below.

Lemma 20. Define

ϵ∗ := w̄ −
(

DU

a∗ − b∗Kopt(θ∗)
−DU

)
. (71)

Then event ¬EE57 ∩ E can only hold if ϵ∗ > 0.

The proof of Lemma 20 can be found in Appendix G.2.
Define γϵ =

Pw∼D(w≥w̄−3ϵ∗/8)
2

(which is a constant) and define S ′
t as

S ′
t :=

{
i < t : ui = usafeU

i and P(ui = usafeU
i | Gi, E) ≥ γϵ

}
. (72)

Note that this is the same as the definition of St in Lemma 19 except with γ = γϵ.

Lemma 21. Under Assumptions 1–3 and 4, there exists an event EL21 such that P(EL21) ≥
1− oT (1/T ) and such that conditional on event EL21 ∩ ¬EE57,

max
s∈[1:se]

Ts∣∣S ′
Ts

∣∣ = ÕT (1).

The proof of Lemma 21 can be found in Appendix G.3.
Define EL19 as the event that Equation (70) holds for STs = S ′

Ts
. Then P(EL19) =

1− oT (1/T ) by Lemma 19. By Lemma 21, conditional on event EL19 ∩ EL21 ∩ ¬EE57,

max
s∈[1:se]

ϵs
√

Ts ≤
√

max
s∈[1:se]

Ts∣∣S ′
Ts

∣∣
(

max
s∈[1:se]

ϵs

√
|S ′

Ts
|
)

= ÕT (1).

Under event E2, we also have that ϵ0
√
T0 = ÕT (T

−1/4)T 1/4 = ÕT (1). Because E ⊆ E2 this
implies that conditional on E, we have ϵ0

√
T0 = ÕT (1).

Therefore, conditional on EL19 ∩ EL21 ∩ ¬EE57 ∩ E,

max
s∈[0:se]

ϵs
√
Ts = ÕT (1).

Taking EL18 = EL19∩EL21 gives the desired result because P(EL18) = 1−oT (1/T ) by a union
bound.

F.2 Proof of Proposition 5

proof. The goal of this proposition is to show that using the infinite horizon controller is not
significantly worse than using the finite horizon controller. This proof will use the following
lemma.

Lemma 22. Under Assumptions 1–3 and 4, for any θ ∈ Θ and K ∈ [a−1
b
, a
b
],

|J̄(θ, Cθ
K , T )− J̄(θ, Cθ

K)| = ÕT

(
1

T

)
.
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The proof of Lemma 22 can be found in Appendix G.4.
We can apply Lemma 22 to get the following two equations:∣∣∣J̄(θ̂s, C θ̂s

Kopt(θ̂s)
, Ts)− J̄(θ̂s, C

θ̂s
Kopt(θ̂s)

)
∣∣∣ = ÕT

(
1

Ts

)
(73)

∣∣∣J̄(θ̂s, C θ̂s
Kopt(θ̂s,Ts)

, Ts)− J̄(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

)
∣∣∣ = ÕT

(
1

Ts

)
. (74)

By definition, we also also have the following two inequalities.

J̄(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

, Ts) ≤ J̄(θ̂s, C
θ̂s
Kopt(θ̂s)

, Ts) (75)

J̄(θ̂s, C
θ̂s
Kopt(θ̂s)

) ≤ J̄(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

). (76)

Combining Equations (73)–(76), we have that

J̄(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

, Ts) ≥ J̄(θ̂s, C
θ̂s
Kopt(θ̂s,Ts)

)− ÕT

(
1

Ts

)
Equation (74)

≥ J̄(θ̂s, C
θ̂s
Kopt(θ̂s)

)− ÕT

(
1

Ts

)
Equation (76)

≥ J̄(θ̂s, C
θ̂s
Kopt(θ̂s)

, Ts)− ÕT

(
1

Ts

)
. Equation (73).

Combining this with Equation (75) gives that∣∣∣J̄(θ̂s, C θ̂s
Kopt(θ̂s,Ts)

, Ts)− J̄(θ̂s, C
θ̂s
Kopt(θ̂s)

, Ts)
∣∣∣ = ÕT

(
1

Ts

)
. (77)

This is almost the desired result, but to bound the regret term R1b we need to bound
the difference under dynamics θ∗, not under θ̂s. Conditional on event E, ∥θ̂s − θ∗∥∞ =
ÕT (T

−1/4) ≤ 1
log46(T )

for sufficiently large T , and therefore Lemma 13 implies the following

inequalities for sufficiently large T :∣∣∣J̄(θ̂s, C θ̂s
Kopt(θ̂s,Ts)

, Ts)− J̄(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts)
∣∣∣ = ÕT

(
∥θ̂s − θ∗∥∞ +

1

T 2

)
(78)

∣∣∣J̄(θ̂s, C θ̂s
Kopt(θ̂s)

, Ts)− J̄(θ∗, C θ̂s
Kopt(θ̂s)

, Ts)
∣∣∣ = ÕT

(
∥θ̂s − θ∗∥∞ +

1

T 2

)
. (79)

Putting together Equations (77), (78), (79), and the fact that Ts ≤ T 2, we have∣∣∣J̄(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts)− J̄(θ∗, C θ̂s
Kopt(θ̂s)

, Ts)
∣∣∣ ≤ ÕT

(
∥θ̂s − θ∗∥∞ +

1

Ts

)
. (80)
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Now we are ready to use Equation (80) to bound R1b conditional on event E ∩ E3:

R1b

=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s]− se∑

s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts,Ws)
∣∣∣ θ̂s]

=
se∑
s=0

TsJ̄(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts)−

se∑
s=0

TsJ̄(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts)

≤
se∑
s=0

Ts

∣∣∣J̄(θ∗, C θ̂s
Kopt(θ̂s)

, Ts)− J̄(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts)
∣∣∣

= ÕT

(
se∑
s=0

Ts

(
∥θ̂s − θ∗∥∞ +

1

Ts

))
. Eq (80)

= ÕT

(
se +

se∑
s=0

Tsϵs

)
Event E

= ÕT (
√
T ) Event E3

The last line follows from the fact that se = ÕT (1) and that under event E3, Tsϵs =√
Ts

(
ϵs
√
Ts

)
= ÕT (

√
Ts) = ÕT (

√
T ),

F.3 Proof of Proposition 6

Because the events E and E3 are defined equivalently to the events in Appendix F in Schiffer
and Janson [2024], this proof is very similar to the proof of Proposition 8 in Schiffer and
Janson [2024] with the events and variables with respect to Algorithm 2 in this paper instead
of Algorithm 3 in Schiffer and Janson [2024]. There are two differences between this proof
and that of Proposition 8 in Schiffer and Janson [2024]. The first difference is that the
subscript on the controller is Kopt(θ̂s) rather than Kopt(θ̂s, Ts). The proof of Proposition 8
in Schiffer and Janson [2024] follows the proof of Proposition 5 in Schiffer and Janson [2024],
and primarily relies on analogous versions of Lemma 6 in Schiffer and Janson [2024] and
Lemma 7 in Schiffer and Janson [2024]. Examining the proofs of these lemmas, the proofs

(and analogous results) hold for any controller C θ̂s
K where K ∈ [K θ̂s

L , K θ̂s
U ]. This is because

the value of K is not used anywhere in the proof. Therefore, analogous versions of these
lemmas hold for Algorithm 2 with Kopt(θ̂s) instead of Kopt(θ̂s, Ts).

The second major difference is that Proposition 8 in Schiffer and Janson [2024] state that
the result holds conditional on E with high probability, while Proposition 6 holds conditional
on E∩EP6. In the proof of Proposition 5 in Schiffer and Janson [2024] (specifically Equation
(45) in Schiffer and Janson [2024]), we can define the event

EE45 :=

{
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts, 0,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≥ ÕT (

√
T )

}
.

Note that we replaced Kopt(θ̂s, Ts) with Kopt(θ̂s) for reasons discussed in the previous para-
graph. Equation (45) in Schiffer and Janson [2024] implies that P(EE45) = 1 − oT (1/T ).
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Looking at the last sentence of the proof of Proposition 5 in Schiffer and Janson [2024], we

have that conditional on E ∩ EE45 ∩
⋂se

s=0EL2(C
θ̂s
Kopt(θ̂s)

,Ws),

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≤ ÕT (

√
T ). (81)

Furthermore, because by construction P(EL2(C
θ̂s
Kopt(θ̂s)

,Ws)) = 1 − oT (1/T
10), we have by a

union bound that P(EE45 ∩
⋂se

s=0EL2(C
θ̂s
Kopt(θ̂s)

,Ws)) = 1− oT (1/T ). Therefore, we can take

EP6 = EE45 ∩
⋂se

s=0EL2(C
θ̂s
Kopt(θ̂s)

,Ws) to get the desired result of Proposition 6.

F.4 Proof of Proposition 7

Because the event E and E3 are defined equivalently to the events in Appendix F in Schiffer
and Janson [2024], this proof is exactly identical to the proof of Proposition 9 in Schiffer
and Janson [2024] with the events and variables with respect to Algorithm 2 in this paper
instead of Algorithm 3 in Schiffer and Janson [2024].

F.5 Proof of Proposition 8

Because the events E and E3 are defined analogously to the events in Appendix F in
Schiffer and Janson [2024], this proof is very similar to the proof of Proposition 10 in
Schiffer and Janson [2024] with the events and variables with respect to Algorithm 2 of this
paper instead of Algorithm 3 in Schiffer and Janson [2024]. Other than this redefining of
events and variables, there are just two differences.

The first difference between Proposition 8 of this paper and Proposition 10 in Schiffer
and Janson [2024] is that the subscript on the controller is Kopt(θ̂s) rather than Kopt(θ̂s, Ts).
The proof of Proposition 10 in Schiffer and Janson [2024] follows the proof of Proposition
6 in Schiffer and Janson [2024] and analogous versions of Lemma 9 in Schiffer and Janson
[2024], Lemma 10 in Schiffer and Janson [2024], and Lemma 16 in Schiffer and Janson

[2024]. These lemmas all hold when the controller C θ̂s
Kopt(θ̂s,Ts)

is replaced with C θ̂s
K for any

K ∈ [K θ̂s
L , K θ̂s

U ] (because the proofs do not depend on the value of K). Therefore, analogous

versions of these three lemmas hold for Algorithm 2 with Kopt(θ̂s, Ts) replaced with Kopt(θ̂s).
The second difference is that Proposition 10 in Schiffer and Janson [2024] shows a bound

that holds with high probability conditional on E ∩ E3, while Proposition 8’s bound holds
conditional on E ∩ E3 ∩ EP8. Examining the proof of Proposition 6 in Schiffer and Janson
[2024] (which is the same as the proof of Proposition 10 in Schiffer and Janson [2024]), the
high probability event comes from Lemma 9 in Schiffer and Janson [2024], and that high
probability event comes from Lemma 16 in Schiffer and Janson [2024]. Looking at the proof
of Lemma 16 in Schiffer and Janson [2024], the final result is proven conditional on event
E with conditional probability 1 − oT (1/T

9). However, this “with conditional probability”

is coming from the event
⋂se

s=0EL2(C
θ̂s
Kopt(θ̂s,Ts)

,Ws). Therefore, by Equation (75) in Schiffer

and Janson [2024] and the last sentence in the proof of Lemma 16 in Schiffer and Janson
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[2024], for Algorithm 2,conditional on E ∩
⋂se

s=0EL2(C
θ̂s
Kopt(θ̂s)

,Ws), for all s,

|Ts · J(θ∗, C θ̂s
Kopt(θ̂s)

, Ts, x
′
Ts
,Ws)− Ts · J(θ∗, Calg

s , Ts, x
′
Ts
,Ws)|

= ÕT

(
Ts−1∑
i=0

|Calg
s (x′

Ts+i)− C θ̂s
Kopt(θ̂s)

(x′
Ts+i)|+ Tsϵs

)
.

Note that we replaced Kopt(θ̂s, Ts) with Kopt(θ̂s) for reasons discussed in the previous para-

graph. Taking EP8 =
⋂se

s=0EL2(C
θ̂s
Kopt(θ̂s)

,Ws) gives the desired result because by a union

round and Assumption 2, we have P
(⋂se

s=0EL2(C
θ̂s
Kopt(θ̂s)

,Ws)
)
= 1− oT (1/T ).

F.6 Proof of Proposition 9

The proof of Proposition 9 follows exactly the same as the proof of Proposition 7 in Schiffer
and Janson [2024]. This is because the controller of Algorithm 2 is safe for dynamics θ∗

under event E, and the result therefore follows directly.
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G Proofs for Appendix F

G.1 Proof of Lemma 19

By Lemmas 1 and 2, the class of truncated linear controllers satisfy all of the assumptions of
Lemma 26 in Schiffer and Janson [2024]. Therefore, the proof of Lemma 19 follows exactly
as the proof of Lemma 26 in Schiffer and Janson [2024], except for Algorithm 2 from this
paper instead of Algorithm 2 in Schiffer and Janson [2024] and with the analogous definition
of event E.

G.2 Proof of Lemma 20

proof. The following lemma shows that Fopt(θ
∗) and Fopt(θ̂wu) are similar under event E.

Lemma 23. Under Assumptions 1–3 and 4, conditional on event E0
2 , there exists cL23 =

ÕT (1) such that for sufficiently large T ,

|Fopt(θ
∗)− Fopt(θ̂wu)| ≤ cL23T

−1/4.

The proof of Lemma 23 can be found in Appendix G.5.
Conditional on E (because E ⊆ E0

2), we have that ∥θ̂wu− θ∗∥∞ ≤ 2ϵ0 ≤ 2cL15T
−1/4. This

combined with Lemma 23 implies that there exists cE82 = ÕT (1) such that under event E
for sufficiently large T ,

â− b̂Fopt(θ̂wu) ≤ a∗ − b∗Fopt(θ
∗) + cE82T

−1/4. (82)

Now we will proceed with a proof by contradiction of Lemma 20. Assume event ¬EE57 ∩ E
holds and ϵ∗ ≤ 0, the latter of which implies

DU

a∗ − b∗Kopt(θ∗)
−DU ≥ w̄, (83)

which in turn implies that Kopt(θ
∗) ≥ Kθ∗

DU
(recall Kθ∗

DU
was defined in Definition 3). A key

result is the following relationship between Kopt(θ
∗) and Fopt(θ

∗).

Lemma 24. Under Assumptions 1–3 and 4, for any θ ∈ Θ, if Kopt(θ) ≥ Kθ
DU

, then Fopt(θ) ≥
Kθ

DU
.

The proof of Lemma 24 can be found in Appendix G.6.
We also will need the following result.

Lemma 25. Under Assumptions 1–3 and 4, there exists cL25 = OT (1) such that cL25 > 0
and for all θ ∈ Θ,

1− cL25 > a− bFopt(θ) ≥ cL25,

a− bKopt(θ) ≥ cL25.
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The proof of Lemma 25 can be found in Appendix G.7.
Lemma 24 combined with Equation (83) give that Fopt(θ

∗) ≥ Kθ∗
DU

, or equivalently that

w̄ + DU − DU

a∗−b∗Fopt(θ∗)
≤ 0. Therefore, we have that for sufficiently large T under event

¬EE57 ∩ E,

w̄ +DU −
DU

â− b̂Fopt(θ̂wu)

≤ w̄ +DU −
DU

a∗ − b∗Fopt(θ∗) + cE82T−1/4
Equation (82)

=
cE82T

−1/4DU

(a∗ − b∗Fopt(θ∗))(a∗ − b∗Fopt(θ∗) + cE82T−1/4)
+ w̄ +DU −

DU

a∗ − b∗Fopt(θ∗)

≤ cE82T
−1/4DU

(a∗ − b∗Fopt(θ∗))(a∗ − b∗Fopt(θ∗) + cE82T−1/4)
Lemma 24, Eq (83)

≤
(
cE82DU

c2L25

)
T−1/4 Lemma 25

= CswitchT
−1/4.

However, this contradicts event ¬EE57 and therefore we have a contradiction. This implies
the desired result that if ¬EE57 ∩ E holds, then ϵ∗ > 0.

G.3 Proof of Lemma 21

proof. Define the eventEs
2 :=

{
∥θ̂pres − θ∗∥∞ ≤ ϵs = ÕT (T

−1/4)
}
. DefineGi = (x0, u0, ..., xi−1, ui−1)

and define

S ′′
t =

{
i < t : ui = usafeU

i and P(ui = usafeU
i | Gi) ≥ Pw∼D(w ≥ w̄ − 3ϵ∗/8)

}
.

Lemma 26. Under Assumptions 1–3 and 4 there exists a constant pϵ such that the following
holds. For sufficiently large T and any s ∈ [0 : se − 1] and any Ts ≤ j < Ts+1 − ⌈log(T )⌉,
there exists an event Xj that depends on {wt}j+⌈log(T )⌉−1

t=j such that P(Xj) ≥ pϵ and such
that conditional on event Xj ∩ Es

2 ∩ ¬EE57, there exists an ℓ ∈ [j : j + ⌈log(T )⌉) such that
ℓ ∈ S ′′

Ts+1
.

The proof of Lemma 26 can be found in Appendix G.8.
Define

Es :=


⌊Ts/⌊log(T )⌋⌋−1∑

ℓ=0

1XTs+ℓ⌊log(T )⌋ ≥ pϵ

⌊
Ts

⌊log(T )⌋

⌋
−

√⌊
Ts

⌊log(T )⌋

⌋
log(T )

 .

Note that
∑k

ℓ=0

(
1XTs+ℓ⌊log(T )⌋ − pϵ

)
is a submartingale. Therefore, by the Azuma–Hoeffding

inequality, we have that P(Es) = 1− oT (1/T
2). Define E = ∩se−1

s=0 Es. Then by a union bound
P(E) = 1− oT (1/T ).
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Conditional on E ∩ E ∩ ¬EE57, we have that

|S ′′
Ts+1
| ≥

⌊Ts/⌊log(T )⌋⌋−1∑
ℓ=0

1XTs+ℓ⌊log(T )⌋

≥ pϵ

⌊
Ts

⌊log(T )⌋

⌋
−

√⌊
Ts

⌊log(T )⌋

⌋
log(T ) Event E

≥ pϵTs

2 log(T )
−

√⌊
Ts

⌊log(T )⌋

⌋
log(T )

≥ pϵ
4 log(T )

· Ts Suff. large T

=
pϵ

8 log(T )
· Ts+1. Ts+1 = 2Ts (84)

The following lemma is the same as Lemma 27 in Schiffer and Janson [2024]. The proof
is the same as the proof of that lemma, as the proof of Lemma 27 in Schiffer and Janson
[2024] does not depend on the algorithm and only uses that P(E) = 1− oT (1/T

2).

Lemma 27. Using the same notation and assumptions as in the proof of Lemma 21, for
any constant c < 1,

P
(
∀i ∈ [0 : t− 1],P(E | Gi) ≥ c

)
= 1− oT (1/T ).

Define EL27 = {∀i ∈ [T0 : T − 1],P(E | Gi) ≥ 1− Pw∼D(w≥w̄−3ϵ∗/8)
2

}.
By Lemma 27, P(EL27) = 1 − oT (1/T ). For any i ∈ [T0 : T − 1], conditional on EL27 ∩

{P(ui = usafeU
i | Gi) ≥ Pw∼D(w ≥ w̄ − 3ϵ∗/8)}, by the law of total probability

P(ui = usafeU
i | Gi) = P(ui = usafeU

i | Gi, E)P(E | Gi) + P(ui = usafeU
i | Gi,¬E)P(¬E | Gi)

≤ P(ui = usafeU
i | Gi, E)P(E | Gi) +

Pw∼D(w ≥ w̄ − 3ϵ∗/8)

2
.

Rearranging terms gives

P(ui = usafeU
i | Gi, E) ≥

P(ui = usafeU
i | Gi)− Pw∼D(w≥w̄−3ϵ∗/8)

2

P(E | Gi)

≥ P(ui = usafeU
i | Gi)−

Pw∼D(w ≥ w̄ − 3ϵ∗/8)

2

≥ Pw∼D(w ≥ w̄ − 3ϵ∗/8)

2
.

Therefore we have shown that conditional on EL27 ∩ {P(ui = usafeU
i | Gi) ≥ Pw∼D(w ≥

w̄ − 3ϵ∗/8)}, we also have P(ui = usafeU
i | Gi, E) ≥ Pw∼D(w≥w̄−3ϵ∗/8)

2
. This implies that

conditional on EL27, for all t ∈ [0 : T ],

S ′′
t ⊆ S ′

t.
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Combining this with Equation (84), conditional on EL27 ∩ E ∩ E ∩ ¬EE57,

max
s∈[1:se]

Ts

|S ′
Ts
|
≤ 8 log(T )

pϵ
= ÕT (1).

We therefore take EL21 = EL27∩E∩E to get the desired result because P(EL21) = 1−oT (1/T )
by a union bound.

G.4 Proof of Lemma 22

proof. Let xT be the state after starting at x0 = 0 and using the controller Cθ
K for T

steps under dynamics θ. Therefore, because Cθ
K is safe for dynamics θ, we must have that

|xT | ≤ max(DU , |DL|) + w̄ ≤ 2 log2(T ) for sufficiently large T . Therefore, there must exist
an L ≤ 2 log2(T ) such that P(|x| ≥ L)E[x2 | |x| ≥ L] = oT (1/T

11). Define W ′ = {wi}Ti=0.
We can apply Lemma 41 in the sixth line below to get that∣∣J̄(θ, Cθ

K , 2T )− J̄(θ, Cθ
K , T )

∣∣
=

∣∣∣∣∣T · J̄(θ, Cθ
K , T ) + T · E

[
J̄(θ, Cθ

K , T, xT )
]

2T
− J̄(θ, Cθ

K , T )

∣∣∣∣∣
=

∣∣∣∣∣E
[
J̄(θ, Cθ

K , T, xT )
]

2
− 1

2
J̄(θ, Cθ

K , T )

∣∣∣∣∣
=

1

2T

∣∣E [T J̄(θ, Cθ
K , T, xT )

]
− T J̄(θ, Cθ

K , T )
∣∣

=
1

2T

∣∣∣E [TJ(θ, Cθ
K , T, xT ,W

′)− TJ(θ, Cθ
K , T, 0,W

′)
]∣∣∣

≤ 1

T
ÕT

(
E[|xT |] + 0 +

1

T 2

)
Lemma 41

≤ ÕT

(
1

T

)
. |xT | ≤ ∥D∥∞ + w̄ = ÕT (1)

The last line follows from the fact that Cθ
K is safe for dynamics θ. Finally, we have that

|J̄(θ, Cθ
K , T )− J̄(θ, Cθ

K)| =

∣∣∣∣∣
∞∑
i=0

J̄(θ, Cθ
K , 2

iT )− J̄(θ, Cθ
K , 2

i+1T )

∣∣∣∣∣
≤

∞∑
i=0

∣∣J̄(θ, Cθ
K , 2

iT )− J̄(θ, Cθ
K , 2

i+1T )
∣∣

=
∞∑
i=0

ÕT

(
1

T2i

)
= ÕT

(
1

T

)
.
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G.5 Proof of Lemma 23

proof. By Lemma 28, the optimal unconstrained controller for dynamics θ is Cunc
Fopt(θ)

, where

Fopt(θ) = argmin
F

T · J̄(θ, Cunc
F ) = argmin

F
· q + rF 2

1− (a− bF )2
. (85)

We show in the proof of Lemma 25 that

Fopt(θ) =
a2r − b2q − r +

√
(b2q + r − a2r)2 + 4a2b2qr

2abr
.

Note that this is a differentiable function in both a and b for θ ∈ Θ. Under event E0
2 ,

∥θ∗ − θ̂wu∥∞ = ÕT (T
−1/4) where θ̂wu is the estimate from Line 3 of Algorithm 2. Therefore,

a first order Taylor expansion of Fopt(θ) around θ = θ∗ gives that for sufficiently large T ,

|Fopt(θ
∗)− Fopt(θ̂wu)| = OT (∥θ∗ − θ̂wu∥∞) = ÕT (T

−1/4) = cL23T
−1/4 for some cL23 = ÕT (1).

G.6 Proof of Lemma 24

proof. We will prove the contrapositive, which is that if Fopt(θ) < Kθ
DU

, then Kopt(θ) < Kθ
DU

.
The first tool we need is the following result about Fopt(θ).

Lemma 28. For any θ ∈ Θ and K ∈ (a−1
b
, a
b
],

J̄(θ, Cunc
K ) = lim

T→∞
J̄(θ, Cunc

K , T ) =
σ2
D(q + rK2)

1− (a− bK)2
.

This function is convex and twice differentiable for K ∈ (a−1
b
, a
b
]. Furthermore, if 1 − (a −

bK) > 0, then
∣∣ d
dK

J̄(θ, Cunc
K )

∣∣ and ∣∣∣ d2

dK2 J̄(θ, C
unc
K )

∣∣∣ are finite and d2

dK2 J̄(θ, C
unc
K ) > 0.

Finally, if K = a−1
b
, then J̄(θ, Cunc

K ) =∞.

The proof of Lemma 28 can be found in Appendix G.9.
Lemma 28 implies that the function J̄(θ, Cunc

K ) has a unique local minimum (Fopt(θ)) and
is convex. Therefore, if Fopt(θ) < Kθ

DU
, then for any K ′ > Kθ

DU
,

J̄(θ, Cunc
Kθ

DU

) ≤ J̄(θ, Cunc
K′ ). (86)

For any K ′ ≥ Kθ
DU

, the unconstrained and constrained controllers are the same, i.e. Cunc
K′ =

Cθ
K′ . This is because for K ′ ≥ Kθ

DU
the unconstrained controller will always satisfy the state

constraints because we assumed WLOG that DU ≤ |DL|. This implies by Equation (86)
that for any K ′ > Kθ

DU
,

J̄(θ, Cθ
Kθ

DU

) ≤ J̄(θ, Cθ
K′).

Therefore, to prove that Kopt(θ) < Kθ
DU

it is sufficient to find some K ′ < Kθ
DU

such that

J̄(θ, Cθ
Kθ

DU

) > J̄(θ, Cθ
K′). (87)
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Let K ′ = Kθ
DU
− ϵ, where

0 < ϵ ≤ min

(
4BP

(w̄ +DU)2
,
min(w̄,DU)/2

(w̄ +DU)

)
. (88)

We will show that J̄(θ, Cθ
K′) < J̄(θ, Cθ

Kθ
DU

) which proves the desired contrapositive result.

Because a−bKθ
DU

= DU

DU+w̄
= 1− w̄

DU+w̄
, by Lemma 28 the function J̄(θ, Cunc

K ) has a finite

derivative at K = Kθ
DU

. Furthermore, if Fopt(θ) < Kθ
DU

, then Lemma 28 implies that the
derivative of J̄(θ, Cunc

F ) is positive at K = Kθ
DU

. Therefore, we can take a first order Taylor
expansion around the point K = Kθ

DU
to get that for sufficiently small ϵ,

J̄(θ, Cunc
K′ )− J̄(θ, Cunc

Kθ
DU

) ≤ −ΩT (ϵ). (89)

Because Cunc
Kθ

DU

= Cθ
Kθ

DU

, Equation (89) implies that

J̄(θ, Cunc
K′ )− J̄(θ, Cθ

Kθ
DU

) ≤ −ΩT (ϵ). (90)

Note that in Equations (89) and (90), the LHS is not a function of T . We use the notation
−ΩT (ϵ) to indicate that the LHS is upper bounded by −cϵ for some constant c.

Now we will compare the cost of Cunc
K′ and Cθ

K′ using the following lemma. Note that this
lemma is stated very generally so that it can also be used in future results.

Lemma 29. For θ, θ̂L29 ∈ Θ, suppose β ≤ 1
log2(T )

satisfies that θ ∈ θ̂L29 ± β. Also, suppose

K ′ satisfies Kθ
DU
−K ′ ≤ ϵ for some ϵ > 0. Furthermore, suppose

υ := (bϵ+ β + |K ′|β) ≤ min

(
4BP

(w̄ +DU)2
,
min(w̄,DU)/2

(w̄ +DU)

)
(91)

Define the controller C as follows. For any t, define vsafeUt as the largest u such that for all
θ′ ∈ θ̂L29 ± β,

a′xt + b′u ≤ DU ,

and define vsafeLt as the smallest u such that for all θ′ ∈ θ̂L29 ± β,

DL ≤ a′xt + b′u.

Define the controller C as

C(xt) = max
(
min

(
Cunc

K′ (xt), v
safeU
t

)
, vsafeLt

)
.

Let |x0| ≤ ∥D∥∞ + w̄. Then under Assumptions 1–3 and 4,

|J̄(θ, C, x0)− J̄(θ, Cunc
K′ , x0)| ≤ OT (υ

2). (92)

Furthermore, with probability 1− oT (1/T
2), for any τ ≤ T ,

|J(θ, C, τ, x0,W
′)− J(θ, Cunc

K′ , τ, x0,W
′)| ≤ OT

(
υ log(1/υ)

(
υ +

log(T )√
τ

))
. (93)
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The proof of Lemma 29 can be found in Appendix G.10.
We will use Lemma 29 with the ϵ defined in Equation (88), K ′ = Kθ

DU
−ϵ, θ = θ, θ̂L29 = θ,

x0 = 0, and β = 0. Choosing θ̂L29 = θ and β = 0 makes the C in Lemma 29 equivalent to a
truncated linear controller. Then, Equation (92) of Lemma 29 gives that

|J̄(θ, Cθ
K′)− J̄(θ, Cunc

K′ )| ≤ OT (ϵ
2). (94)

Putting together Equations (90) and (94), for small enough ϵ we have that

J̄(θ, Cθ
K′)− J̄(θ, Cθ

Kθ
DU

)

= J̄(θ, Cθ
K′)− J̄(θ, Cunc

K′ ) + J̄(θ, Cunc
K′ )− J̄(θ, Cθ

Kθ
DU

)

≤ OT

(
ϵ2
)
− ΩT (ϵ) . Equations (90), (94)

< 0. For small enough ϵ

We have shown that Cθ
K′ has lower cost than Cθ

Kθ
DU

, and therefore we can conclude that

Kopt(θ) < Kθ
DU

, proving the contrapositive and our desired result.

G.7 Proof of Lemma 25

proof. By Lemma 28, Fopt(θ) is the value of K ∈
(
a−1
b
, a
b

]
that minimizes the function

q+rK2

1−(a−bK)2
(note that we ignore the constant σ2

D as this is a positive constant and does not

change the minimization problem). Taking the derivative of this function and equating to
0, we have that Fopt(θ) is the solution to

2Kr(1− (a− bK)2)− 2b(a− bK)(q + rK2)

(1− (a− bK)2)2
= 0.

Simplifying, we have
abrK2 + (b2q + r − a2r)K − abq = 0

Applying the quadratic formula, we get that the positive root is

Fopt(θ) =
a2r − b2q − r +

√
(b2q + r − a2r)2 + 4a2b2qr

2abr
.

We also observe that(
a2r + b2q + r

)2 − (√(b2q + r − a2r)2 + 4a2b2qr
)2

= 4a2r2,

which implies that (
a2r + b2q + r

)
−
(√

(b2q + r − a2r)2 + 4a2b2qr
)

=
4a2r2

(a2r + b2q + r) +
(√

(b2q + r − a2r)2 + 4a2b2qr
) .
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Because a ≥ a ≥ ā, b ≥ b ≥ b̄, and r > 0, this implies that there exists a constant cF1
L25 > 0

such that

a

b
− Fopt(θ) =

a2r + b2q + r −
√

(b2q + r − a2r)2 + 4a2b2qr

2abr

=
4a2r2

2abr
(
a2r + b2q + r +

√
(b2q + r − a2r)2 + 4a2b2qr

)
≥ 4a2r2

2āb̄r
(
ā2r + b̄2q + r +

√
(b̄2q + r − a2r)2 + 4ā2b̄2qr

)
:= cF1

L25

> 0.

Similarly, we have that(
r(a− 1)2 + b2q

)2 − (√(b2q + r − a2r)2 + 4a2b2qr
)2

= −4ar
(
(a− 1)2r + b2q

)
.

which implies that (
r(a− 1)2 + b2q

)
−
(√

(b2q + r − a2r)2 + 4a2b2qr
)

=
−4ar ((a− 1)2r + b2q)

(r(a− 1)2 + b2q) +
(√

(b2q + r − a2r)2 + 4a2b2qr
) .

Because a ≥ ā and r > 0, this implies that there exists a constant cF2
L25 > 0 such that

a− 1

b
− Fopt(θ) =

r(a− 1)2 + b2q −
√

(b2q + r − a2r)2 + 4a2b2qr

2abr

=
−4ar ((a− 1)2r + b2q)

2abr
(
r(a− 1)2 + b2q +

√
(b2q + r − a2r)2 + 4a2b2qr

)
≤ −cF2

L25

< 0,

where the constant CF2
L25 depends on ā, a, b̄, b. Taking cFL25 = min(cF1

L25, c
F2
L25), we have that

cFL25 < a− bFopt(θ) < 1− cFL25. (95)

To bound Kopt(θ, T ) away from 0 we need the following lemma:

Lemma 30. Under Assumptions 1–3, for any θ ∈ Θ, if Fopt(θ) ≥ Kθ
DU

, then Kopt(θ) =
Fopt(θ).

proof. If Fopt(θ) ≥ Kθ
DU

, then Cunc
Fopt(θ)

= Cθ
Fopt(θ)

, i.e. the unconstrained linear controller

for Fopt(θ) is the same as the constrained linear controller for Fopt(θ). Therefore, C
unc
Fopt(θ)

is
in the set of constrained controllers. Because the optimal unconstrained controller is linear
Anderson and Moore [2007], Cunc

Fopt(θ)
is the lowest cost unconstrained controller, and therefore

it is also the lowest cost constrained controller.
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By Lemma 30 and the contrapositive of Lemma 24, either Kopt(θ) = Fopt(θ) or Kopt(θ) <
Kθ

DU
. By Equation (95) and the fact that a− bKθ

DU
= DU

DU+w̄
, we can conclude that

a− bKopt(θ) ≥ min

(
DU

DU + w̄
, cFL25

)
> 0.

Therefore, taking cL25 = min
(

DU

DU+w̄
, cFL25

)
we have the desired result.

G.8 Proof of Lemma 26

proof. The structure of this proof is as follows. The bulk of the proof is split into two key
lemmas. We then combine these two lemmas to show the desired result. Define

τ :=

⌈
8

(
2 + cL25
cL25

∥D∥∞ + 2w̄

)
/ϵ∗
⌉
,

where ϵ∗ is from Lemma 20. Now, we will define

Xj := {∀t ∈ [j : j + τ ], wt ≥ w̄ − ϵ∗/4} .

Note that P(Xj) = (Pw∼D(w ≥ w̄ − ϵ∗/4))τ+1 := pϵ, and for sufficiently large T , τ ≤
⌈log(T )⌉, therefore this Xj has the desired properties.

Lemma 31. Using the assumptions and notation of Lemma 26, conditional on Es
2∩¬EE57∩

Xj, there exists an ℓ ∈ [j : j + τ ] such that uℓ = usafeU
ℓ .

proof. We will first show that conditional on Es
2 ∩ ¬EE57, for any value of x satisfying

DL − w̄ ≤ x ≤ DU

a∗−b∗Kopt(θ̂s)
, and for sufficiently large T , if w ≥ w̄ − ϵ∗/4, then

(a∗ − b∗Kopt(θ̂s))x+ w ≥ x+
ϵ∗

8
. (96)

Under event Es
2, ∥θ∗ − θ̂s∥∞ ≤ ÕT (T

−1/4), therefore under event Es
2 we have the following

results:

a∗ − b∗Kopt(θ̂s) ≥ âs − b̂sKopt(θ̂s)− ÕT (T
−1/4) ∥θ∗ − θ̂s∥∞ ≤ ÕT (T

−1/4)

≥ cL25 − ÕT (T
−1/4) Lemma 25

≥ cL25
2

suff large T (97)

and

a∗ − b∗Kopt(θ̂s) ≤ âs − b̂sKopt(θ̂s) + ÕT (T
−1/4) ∥θ∗ − θ̂s∥∞ ≤ ÕT (T

−1/4)

≤ 1 + ÕT (T
−1/4). Lemma 25 (98)

Equation (97) implies that for sufficiently large T ,

DU

a∗ − b∗Kopt(θ̂s)
≤ 2DU

cL25
= OT (1). (99)

To prove Equation (96), we will need the following result.
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Lemma 32. Under Assumptions 1–3 and 4, conditional on event Es
2 ∩¬EE57 and for suffi-

ciently large T ,
DU

a∗ − b∗Kopt(θ̂s)
≤ DU + w̄ − ϵ∗/2.

The proof of Lemma 32 can be found in Appendix G.11.
Conditional on event Es

2 ∩ ¬EE57, for sufficiently large T , and for any DL − w̄ ≤ x ≤
DU

a∗−b∗Kopt(θ̂s)
,

(a∗ − b∗Kopt(θ̂s))x+ w̄ − ϵ∗/4

= DU +

(
x− DU

a∗ − b∗Kopt(θ̂s)

)
(a∗ − b∗Kopt(θ̂s)) + w̄ − ϵ∗/2 + ϵ∗/4

≥ DU

a∗ − b∗Kopt(θ̂s)
+

(
x− DU

a∗ − b∗Kopt(θ̂s)

)
(a∗ − b∗Kopt(θ̂s)) + ϵ∗/4 Lemma 32

≥ DU

a∗ − b∗Kopt(θ̂s)
+

(
x− DU

a∗ − b∗Kopt(θ̂s)

)
(1 + ÕT (T

−1/4)) + ϵ∗/4 Eq (98), x ≤ DU

a∗ − b∗Kopt(θ̂s)

= x+ ÕT

(
T−1/4

(
x− DU

a∗ − b∗Kopt(θ̂s)

))
+ ϵ∗/4

≥ x− ÕT

(
T−1/4

(
|DL|+ w̄ +

DU

a∗ − b∗Kopt(θ̂s)

))
+ ϵ∗/4 DL − w̄ ≤ x ≤ DU

a∗ − b∗Kopt(θ̂s)

≥ x− ÕT

(
T−1/4

)
+ ϵ∗/4 Eq (99), Assumption 4

≥ x+ ϵ∗/8. For sufficiently large T .

This in turn implies the statement containing Equation (96).
Recall that ui is the control at time i of Algorithm 2 and x′

i is the state of Algorithm 2
at time i. Under event ¬EE57, for any i ∈ [Ts +1 : Ts+1], if ui−1 ̸= usafeU

i−1 , then the control at

time i− 1 is either ui−1 = −Kopt(θ̂s)x
′
i−1 or ui−1 = usafeL

i−1 ≥ −Kopt(θ̂s)x
′
i−1. Therefore, under

event ¬EE57, if ui−1 ̸= usafeU
i−1 then

ui−1 ≥ −Kopt(θ̂s)x
′
i−1. (100)

Combining Equations (96) and (100) gives that for any i ∈ [Ts + 1 : 2Ts], conditional on the

event {ui−1 ̸= usafeU
i−1 } ∩

{
DL − w̄ ≤ x′

i−1 ≤ DU

a∗−b∗Kopt(θ̂s)

}
∩ Es

2 ∩ ¬EE57 ∩Xj,

x′
i = a∗x′

i−1 + b∗ui−1 + wi−1

≥ a∗x′
i−1 − b∗Kopt(θ̂s)x

′
i−1 + wi−1 Equation (100)

= (a∗ − b∗Kopt(θ̂s))x
′
i−1 + wi−1

≥ x′
i−1 +

ϵ∗

8
. Equation (96) (101)

If the control at time j − 1 is safe (which is guaranteed by construction of the algorithm
under event Es

2), then x′
j ≥ DL − w̄. Therefore by Equation (99),

DU

a∗ − b∗Kopt(θ̂s)
−x′

j ≤
DU

a∗ − b∗Kopt(θ̂s)
+|DL|+w̄ ≤ 2DU

cL25
+|DL|+w̄ ≤ 2 + cL25

cL25
∥D∥∞+w̄ = OT (1).

(102)
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By Equation (101), conditional on Es
2 ∩ ¬EE57 ∩Xj the state will increase by ϵ∗/8 at each

step ℓ if DL − w̄ ≤ xℓ ≤ DU

a∗−b∗Kopt(θ̂s)
and uℓ ̸= usafeU

ℓ . Furthermore, by Equation (102), if

the state increases by at least 2+cL25

cL25
∥D∥∞ + 2w̄ from x′

j, then the state will be greater than
DU

a∗−b∗Kopt(θ̂s)
. Increasing 2+cL25

cL25
∥D∥∞ + 2w̄ state in increments of at least ϵ∗/8 takes at most⌈

8(
2+cL25
cL25

∥D∥∞+2w̄)

ϵ∗

⌉
= τ steps. Putting this all together, conditional on Es

2∩¬EE57∩Xj, either

uℓ = usafeU
ℓ for some ℓ ∈ [j : j + τ ] or x′

ℓ ≥ DU

a∗−b∗Kopt(θ̂s)
for some ℓ ∈ [j : j + τ ]. Both of these

alternatives imply that uℓ = usafeU
ℓ for some ℓ ∈ [j : j + τ ], because if x′

ℓ ≥ DU

a∗−b∗Kopt(θ̂s)
, then

by construction of the algorithm, uℓ = usafeU
ℓ . This is the desired result for this lemma.

The next key result is the following lemma.

Lemma 33. Using the notation and assumptions of the proof of Lemma 26, for sufficiently
large T and any ℓ ∈ [j : j+ τ ], conditional on {uℓ = usafeU

ℓ }∩Es
2 ∩¬EE57∩Xj, ℓ+1 ∈ S ′′

Ts+1
.

proof. Suppose ℓ ∈ [j : j + τ ]. Under event Es
2 the control at step ℓ− 1 is safe, and therefore

by the same logic as in Equation (62) in Schiffer and Janson [2024], for sufficiently large T
we have that

DU − ϵ∗/8 ≤ DU − ÕT (T
−1/4) ≤ DU − 4Bxϵs ≤ a∗x′

ℓ + b∗usafeU
ℓ . (103)

Therefore, if uℓ = usafeU
ℓ , then

a∗x′
ℓ + b∗uℓ ≥ DU − ϵ∗/8. (104)

Therefore, conditional on {uℓ = usafeU
ℓ } ∩ Es

2 ∩ ¬EE57 ∩Xj,

x′
ℓ+1 = a∗x′

ℓ + b∗uℓ + wℓ

≥ DU − ϵ∗/8 + wℓ Equation (104)

≥ DU

a∗ − b∗Kopt(θ̂s)
+ 3ϵ∗/8 + wℓ − w̄ Lemma 32

=
DU

a∗ − b∗Kopt(θ̂s)
+ wℓ − (w̄ − 3ϵ∗/8)

≥ DU

a∗ − b∗Kopt(θ̂s)
Event Xj (105)

We also recall again that if x′
ℓ+1 ≥ DU

a∗−b∗Kopt(θ̂s)
, then uℓ+1 = usafeU

ℓ+1 . Therefore, we have

shown that conditional on {uℓ = usafeU
ℓ } ∩ Es

2 ∩ ¬EE57 ∩Xj, uℓ+1 = usafeU
ℓ+1 . Furthermore, we
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have for any Gℓ+1 that satisfies {uℓ = usafeU
ℓ } ∩ Es

2 ∩ ¬EE57,

P
(
uℓ+1 = usafeU

ℓ+1

∣∣ Gℓ+1

)
≥ P

(
x′
ℓ+1 ≥

DU

a∗ − b∗Kopt(θ̂s)

∣∣∣∣∣ Gℓ+1

)

= P

(
a∗x′

ℓ + b∗uℓ + wℓ ≥
DU

a∗ − b∗Kopt(θ̂s)

∣∣∣∣∣ Gℓ+1

)

≥ P

(
DU − ϵ∗/8 + wℓ ≥

DU

a∗ − b∗Kopt(θ̂s)

∣∣∣∣∣ Gℓ+1

)
Equation (104)

= P

(
wℓ ≥

DU

a∗ − b∗Kopt(θ̂s)
−DU + ϵ/8

∣∣∣∣∣ Gℓ+1

)
≥ P (wℓ ≥ w̄ − ϵ∗/2 + ϵ∗/8 | Gℓ+1) Lemma 32

= Pw∼D(w ≥ w̄ − 3ϵ∗/8). (106)

By Definition of S ′′
t , Equations (105) and (106) imply the desired result that conditional

on {uℓ = usafeU
ℓ } ∩ Es

2 ∩ ¬EE57 ∩Xj, we have that ℓ+ 1 ∈ S ′′
Ts+1

.

Putting together the two lemmas, we have that conditional on Es
2 ∩ ¬EE57 ∩ Xj, there

exists an ℓ ∈ [j : j + τ ] such that uℓ = usafeU
ℓ , and for any ℓ ∈ [j : j + τ ], conditional on

{uℓ = usafeU
ℓ } ∩ Es

2 ∩ ¬EE57 ∩ Xj, ℓ + 1 ∈ S ′′
Ts+1

. Combining these two lemmas gives that
conditional on Es

2 ∩ ¬EE57 ∩Xj, there exists an ℓ ∈ [j : j + τ + 1] such that ℓ ∈ S ′′
Ts+1

. For
sufficiently large T , τ + 1 ≤ ⌈log(T )⌉, and therefore this is exactly the desired result.

G.9 Proof of Lemma 28

proof. Let x0, x1, ..., be the series of states when using controller Cunc
K under dynamics θ with

x0 = 0. Then we have the recursive relationship that x0 = 0 and xi+1 = (a− bK)xi +wi for
all i ≥ 0. Using this recursive relationship, we have that

xt =
t−1∑
i=0

wi(a− bK)t−1−i. (107)

If K = a−1
b
, then a− bK = 1. This implies that x2

t −→∞, and therefore J̄(θ, Cunc
K , T ) =∞.

For the rest of this proof, assume K ∈ (a−1
b
, a
b
]. Recall that ui = −Kxi for all i ≥ 0.
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Define ρ = (a− bK)2. Using the above expression for xt, we have that

J̄(θ, Cunc
K , T ) =

1

T
E

[
qx2

T +
T−1∑
t=0

qx2
t + ru2

t

]

=
1

T

(
q E[x2

T ] +
T−1∑
t=1

(q + rK2)E[x2
t ]

)
[x0 = u0 = 0]

= −rK2 E[X2
T ]

T
+

1

T

(
T∑
t=1

(q + rK2)E[x2
t ]

)
.

Furthermore, we have

1

T

(
T∑
t=1

(q + rK2)E[x2
t ]

)

=
1

T

T∑
t=1

(q + rK2)E
[( t−1∑

i=0

wi(a− bK)t−1−i
)2]

Equation (107)

=
1

T

T∑
t=1

(q + rK2)E
[ t−1∑

i=0

t−1∑
j=0

wiwj(a− bK)t−1−i(a− bK)t−1−j
]

=
1

T

T∑
t=1

(q + rK2)
t−1∑
i=0

σ2
D(a− bK)2(t−1−i)

=
σ2
D
T

T∑
t=1

(q + rK2)
t−1∑
i=0

(a− bK)2i

=
σ2
D(q + rK2)

T

T∑
t=1

t−1∑
i=0

ρi

=
σ2
D(q + rK2)

T

T∑
t=1

1− ρt

1− ρ

=
σ2
D(q + rK2)

T (1− ρ)

(
T −

T−1∑
t=0

ρt

)

=
σ2
D(q + rK2)

1− ρ

(
1− 1− ρT

T (1− ρ)

)
.

By the same logic, we have that

rK2 E[X2
T ]

T
=

rK2σ2
D

1−ρT

1−ρ

T
.
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Therefore,

J̄(θ, Cunc
K ) = lim

T→∞
J̄(θ, Cunc

K , T )

= lim
T→∞

−
rK2σ2

D
1−ρT

1−ρ

T
+

σ2
D(q + rK2)

1− ρ

(
1− 1− ρT

T (1− ρ)

)
=

σ2
D(q + rK2)

1− (a− bK)2
.

Now, we note the following derivatives:

d

dK

(
1

1− (a− bK)2

)
=

2b(a− bK)

(1− (a− bK)2)2

and
d

dK

(
K2

1− (a− bK)2

)
=

2aK(1− (a− bK))

(1− (a− bK)2)2
.

For K ∈ (a−1
b
, a
b
], if 1− (a− bK) = c > 0, then 1− (a− bK)2 > c > 0, and therefore these

derivatives imply that∣∣∣∣ d

dK
J̄(θ, Cunc

K )

∣∣∣∣ = ∣∣∣∣ d

dK

σ2
D(q + rK2)

1− (a− bK)2

∣∣∣∣
=

∣∣∣∣σ2
D

(
q

2b(a− bK)

(1− (a− bK)2)2
+ r

2aK(1− (a− bK))

(1− (a− bK)2)2

)∣∣∣∣
≤ σ2

D

(
q
2b(a− bK)

c2
+ r

2a|K|(1− (a− bK))

c2

)
<∞.

For all K ∈ (a−1
b
, a
b
], we also have that

d2

dK2

(
1

1− (a− bK)2

)
= b2

( 1

(1− (a− bK))3
+

1

(1 + (a− bK))3

)
> 0

and
d2

dK2

(
K2

1− (a− bK)2

)
= b2

( (a− 1)2

(1− (a− bK))3
+

(a+ 1)2

(1 + (a− bK))3

)
> 0

This implies that
d2

dK2
J̄(θ, Cunc

K ) > 0.

If a− bK = 1− c < 1, we also have that

d2

dK2

(
1

1− (a− bK)2

)
= b2

( 1

(1− (a− bK))3
+

1

(1 + (a− bK))3

)
≤ b2

(
1

c3
+ 1

)
<∞

and

d2

dK2

(
K2

1− (a− bK)2

)
= b2

( (a− 1)2

(1− (a− bK))3
+

(a+ 1)2

(1 + (a− bK))3

)
≤ b2

(
(a− 1)2

c3
+ (a+ 1)2

)
<∞.
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These two equations imply that for K ∈ (a−1
b
, a
b
],

d2

dK2
J̄(θ, Cunc

K ) <∞.

G.10 Proof of Lemma 29

proof. We first note the following bounds on K ′ that we will use throughout this proof that
come from the assumptions on ϵ. For any θ′ ∈ θ̂L29 ± β,

a′ − b′K ′ = a− bKθ
DU

+ (a′ − a) + b(Kθ
DU
−K ′) +K ′(b− b′)

≤ a− bKθ
DU

+ bϵ+ β + βK ′

≤ DU

w̄ +DU

+ υ Def of Kθ
DU

≤ DU + w̄/2

w̄ +DU

Equation (91)

< 1. (108)

a′ − b′K ′ ≥ a− bKθ
DU
− bϵ− β − βK ′

≥ DU

w̄ +DU

− υ Def of Kθ
DU

≥ DU/2

w̄ +DU

Equation (91)

> 0. (109)

Let yt be the state at time t when using controller C and starting at state y0 = x0

and xt be the state at time t when using controller Cunc
K′ and starting at state x0. Define

dt := |yt − xt|. Define
θm := arg max

∥θ′−θ̂L29∥∞≤β
a′ − b′K ′. (110)

Importantly, note that θm = argminθ′∈θ̂L29±β
DU

a′−b′K′ = argmaxθ′∈θ̂L29±β
DL

a′−b′K′ . By construc-

tion this means that C(yt) = vsafeUt is used if and only if yt ≥ DU

am−bmK′ , and similarly vsafeLt is

used if and only if yt ≤ DL

am−bmK′ .

Lemma 34. Define Ht = (y0, y1, ..., yt−1). Using the notation and assumptions in the proof
of Lemma 29, for any Ht,

P
(
C(yt) = vsafeUt

∣∣ Ht

)
= OT (υ) · 1K′−Kθ

DU
≤ (|K′|+1)β

b

. (111)

Furthermore,
P
(
C(yt) = vsafeLt

∣∣ Ht

)
= OT (υ) · 1K′−Kθ

DU
≤ (|K′|+1)β

b

. (112)
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The proof of Lemma 34 can be found in Appendix G.12. Because the equations in Lemma
34 hold for any Ht, this lemma implies that

P
(
C(yt) = vsafeUt

)
= OT (υ) · 1K′−Kθ

DU
≤ (|K′|+1)β

b

(113)

and
P
(
C(yt) = vsafeLt

)
= OT (υ) · 1K′−Kθ

DU
≤ (|K′|+1)β

b

. (114)

By Lemma 34, if K ′ −Kθ
DU

> (|K′|+1)β
b

, then for all t,

P
(
C(yt) = vsafeUt or C(yt) = vsafeLt

)
= 0.

Therefore in this case, the controllers C and Cunc
K′ are equivalent, which implies all of the

desired results. For the rest of the proof, we will address the case when K ′−Kθ
DU
≤ (|K′|+1)β

b
.

This combined with the definition of ϵ gives that

|K ′ −Kθ
DU
| ≤ min

(
(|K ′|+ 1)β

b
, ϵ

)
= OT (υ). (115)

Lemma 35. Using the notation and assumptions in the proof of Lemma 29, if Equation
(115) holds then for all t ≥ 0,

dt+1 =

{
(a− bK ′)dt if DL

am−bmK′ ≤ yt ≤ DU

am−bmK′

(a− bK ′)dt +OT (υ) otherwise,
(116)

and

|Cunc
K′ (xt)− C(yt)| =

{
|K ′|dt if DL

am−bmK′ ≤ yt ≤ DU

am−bmK′

OT (υ) otherwise.
(117)

The proof of Lemma 35 can be found in Appendix G.13.
This recursive relationship for dt in Lemma 35 implies that

dt = |xt − yt|

≤
t∑

i=1

(a− bK ′)i−1OT (υ)1yt−i≥
DU

am−bmK′ or yt−i≤
DL

am−bmK′
Lemma 35

≤ OT (υ)
∞∑
i=0

(a− bK ′)i

≤ OT (υ)

1− (a− bK ′)

≤ OT (υ). Equation (108) (118)

Note that yt is by construction safe with respect to dynamics θm. Therefore, |amyt +
bmC(yt)| ≤ ∥D∥∞ and |yt| ≤ ∥D∥∞ + w̄, which together imply that

|C(yt)| ≤
∥D∥∞ + am|yt|

bm
= OT (1). (119)
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Now we can bound the difference in cost at time t ≥ 0 as follows:

|qx2
t − qy2t |+ |rCunc

K′ (xt)
2 − rC(yt)

2|
≤ 2q|yt|dt + qd2t +

(
2r|C(yt)| |Cunc

K′ (xt)− C(yt)|+ r |Cunc
K′ (xt)− C(yt)|2

)
≤ 2q|yt|dt + qd2t +

(
2rOT (1)| |Cunc

K′ (xt)− C(yt)|+ r |Cunc
K′ (xt)− C(yt)|2

)
Equation (119)

≤ 2q(∥D∥∞ + w̄)dt + qd2t +
(
2rOT (1)

(
|K ′|dt +OT (υ)1yt≥ DU

am−bmK′ or yt≤
DL

am−bmK′

)
+ r

(
|K ′|dt +OT (υ)1yt≥ DU

am−bmK′ or yt≤
DL

am−bmK′

)2)
Equation (117)

= OT

(
dt + υ2 + υ1

yt≥
DU

am−bmK′ or yt≤
DL

am−bmK′

)
. Equation (118)

(120)

We will now show that E[dt] ≤ OT (υ
2). Importantly, we use that the event

{yi−1 ≥
DU

am − bmK ′ or yi−1 ≤
DL

am − bmK ′}

is equivalent to the event that C(yi−1) ∈ {vsafeUt , vsafeLt }, which allows us to apply Lemma 34
in the second line.

E[dt] ≤ OT (υ)
t∑

i=1

(a− bK ′)t−i E[1
yi−1≥

DU
am−bmK′ or yi−1≤

DL
am−bmK′

] Lemma 35

≤ OT (υ)
t∑

i=1

(a− bK ′)t−iOT (υ) Lemma 34

≤ Ot(υ
2)

∞∑
i=0

(a− bK ′)t−i

≤ OT (υ
2)

1− (a− bK ′)

≤ OT (υ
2). Equation (108) (121)

75



Therefore,

|J̄(θ, C, τ, x0)− J̄(θ, Cunc
K′ , τ, x0)|

≤ E

[
1

τ

(
q|x2

τ − y2τ |+
τ−1∑
t=0

|qx2
t − qy2t |+ |rCunc

K′ (xt)
2 − rC(yt)

2|

)]

≤ E

[
1

τ

τ∑
t=0

OT

(
dt + υ2 + υ1

yt≥
DU

am−bmK′ or yt≤
DL

am−bmK′

)]
Equation (120)

≤ 1

τ

τ∑
t=0

OT

(
E[dt] + υ2 + υ E

[
1
yt≥

DU
am−bmK′ or yt≤

DL
am−bmK′

])
≤ 1

τ

τ∑
t=0

OT (υ
2) Equation (121), Lemma 34

≤ OT (υ
2).

Taking a limit as τ →∞ of the above equation (where nothing on the right side depends on
τ) gives the first desired equation that

|J̄(θ, C, x0)− J̄(θ, Cunc
K′ , x0)| ≤ OT (υ

2).

Now we want to bound the difference in cost with high probability instead of in expectation.
Let X be the set of times t ∈ [0 : τ ] such that C(yt) ̸= −K ′yt (i.e. C(yt) ∈ {vsafeLt , vsafeUt }).
Note that the event {t ∈ X} is the same as the event {yt ≥ DU

am−bmK′ or yt ≤ DL

am−bmK′}.
By Lemma 34, P(t ∈ X | Ht) ≤ cυ for some constant c > 0 for all t. Therefore, Mk =∑τ

t=0 (1t∈X − cυ) is a supermartingale. By Azuma–Hoeffding’s inequality, with probability
1− oT (1/T

10),
|X| ≤ OT (υτ) + log(T )

√
τ .

Define A as the event that |X| ≤ OT (υτ) + log(T )
√
τ . Define κ = ⌈loga−bK′(υ)⌉. Note that

κ = ⌈loga−bK′(υ)⌉

≤
⌈

log(υ)

log(a− bK ′)

⌉
= O(log(υ)) Lemma 108 (122)

Define
G = {t ∈ [0 : τ ] : ∃i ∈ [t− κ : t] such that C(yi) ̸= −K ′yi} .

Under event A,
|G| ≤ |X| · (κ+ 1) ≤ (OT (υτ) + log(T )

√
τ)(κ+ 1). (123)
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By Lemma 35, if t ̸∈ G, then

dt ≤ OT (υ)
t∑

i=1

(a− bK ′)t−i1
yi−1≥

DU
am−bmK′ or yi−1≤

DL
am−bmK′

Lemma 35

≤ OT (υ)
t−κ∑
i=1

(a− bK ′)t−i1
yi−1≥

DU
am−bmK′ or yi−1≤

DL
am−bmK′

t ̸∈ G

≤ OT (υ)(a− bK ′)κ
t−κ∑
i=1

(a− bK ′)t−i−κ1
yi−1≥

DU
am−bmK′ or yi−1≤

DL
am−bmK′

≤ OT (υ)(a− bK ′)κ
∞∑
i=0

(a− bK ′)i

≤ OT (υ
2)

∞∑
i=1

(a− bK ′)i Definition of κ

=
OT (υ

2)

1− (a− bK ′)

= OT (υ
2). Equation (108)

(124)

Recall that by Equation (118), for any t ∈ G, dt ≤ OT (υ), therefore Equation (124) implies
that

dt = OT

(
υ1t∈G + υ2

)
. (125)

Using that t ∈ G for all t satisfying yt ≥ DU

am−bmK′ or yt ≤ DL

am−bmK′ , we have that under event
A,

|J(θ, C, τ, x0,W
′)− J(θ, Cunc

K′ , τ, x0,W
′)|

≤ 1

τ

τ∑
t=0

|qx2
t − qy2t |+ |rCunc

K′ (xt)
2 − rC(yt)

2|

=
1

τ

τ∑
t=0

OT

(
dt + υ2 + υ1

yt≥
DU

am−bmK′ or yt≤
DL

am−bmK′

)
Equation (120)

=
1

τ

τ∑
t=0

OT

(
υ · 1t∈G + υ2 + υ1

yt≥
DU

am−bmK′ or yt≤
DL

am−bmK′

)
Equation (125)

= OT (υ
2) +

1

τ

τ∑
t=0

OT (υ) · 1t∈G

= OT (υ
2) +OT

(
υ · (OT (υτ) + log(T )

√
τ)(κ+ 1)

τ

)
Equation (123)

= OT

(
υ log(1/υ)

(
υ +

log(T )√
τ

))
. Equation (122)

Since this holds under event A and P(A) ≥ 1− oT (1/T
10), this completes the proof.
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G.11 Proof of Lemma 32

proof. In Algorithm 2, θ̂s satisfies

θ̂s = argmax
∥θ−θ̂pres ∥≤ϵs

a− bKopt(θ).

Under event Es
2, we have that ∥θ̂pres − θ∗∥ ≤ ϵs, which implies that

âs − b̂sKopt(θ̂s) ≥ a∗ − b∗Kopt(θ
∗).

Therefore, we have that (using Lemma 20 in the equality)

DU

âs − b̂sKopt(θ̂s)
−DU ≤

DU

a∗ − b∗Kopt(θ∗)
−DU = w̄ − ϵ∗. (126)

Under event Es
2, we also have that ∥θ̂s − θ∗∥∞ ≤ ÕT (T

−1/4), therefore

DU

a∗ − b∗Kopt(θ̂s)
−DU

=
DU

âs − b̂sKopt(θ̂s)
−DU +

DU

a∗ − b∗Kopt(θ̂s)
− DU

âs − b̂sKopt(θ̂s)

≤ w̄ − ϵ∗ +DU
(âs − a∗) + (b∗ − b̂s)Kopt(θ̂s)

(a∗ − b∗Kopt(θ̂s))(âs − b̂sKopt(θ̂s))
Eq (126)

= w̄ − ϵ∗ +DU
(âs − a∗) + (b∗ − b̂s)Kopt(θ̂s)(

âs − b̂sKopt(θ̂s)− (âs − a∗)− (b∗ − b̂s)Kopt(θ̂s)
)
(âs − b̂sKopt(θ̂s))

≤ w̄ − ϵ∗ +DU

∥θ∗ − θ̂s∥∞
(
1 + |Kopt(θ̂s)|

)
(âs − b̂sKopt(θ̂s)− ∥θ∗ − θ̂s∥∞(1 + |Kopt(θ̂s)|))(âs − b̂sKopt(θ̂s))

≤ w̄ − ϵ∗ +
DU ÕT (T

−1/4)
(
1 + |Kopt(θ̂s)|

)
(âs − b̂sKopt(θ̂s)− ÕT (T−1/4)(1 + |Kopt(θ̂s)|))(âs − b̂sKopt(θ̂s))

≤ w̄ − ϵ∗/2. Eq (128)
(127)

To see the last inequality, note that Lemma 25 gives that 1 > âs − b̂sKopt(θ̂s) ≥ cL25. This

implies that |Kopt(θ̂s)| = OT (1), and therefore for sufficiently large T we have that

DU ÕT (T
−1/4)

(
1 +Kopt(θ̂s)

)
(âs − b̂sKopt(θ̂s)− ÕT (T−1/4)(1 +Kopt(θ̂s)))(âs − b̂sKopt(θ̂s))

≤ ÕT (T
−1/4)DU (1 +OT (1))

(cL25 − ÕT (T−1/4)(1 +OT (1)))cL25

≤ ϵ∗/2. (128)

Finally, rearranging Equation (127) gives exactly the desired result.
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G.12 Proof of Lemma 34

Lemma 36. Using the same notation and assumptions of Lemma 34, for all θ′ ∈ θ̂L29 ± β,
the controls used by controller C are safe for dynamics θ′ for all t ∈ [0 : T − 1].

The proof of Lemma 36 can be found in Appendix G.14
By definition, C(yt) = vsafeUt if and only if there exists a θ′ ∈ θ̂L29±β such that yt ≥ DU

a′−b′K′ .

Equivalently, C(yt) = vsafeUt if and only if yt ≥ DU

am−bmK′ . We also note that

(a− bKθ
DU

)− (am − bmK
′) = (a− am) + b(K ′ −Kθ

DU
) +K ′(bm − b)

≥ −β + b(K ′ −Kθ
DU

)− |K ′|β
= b(K ′ −Kθ

DU
)− (1 + |K ′|)β

≥
(
b(K ′ −Kθ

DU
)− (|K ′|+ 1)β

)
1
K′−Kθ

DU
≤ (|K′|+1)β

b

≥ −(bϵ+ (|K ′|+ 1)β)1
K′−Kθ

DU
≤ (|K′|+1)β

b

= −υ1
K′−Kθ

DU
≤ (|K′|+1)β

b

. (129)

Therefore,

P
(
C(yt) = vsafeUt | Ht

)
= P

(
yt ≥

DU

am − bmK ′ | Ht

)
= P

(
ayt−1 + bC(yt−1) + wt−1 ≥

DU

am − bmK ′ | Ht

)
≤ P

(
|wt−1| ≥

DU

am − bmK ′ −DU | Ht

)
Lemma 36

= P
(
|wt−1| ≥

DU

am − bmK ′ + w̄ − DU

a− bKθ
DU

)
Definition of Kθ

DU

= P
(
|wt−1| ≥ w̄ +

DU(a− bKθ
DU

)−DU(am − bmK
′)

(a− bKθ
DU

)(am − bmK ′)

)
≤ P

(
|wt−1| ≥ w̄ − DUυ

(a− bKθ
DU

)(am − bmK ′)

)
1
K′−Kθ

DU
≤ (|K′|+1)β

b

Equation (129)

≤ P
(
|wt−1| ≥ w̄ − DUυ

(a− bKθ
DU

)(a− bKθ
DU
− υ)

)
1
K′−Kθ

DU
≤ (|K′|+1)β

b

Equation (129)

≤ P

(
|wt−1| ≥ w̄ − DUυ

( DU

w̄+DU
)( DU

w̄+DU
− DU

2(w̄+DU )
)

)
1
K′−Kθ

DU
≤ (|K′|+1)β

b

Def 3, υ ≤ (DU/2)

(w̄ +DU)

= P
(
|wt−1| ≥ w̄ − 2υ(w̄ +DU)

2

DU

)
1
K′−Kθ

DU
≤ (|K′|+1)β

b

≤ 4BPυ(w̄ +DU)
2

DU

1
K′−Kθ

DU
≤ (|K′|+1)β

b

D pdf bounded by BP

= OT (υ) · 1K′−Kθ
DU

≤ (|K′|+1)ϵ
b

. (130)
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Therefore, the safety truncation vsafeUt is only applied with probability at most OT (υ) at
every time step. By definition, C(yt) = vsafeLt if and only if there exists a θ′ ∈ θ̂L29 ± β such
that yt ≤ DL

a′−b′K′ . This only happens if and only if yt ≤ DL

am−bmK′ . We also have by Equations
(108) and (109) that because DL < 0,∣∣∣∣ DL

am − bmK ′ −DL

∣∣∣∣ = |DL|
am − bmK ′ − |DL|. (131)

Also by Equations (108) and (109), we have because DU ≤ |DL| that

|DL|
am − bmK ′ − |DL| ≥

DU

am − bmK ′ −DU . (132)

Therefore,

P
(
C(yt) = vsafeLt

∣∣ Ht

)
= P

(
yt ≤

DL

am − bmK ′

∣∣∣∣ Ht

)
= P

(
ayt−1 + bC(yt−1) + wt−1 ≤

DL

am − bmK ′

∣∣∣∣ Ht

)
≤ P

(
wt−1 ≤

DL

am − bmK ′ −DL

∣∣∣∣ Ht

)
Lemma 36

≤ P
(
|wt−1| ≥

|DL|
am − bmK ′ − |DL|

∣∣∣∣ Ht

)
Equation (131)

≤ P
(
|wt−1| ≥

DU

am − bmK ′ −DU

∣∣∣∣ Ht

)
Equation (132)

≤ OT (υ) · 1K′−Kθ
DU

≤ (|K′|+1)ϵ
b

· . Equation (130) (133)

This is exactly the second result we need and therefore we are done.

G.13 Proof of Lemma 35

If DL

am−bmK′ ≤ yt ≤ DU

am−bmK′ , then C(yt) = −K ′yt, and therefore

|C(yt)− Cunc
K′ (xt)| = |K ′|dt (134)

and
dt+1 = |ayt + bC(yt) + wt − (axt + bCunc

K′ (xt) + wt)| = (a− bK ′)dt. (135)

This proves the first case of both equations in Lemma 35. Now we will prove the second case
of both equations.

Under Equation (115), we have that for any θ′ ∈ θ̂L29 ± β∣∣(a− bKθ
DU

)− (a′ − b′K ′)
∣∣ ≤ |a− a′|+ b|K ′ −Kθ

DU
|+ |K ′||b′ − b|

≤ (β + bOT (υ) + |K ′|β)
= OT (υ). (136)
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If yt >
DU

am−bmK′ , then for some θ′ ∈ θ̂L29 ± β, C(yt) =
DU−a′yt

b′
. Therefore,

|C(yt)− Cunc
K′ (yt)|

= |C(yt) +K ′yt|

=

∣∣∣∣DU − a′yt
b′

+K ′yt

∣∣∣∣
=

1

b′
|DU − (a′ − b′K ′) yt|

=
a′ − b′K ′

b′

∣∣∣∣ DU

a′ − b′K ′ − yt

∣∣∣∣ Equations (108), (109)

≤ a′ − b′K ′

b′

∣∣∣∣ DU

a′ − b′K ′ − (DU + w̄)

∣∣∣∣ DU

a′ − b′K ′ ≤ yt ≤ DU + w̄ by Lemma 36

=
a′ − b′K ′

b′

∣∣∣∣ DU

a′ − b′K ′ −
DU

a− bKθ
DU

∣∣∣∣
=

DU

b′

∣∣∣∣(a− bKθ
DU

)− (a′ − b′K ′)

a− bKθ
DU

∣∣∣∣
≤ DU

b′

(
OT (υ)

a− bKθ
DU

)
Equation (136), Equation (109)

=
(DU + w̄)OT (υ)

b′
a− bKθ

DU
=

DU

DU + w̄

= OT (υ). (137)

Because the controls used by C are safe with respect to θ by Lemma 36, if DL− DL

am−bmK′ > w̄,

then P
(
yt ≤ DL

am−bmK′

)
= 0. Therefore, if yt ≤ DL

am−bmK′ then it also must be the case that

DL− DL

am−bmK′ ≤ w̄. By Equations (108) and (109), we have that am−bmK
′ ≤ DU

DU+w̄
+OT (υ)

and am− bmK
′ ≥ DU

DU+w̄
−OT (υ). Therefore, if yt ≤ DL

am−bmK′ , then DL− DL

am−bmK′ ≤ w̄, which
implies that

DL ≥
w̄

1− 1
am−bmK′

= w̄
am − bmK

′

am − bmK ′ − 1

≥ w̄

DU

DU+w̄
−OT (υ)

DU

DU+w̄
+OT (υ)− 1

= w̄

(
DU

DU+w̄
−w̄

DU+w̄

−OT (υ)

)
= −DU −OT (υ).

This combined with the fact that DU ≤ |DL| by Assumption 4, we have that if yt ≤ DL

am−bmK′ ,
then

||DL| −DU | ≤ OT (υ). (138)
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Therefore, if yt <
DL

am−bmK′ , then for some θ′ ∈ θ̂L29 ± β, C(yt) =
DL−a′yt

b′
. Therefore,

|C(yt)− Cunc
K′ (yt)|

= |C(yt) +K ′yt|

=

∣∣∣∣DL − a′yt
b′

+K ′yt

∣∣∣∣
=

1

b′
|DL − (a′ − b′K ′) yt|

≤ 1

b′
|DL − (a′ − b′K ′) (DL − w̄)| DL − w̄ ≤ yt ≤

DL

a′ − b′K ′ , Eq (109)

=
1

b′
||DL| − (a′ − b′K ′) (|DL|+ w̄)|

≤ 1

b′
|DU − (a′ − b′K ′) (DU + w̄)|+ |DU − |DL||

+ |(a′ − b′K ′)(DU − |DL|)|

≤ 1

b′
|DU − (a′ − b′K ′) (DU + w̄)|+ |DU − |DL||+ |DU − |DL|| Equation (109), (108)

≤ 1

b′
|DU − (a′ − b′K ′) (DU + w̄)|+OT (υ) Equation (138)

≤ (a′ − b′K ′)

b′

∣∣∣∣ DU

(a′ − b′K ′)
− (DU + w̄)

∣∣∣∣+OT (υ)

= OT (υ). As in Equation (137) (139)

Combining Equations (137) and (139) gives that if yt >
DU

am−bmK′ or yt <
DL

am−bmK′ ,

|Cunc
K′ (xt)− C(yt)| = |−K ′xt +K ′yt −K ′yt − C(yt)|

= |K ′xt −K ′yt|+ |K ′yt + C(yt)|
≤ K ′dt +OT (υ)

≤ OT (υ). Equation (118) (140)

Now we can use this to bound the value of dt+1 as follows:

dt+1 = |(a− bK ′)xt − (ayt − bC(yt1)|
= |(a− bK ′)xt − (a− bK ′)yt + bK ′yt − bC(yt)|
≤ |(a− bK ′)xt − (a− bK ′)yt|+ |bK ′yt − bC(yt)|
≤ (a− bK ′)dt + bOT (υ) Equations (137) and (139)

≤ (a− bK ′)dt +OT (υ). (141)

Equations (140) and (141) give the second half of both desired piecewise equations.

G.14 Proof of Lemma 36

proof. We will proceed by induction. For the base case, we have that y0 = x0 satisfies
|y0| ≤ ∥D∥∞ + w̄. Define z := DU−ay0−2β(∥D∥∞+w̄+log(T ))

b
. For sufficiently large T , because

β ≤ 1/ log2(T ) and ∥D∥∞ = OT (1), we have that

|z| ≤ DU + a(∥D∥∞ + w̄) + 2β(∥D∥∞ + w̄ + log(T ))

b
≤

DU + a(∥D∥∞ + w̄) + 2(∥D∥∞+w̄+log(T ))

log2(T )

b
≤ log(T ).
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Because θ ∈ θ̂L29 ± β,

max
θ′∈θ̂L29±β

a′y0 + b′z ≤ ay0 + bz + 2β|y0|+ 2β|z|

≤ ay0 + bz + 2β(∥D∥∞ + w̄ + log(T ))

= ay0 +DU − ay0 − 2β(∥D∥∞ + w̄ + log(T )) + 2β(∥D∥∞ + w̄ + log(T ))

= DU .

Therefore,

vsafeUt ≥ z =
DU − ay0 − 2β(DU + w̄ + log(T ))

b
.

By similar logic, we have that

vsafeLt ≤ DL − ay0 + 2β(∥D∥∞ + w̄ + log(T ))

b
.

For sufficiently large T , 4β(∥D∥∞+w̄+log(T )) ≤ 1
log(T )

. Therefore, becauseDU ≥ DL+
1

log(T )
,

we have that
vsafeLt ≤ vsafeUt .

Finally, this implies by construction of the controller C that the control C(y0) will be safe
for all θ′ ∈ θ̂L29 ± β. This completes the base case.

For the inductive step, we note that if C(yt−1) is safe for all θ′ ∈ θ̂L29 ± β, then it is safe
for θ. This implies that DL ≤ ayt−1 + bC(yt−1) ≤ DU , which implies that |yt| ≤ ∥D∥∞ + w̄.
We can therefore use the exact same logic as in the base case to get that C(yt) will be safe
for all θ′ ∈ θ̂L29 ± β. This completes the proof by induction.

H Proofs from Appendix E.1

H.1 Proof of Proposition 11

proof. By Lemma 25, a∗−b∗Fopt(θ
∗) < 1−cL25, which implies by Lemma 28 that J̄(θ∗, Cunc

F )
is twice differentiable at the point F = Fopt(θ

∗) with first and second derivatives that are

both finite and independent of T . We also have by Lemma 23 that |Fopt(θ̂wu)− Fopt(θ
∗)| ≤

ÕT (T
−1/4) conditional on event E0

2 . Therefore, conditional on event E0
2 and for sufficiently

large T , we can do a second order Taylor expansion of J̄(θ∗, Cunc
F ) around F = Fopt(θ

∗) to
get that ∣∣∣T · J̄ (θ∗, Cunc

Fopt(θ̂wu)

)
− T · J̄

(
θ∗, Cunc

Fopt(θ∗)

)∣∣∣ = ÕT (
√
T ). (142)

Because the lowest-cost unconstrained linear controller Cunc
Fopt(θ∗)

has the lowest cost among

all unconstrained controllers Anderson and Moore [2007],

T · J̄(θ∗, Cunc
Fopt(θ∗))− T · J̄(θ∗, Cθ∗

Kopt(θ∗,T )) ≤ 0. (143)

Combining Equations (142) and (143) and multiplying by (T − T0)/T , we have

(T − T0) · J̄(θ∗, Cunc
Fopt(θ̂wu)

)− (T − T0) · J̄(θ∗, Cθ∗

Kopt(θ∗,T )) = ÕT (
√
T ). (144)

Now we just need to convert this to a result about finite time cost rather than infinite cost
which requires the following lemma.
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Lemma 37. Under Assumptions 1–3 and 4, for any θ ∈ Θ and K satisfying 1− (a− bK) =
ϵ > 0 for some ϵ = ΩT (1),

|J̄(θ, Cunc
K , T )− J̄(θ, Cunc

K )| = OT

(
1

T

)
.

The proof of Lemma 37 can be found in Appendix H.5.
For sufficiently large T , conditional on event E0

2 ,

1− (a∗ − b∗Fopt(θ̂wu)) ≥ 1−
(
a∗ − b∗Fopt(θ

∗)− ÕT (T
−1/4)

)
Lemma 23

> cL25/2. Lemma 25

Therefore, we can apply Lemmas 22 and 37 to Equation (144) to get the desired result that
conditional on event E0

2 ,

(T − T0) · J̄(θ∗, Cunc
Fopt(θ̂wu)

, T − T0)− (T − T0) · J̄(θ∗, Cθ∗

Kopt(θ∗,T ), T − T0) = ÕT (
√
T ).

H.2 Proof of Proposition 12

proof. We will apply the standard McDiarmid’s inequality to the function

f({wt}T−1
t=T0

) = (T − T0)J(θ
∗, Cunc

Fopt(θ̂wu)
, T − T0, 0,W

′).

To do this, we need a bounded difference inequality. We will show the following.

Lemma 38. For i ∈ [T0 : T − 1], let {w′
t}T−1

t=T0
be such that w′

t = wt for t ̸= i and w′
i ∼ D is

independent of {wt}T−1
t=T0

. If |Fopt(θ̂wu)−Fopt(θ
∗)| ≤ ÕT (T

−1/4), then for sufficiently large T ,

|(T−T0)·J(θ∗, Cunc
Fopt(θ̂wu)

, T−T0, 0, {wt}T−1
t=T0

)−(T−T0)·J(θ∗, Cunc
Fopt(θ̂wu)

, T−T0, 0, {w′
t}T−1

t=T0
)| ≤ c.

for some c = ÕT (1).

The proof of Lemma 38 can be found in Appendix H.6.
Under event E0

2 , by Lemma 23 we have that |Fopt(θ̂wu)−Fopt(θ
∗)| ≤ ÕT (T

−1/4). Further-

more, conditional on E0
2 and θ̂wu the random variables {wt}T−1

t=T0
are still i.i.d. because the

noise random variables are independent of the history. Therefore, conditional on event E0
2 ,

we can use Lemma 38 with the standard McDiarmid’s inequality McDiarmid et al. [1989]
and get

P
(
|(T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0, {wt}T−1

t=T0
)− E[(T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0, {wt}T−1

t=T0
)]| ≥ ϵ

∣∣∣ θ̂wu

)
≤ 2 exp

(
−2 ϵ2

c2(T − T0)

)
.

Because

E[(T − T0) · J(θ∗, Cunc
Fopt(θ̂wu)

, T − T0, 0, {wt}T−1
t=T0

)] = (T − T0) · J̄(θ∗, Cunc
Fopt(θ̂wu)

, T − T0),
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taking ϵ =
√
Tc log(T ) gives conditional on E0

2 ,

P
(
|(T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0, {wt}T−1

t=T0
)− T − T0) · J̄(θ∗, Cunc

Fopt(θ̂wu)
, T − T0)| ≥

√
Tc log(T )

∣∣∣ θ̂wu

)
= oT (1/T ). (145)

Define

EP12 :=
{
|(T − T0) · J(θ∗, Cunc

Fopt(θ̂wu)
, T − T0, 0, {wt}T−1

t=T0
)− T − T0) · J̄(θ∗, Cunc

Fopt(θ̂wu)
, T − T0)| <

√
Tc log(T )

}
.

By the law of total expectation, Equation (145) implies that

P(EP12 | E0
2) = E[P(EP12 | θ̂wu, E

0
2) | E0

2 ] ≥ 1− oT (1/T ).

Because P(E0
2) ≥ P(E) = 1− oT (1/T ), we therefore have that

P(EP12) ≥ P(EP12 | E0
2)P(E0

2) = 1− oT (1/T )

as desired.

H.3 Proof of Proposition 13

proof.

Lemma 39. Under Assumptions 1–3 and 4, for any θ ∈ Θ and any K ∈ [a−1
b
, a
b
], when

using controller Cunc
K under dynamics θ where 1− (a−bK) = ϵ = ΩT (1) and starting at state

x0 = x, then for all t, the state xt at time t satisfies

|xt| ≤ |x|+
w̄

ϵ
.

Furthermore, for any x, y,W ′ and τ ≤ T ,

|τJ(θ, Cunc
K , τ, x,W ′)− τJ(θ, Cunc

K , τ, y,W ′)| ≤
(q + rK2)(x− y)2 + 2(q + rK2)

(
|x|+ w̄

ϵ

)
|x− y|

ϵ
= OT

(
(x− y)2 + |x(x− y)|

)
.

The proof of Lemma 39 can be found in Appendix H.7.
By Lemma 23, under event E ⊆ E0

2 , we have |Fopt(θ̂wu)− Fopt(θ
∗)| ≤ OT (T

−1/4). There-
fore, by Lemma 25, under event E and for large enough T ,

1− (a∗ − b∗Fopt(θ̂wu)) ≥ cL25 − b∗|Fopt(θ̂wu)− Fopt(θ
∗)| ≥ cL25/2.

Conditional on event E, Calg is safe for dynamics θ∗, and therefore by Lemma 43, the state
of Calg at time T0 satisfies |x′

T0
| ≤ Bx = ÕT (1) conditional on E. Therefore, by Lemma 39,

conditional on E,

(T−T0)·J(θ∗, Cunc
Fopt(θ̂wu)

, T−T0, x
′
T0
, {wt}T−1

t=T0
)−(T−T0)·J(θ∗, Cunc

Fopt(θ̂wu)
, T−T0, 0, {wt}T−1

t=T0
) = ÕT (1).
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H.4 Proof of Proposition 14

proof. Under event E0
2 , we have that for sufficiently large T ,

â− b̂Fopt(θ̂wu) ≥ a∗ − b∗Fopt(θ
∗)− ÕT (T

−1/4) > 0 (146)

by Lemma 25 and Lemma 23. Conditional on event E0
2 ∩ EE57 and for sufficiently large T

we have the following result:

ÕT (T
−1/4)

≥ DU + w̄ − DU

â− b̂Fopt(θ̂wu)
Equation (57)

=
DU

a∗ − b∗Kθ∗
DU

− DU

â− b̂Fopt(θ̂wu)
Definition of Kθ∗

DU

≥ DU

a∗ − b∗Kθ∗
DU

− DU

a∗ − b∗Fopt(θ∗)− ÕT (T−1/4)
Equation (146)

=
−DU ÕT (T

−1/4) + b∗DU(K
θ∗
DU
− Fopt(θ

∗))

(a∗ − b∗Fopt(θ∗)− ÕT (T−1/4))(a∗ − b∗Kθ∗
DU

)

≥
−DU ÕT (T

−1/4) + b∗DU(K
θ∗
DU
− Fopt(θ

∗))

(a∗ − b∗Fopt(θ∗))(a∗ − b∗Kθ∗
DU

)

= (Kθ∗

DU
− Fopt(θ

∗))
b∗DU

(a∗ − b∗Fopt(θ∗))(a∗ − b∗Kθ∗
DU

)

− DU ÕT (T
−1/4)

(a∗ − b∗Fopt(θ∗))(a∗ − b∗Kθ∗
DU

)
. (147)

Because θ∗, DU , Fopt(θ
∗), Kθ∗

DU
are all independent of T , we can rearrange Equation (147) to

get
Kθ∗

DU
− Fopt(θ

∗) ≤ ÕT (T
−1/4).

Combining this with Lemma 23 which states that |Fopt(θ̂wu)−Fopt(θ
∗)| = ÕT (T

−1/4) we have
that

Kθ∗

DU
− Fopt(θ̂wu) ≤ ÕT (T

−1/4). (148)

Conditional on event E0
2 ∩ Ewu

safe, ∥θ̂wu − θ∗∥∞ ≤ ϵ0 = ÕT (T
−1/4) and |x′

T0
| ≤ ∥D∥∞ + w̄.

Conditional on E0
2 ∩Ewu

safe, we can apply Lemma 29 with θ = θ∗, θ̂L29 = θ̂wu, K
′ = Fopt(θ̂wu),

ϵ as the right hand side of Equation (148), β = ϵ0, τ = T − T0, and x0 = x′
T0
. With this

choice of parameters, the controller C in Lemma 29 is exactly equivalent to Calg′ under event
EE57. Conditional on E0

2 , ϵ and β satisfy the necessary inequality for Lemma 29 as both are
ÕT (T

−1/4).
The event E0

2 ∩Ewu
safe∩EE57 depends only on noise random variables before time T0, which

means we can apply Lemma 29 conditional on these events. Equation (93) of Lemma 29
gives that for sufficiently large T , conditional on E0

2 ∩ Ewu
safe ∩ EE57, and with conditional
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probability 1− oT (1/T ),∣∣∣(T − T0) · J(θ∗, Calg′ , T − T0, x
′
T0
,W ′)− (T − T0) · J(θ∗, Cunc

K′ , T − T0, x
′
T0
,W ′)

∣∣∣
≤ (T − T0)OT

(
(bϵ+ ϵ0 + |Fopt(θ̂wu)|ϵ0) log

(
1

bϵ+ ϵ0 + |Fopt(θ̂wu)|ϵ0

)

×
(
(bϵ+ ϵ0 + |Fopt(θ̂wu)|ϵ0) +

log(T )√
T − T0

))
≤ (T − T0)OT

(
ÕT (T

−1/4) log(1/Ω̃T (T
−1/4))

(
ÕT (T

−1/4) +
log(T )√
T − T0

))
[ϵ0 = Ω̃T (1)]

= ÕT (
√
T ). (149)

Taking EP14 to be the event that Equation (149) holds gives the desired result that P(EP14 |
E0

2 ∩ Ewu
safe ∩ EE57) = 1− oT (1/T ).

H.5 Proof of Lemma 37

proof. By Lemma 39, when starting at x0 = 0 and using controller Cunc
K we have that

|xT | ≤
w̄

ϵ
. (150)

Therefore, we can conclude that (for W ′ = {wt}T−1
t=0 ):∣∣J̄(θ, Cunc

K , 2T )− J̄(θ, Cunc
K , T )

∣∣
=

∣∣∣∣∣T · J̄(θ, Cunc
K , T ) + T · E

[
J̄(θ, Cunc

K , T, xT )
]

2T
− J̄(θ, Cunc

K , T )

∣∣∣∣∣
=

∣∣∣∣∣E
[
J̄(θ, Cunc

K , T, xT )
]

2
− 1

2
J̄(θ, Cunc

K , T )

∣∣∣∣∣
=

1

2T

∣∣E [T J̄(θ, Cunc
K , T, xT )

]
− T J̄(θ, Cunc

K , T )
∣∣

=
1

2T

∣∣∣E [E [TJ(θ, Cunc
K , T, xT ,W

′)− TJ(θ, Cunc
K , T, 0,W ′)

∣∣∣ xT

]]∣∣∣
=

1

2T

∣∣∣E [OT

(
x2
T

) ]∣∣∣ Lemma 39

= OT

(
1

T
E[x2

T ]

)
= OT

(
1

T
E
[
w̄2

ϵ2

])
Equation (150)

= OT

(
1

T

)
.
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Furthermore, we have that

|J̄(θ, Cunc
K , T )− J̄(θ, Cunc

K )| =

∣∣∣∣∣
∞∑
i=0

J̄(θ, Cunc
K , 2iT )− J̄(θ, Cunc

K , 2i+1T )

∣∣∣∣∣
≤

∞∑
i=0

∣∣J̄(θ, Cunc
K , 2iT )− J̄(θ, Cunc

K , 2i+1T )
∣∣

=
∞∑
i=0

OT

(
1

T2i

)
= OT

(
1

T

)
.

H.6 Proof of Lemma 38

proof. Define xT0 , .., xT as the states with noise {wt}T−1
t=T0

when using controller Cunc
Fopt(θ̂wu)

starting at xT0 = 0 and define yT0 , ..., yT as the states with noise {w′
t}T−1

t=T0
when using

controller Cunc
Fopt(θ̂wu)

starting at yT0 = 0. By construction, the cost up until time i is the same

for both trajectories. At time i+ 1, we have that

|yi+1 − xi+1| = |wi − w′
i| ≤ 2w̄ = OT (1). (151)

The remaining difference in cost is simply the difference in cost of two length T ′ = T − i− 1
trajectories using controller Cunc

Fopt(θ̂wu)
starting at states yi+1 and xi+1 respectively. By the

assumption of this lemma on Fopt(θ̂wu) and Lemma 25, we have that for sufficiently large T ,

1− (a∗ − b∗Fopt(θ̂wu)) ≥ 1− (a∗ − b∗Fopt(θ
∗))− ÕT (T

−1/4) ≥ cL25/2.

Therefore we can combine Lemma 39 and Equation (151) to get that the difference in the
cost from time i+ 1 onward is upper bounded by

|T ′ · J(θ∗, Cunc
Fopt(θ̂wu)

, T ′, xi+1, {wt}T−1
t=i+1)− T ′ · J(θ∗, Cunc

Fopt(θ̂wu)
, T ′, yi+1, {wt}T−1

t=i+1)| = OT (1).

(152)
Therefore, we have that (see below for justification)

|(T − T0)J(θ
∗, Cunc

Fopt(θ̂wu)
, T − T0, 0, {wt}T−1

t=T0
)− (T − T0)J(θ

∗, Cunc
Fopt(θ̂wu)

, T − T0, 0, {w′
t}T−1

t=T0
)|

= |(i− T0)J(θ
∗, Cunc

Fopt(θ̂wu)
, i− T0, {wt}i−1

t=T0
)− (i− T0)J(θ

∗, Cunc
Fopt(θ̂wu)

, i− T0, {w′
t}i−1

t=T0
)|+

|T ′J(θ∗, Cunc
Fopt(θ̂wu)

, T ′, xi+1, {wt}T−1
t=i+1)− T ′J(θ∗, Cunc

Fopt(θ̂wu)
, T ′, yi+1, {wt}T−1

t=i+1)|

= |J(θ∗, Cunc
Fopt(θ̂wu)

, T − i− 1, xi+1, {wt}T−1
t=i+1)− J(θ∗, Cunc

Fopt(θ̂wu)
, T − i− 1, yi+1, {wt}T−1

t=i+1)|

= OT (1).

Note that in the first equality we also cancelled out the controls at time i which are the same
for both trajectories. In the second equality, we used the fact that {wt}i−1

t=T0
= {w′

t}i−1
t=T0

, and
in the final line we used Equation (152).
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H.7 Proof of Lemma 39

proof. By construction, when using Cunc
K we have the recursive relationship that xt = (a −

bK)xt−1 + wt−1. Because we assume that a− bK = 1− ϵ < 1, we have that

|xt| ≤ |x|+
∞∑
i=0

(a− bK)iw̄ = |x|+ w̄

1− (a− bK)
= |x|+ w̄

ϵ
= β,

where we define β = |x| + w̄
ϵ
. This proves the first part of the lemma. Furthermore, this

implies that the magnitude of the control is never greater than

|ut| = |K||xt| ≤ |K|β.

Using controller Cunc
K , let x0, x1, ..., xT be the sequence of states starting at x0 = x and let

y0, y1, ..., yT be the series of states starting at y0 = y. Define dt = |xt − yt|. Note that
d0 = |x− y|. Furthermore, for all t,

dt = (a− bK)dt−1.

and

|Cunc
K (xt)− Cunc

K (yt)| = Kdt.

Therefore, we have the following bound.

|TJ(θ, Cunc
K , T, x,W ′)− TJ(θ, Cunc

K , T, y,W ′)|

=

∣∣∣∣∣(qx2
T − qy2T ) +

T−1∑
t=0

qx2
t − qy2t + r(Kxt)

2 − r(Kyt)
2

∣∣∣∣∣
≤

T∑
t=0

2q|xt|dt + qd2t + 2r|Kxt||Kdt|+ rK2d2t

≤ (2q + 2rK2)β
T∑
t=0

dt + (q + rK2)
T∑
t=0

d2t |xt| ≤ β

≤ (2q + 2rK2)β
∞∑
t=0

(a− bK)td0 + (q + rK2)
∞∑
t=0

(a− bK)2td20

= 2(q + rK2)β
|x− y|

1− (a− bK)
+

(q + rK2)(x− y)2

1− (a− bK)2

≤ 2(q + rK2)β
|x− y|

1− (a− bK)
+

(q + rK2)(x− y)2

1− (a− bK)
a− bK < 1

≤
2(q + rK2)

(
|x|+ w̄

ϵ

)
|x− y|+ (q + rK2)(x− y)2

ϵ
. (153)

This is exactly the desired result of the second equation of Lemma 39.
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I General Lemmas

The following four lemmas are used throughout the appendix and follow directly from results
in Schiffer and Janson [2024].

Lemma 40 (Lemma 13 in Schiffer and Janson [2024]). Suppose wt for t < T are sub-
Gaussian and F is an event such that P(F ) = 1− oT (1/T

11). Then

E[max
i≤t

w2
i | ¬F ]P(¬F ) = oT

(
1

T 10

)
.

Lemma 41 (Lemma 11 in Schiffer and Janson [2024]). Let x, y be two random variables
independent of noises W ′ = {w′

i}t−1
i=0 such that for some L = ÕT (1), both P(|x| ≥ L)E[x2 |

|x| ≥ L] = oT
(

1
T 10

)
and P(|y| ≥ L)E[y2 | |y| ≥ L] = oT

(
1

T 10

)
and P(|x| ≤ 4 log2(T )) =

1 − oT (1/T
11) and P(|y| ≤ 4 log2(T )) = 1 − oT (1/T

11). Then under Assumptions 1–3, if
∥θ − θ∗∥∞ = ϵ ≤ ϵL2, then for any K ∈ (a−1

b
, a
b
) and t ≤ T ,∣∣E [t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
]∣∣ = ÕT

(
E[|x− y|] + ϵ+

1

T 2

)
. (154)

proof. This follows directly by Lemma 11 in Schiffer and Janson [2024] and Lemmas 1 and
2.

Lemma 42 (Lemma 12 in Schiffer and Janson [2024]). Let x0, x1, ...xT be the sequences
of states when starting at state x0 = x and using controller Ct at time t. Suppose that the
control Ct(xt) is safe for dynamics θt and ∥θt − θ∗∥ ≤ 1

log(T )
for all t < T . For sufficiently

large T ,
∀t ≤ T, |xt| = OT (|x|+ ∥D∥∞ + max

i≤t−1
|wi|).

∀t < T, |Ct(xt)| = OT (|x|+ ∥D∥∞ + max
i≤t−1

|wi|).

Lemma 43 (Lemma 4 in Schiffer and Janson [2024]). Let |x0| ≤ 4 log2(T ). Suppose for all
t < T , the control used by controller Ct at time t is safe for fixed dynamics θt and for all
t ≤ T ,

∥θ∗ − θt∥∞ ≤
1

log(T )
. (155)

Then under Assumptions 1–3, for sufficiently large T and conditioned on event E1, using
this controller Ct with dynamics θ∗ for T steps starting at x0 will give states (x0, ..., xT ) and
controls (u0, ..., uT−1) satisfying the following equations.

|xt|
a.s.

≤ 4 log2(T ) < log3(T ) := Bx (156)

|ut|
a.s.

≤ OT (log
2(T )) < log3(T ) := Bx. (157)

Furthermore, if x0 and the controller Ct are deterministic, then the states (x0, ..., xT ) and
controls (u0, ..., uT−1) satisfy

E[|xt|] ≤ 4 log2(T ) < log3(T ) := Bx (158)

E[|ut|] ≤ OT (log
2(T )) < log3(T ) := Bx. (159)
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P(E1) ≥ 1−
T−1∑
t=0

2 exp
(
− log4(T )/α

)
= 1− oT

(
1

T log(T )

)
. (160)
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