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Abstract

A key challenge in training Large Language Models (LLMs) is properly aligning
them with human preferences. Reinforcement Learning with Human Feedback (RLHF)
uses pairwise comparisons from human annotators to train reward functions and has
emerged as a popular alignment method. However, input datasets in RLHF are not
necessarily balanced in the types of questions and answers that are included. There-
fore, we want RLHF algorithms to perform well even when the set of alternatives
is not uniformly distributed. Drawing on insights from social choice theory, we in-
troduce robustness to approximate clones, a desirable property of RLHF algorithms
which requires that adding near-duplicate alternatives does not significantly change
the learned reward function. We first demonstrate that the standard RLHF algorithm
based on regularized maximum likelihood estimation (MLE) fails to satisfy this prop-
erty. We then propose the weighted MLE, a new RLHF algorithm that modifies the
standard regularized MLE by weighting alternatives based on their similarity to other
alternatives. This new algorithm guarantees robustness to approximate clones while
preserving desirable theoretical properties.
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1 Introduction

As the reasoning capabilities of Large Language Models (LLMs) improve and as LLMs begin
to play a larger role in society, it is increasingly important for LLMs to be aligned with
human values. One common method used for AI alignment is Reinforcement Learning with
Human Feedback (RLHF). In RLHF, a human annotator is typically shown two answers to
a prompt, and asked to report which answer they prefer. This process is repeated across
many annotators and potentially many types of questions and answers, and results in a large
dataset of pairwise comparisons. An RLHF algorithm then takes the pairwise comparison
dataset as input and outputs a reward function that assigns values to answers. One reason
why RLHF is an appealing technique is because of the ease of data elicitation, as it is simpler
for humans to pick a favorite between two answers than it is to rank many answers or provide
good ‘role model’ answers for the LLM.

Fundamentally, the mandate of RLHF algorithms is to solve a preference aggregation prob-
lem, where the goal is to find a reward function that best aligns with the values of the general
population, given pairwise comparison data. This goal is complicated by the fact that hu-
mans often have diverse preferences, and may not agree on the best answer to a question.
Luckily, the study of how to aggregate diverse preferences is not a new area in computer
science, but one that has been long explored by researchers in social choice theory. Classic
social choice considers settings with sets of voters and sets of alternatives, where each voter
provides a ranking over alternatives. These rankings are then provided as input to a voting
rule, which outputs a summary of the voters’ preferences (such as a single winner or an
overall ranking). Social choice studies the design and analysis of such voting rules.

In the RLHF setting, the ‘voters’ are the human annotators, who provide pairwise preferences
over the ‘alternatives’. There are several reasonable choices for how to define an ‘alternative’
in RLHF. Perhaps the simplest definition is that an alternative is just a single answer.
However, many RLHF datasets in practice contain answers to multiple questions. Therefore,
an alternative could also be a question-answer pair. Finally, answers (and questions) are often
generated by various LLMs, so an alternative could also be viewed as the LLM model which
generated the answer. Whichever the case, an RLHF algorithm would then be the ‘voting
rule’ which takes as input the preference data and outputs a summary of the preferences
– in this case, a single reward function. The close relationship between RLHF and voting
theory means that we can take inspiration from past work in social choice to both anticipate
potential pitfalls in RLHF and design better RLHF algorithms.

One especially relevant potential pitfall is that input datasets in RLHF are not necessarily
balanced in the types of questions and answers that are included. For example, at Anthropic,
questions are generated by crowdworkers, who have the flexibility to communicate with LLMs
on any topic of interest (Bai et al., 2022). In ChatGPT, answers are typically generated by
LLMs, and depending on how the LLM was trained, some answers may look more similar
than others (OpenAI, 2022). Therefore, it would be ideal for an RLHF algorithm to not
be sensitive to near duplicates and to perform well even on unbalanced datasets. This is
important for at least two reasons. First, RLHF algorithms which are not robust to near
duplicates will require more careful design of the input dataset, which may increase cost and

1



restrict the types of questions and answers that can be included in the dataset. Furthermore,
it may be more difficult to add to the dataset over time, as it will be necessary to check
for near duplicates in the existing dataset. Second, RLHF algorithms which are robust to
near duplicates will also be more robust to both adversarial manipulation and accidental
duplication.

In social choice, if a voting rule is robust to adding duplicates of alternatives, it is said to
satisfy independence of clones. Informally, a voting rule is independent of clones if after
adding an alternative a′ which is equivalent to another alternative a, the output of the
voting rule does not change. In the RLHF setting, we can think of approximate clones as two
alternatives which are very close by a given distance metric and for which all annotators have
very similar values, where the distance metric depends on the nature of the alternatives. For
example, if the alternatives are textual responses, then a reasonable distance metric might be
the Euclidean distance between their vector embeddings. An approximate clone of an textual
response might look like the original response with an adjective replaced by a synonym. We
can then extend the concept of independence of clones to robustness to approximate clones.
Informally, an RLHF algorithm is robust to approximate clones if adding a new alternative to
the data set that is similar to an existing alternative does not significantly change the output
reward function. This is intuitively a desirable property because adding a new alternative
that is very similar to an existing alternative does not provide much new information about
annotator preferences.

Building on these insights, our main research goals are to

1. evaluate the performance of current RLHF algorithms in the presence of approximate
clones, and

2. develop RLHF algorithms which are robust to approximate clones.

1.1 Our Results

To address the first goal, we show that the standard RLHF algorithm, which uses the regular-
ized maximum likelihood estimator (MLE), is not robust to approximate clones. In response
to the second goal, we propose a new algorithm for RLHF that we call the weighted MLE.
Intuitively, the weighted MLE adjusts the objective function of the MLE by down-weighting
alternatives that are similar to other alternatives (and therefore provide less new informa-
tion) and up-weighting alternatives that are different than other alternatives (and therefore
provide more new information). Our main result is that the weighted MLE is robust to
approximate clones; we also demonstrate that it retains many of the clean interpretations of
the regularized MLE.

In addition to our main result about independence of clones, we also prove an impossibility
result for RLHF in the presence of diverse preferences. We show that for any RLHF algo-
rithm, there exists a population such that even with constant scaling, the distance between
the RLHF algorithm output and the mean rewards of the population is arbitrarily large. We
show this for a population that consists of a mixture of only two Bradley-Terry-Luce (BTL)
models, thereby highlighting the inherent difficulty of aggregating preferences of populations
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with even simple diversity in preferences.

We also extend the ideas of Siththaranjan et al. (2023) that relate the output of the regu-
larized MLE to the average win rates of the alternatives. We show that the output reward
function of the regularized MLE is the solution to a system of equations, where the left hand
side is the average win rates for the rewards output by the MLE and the right hand side is
the empirical average win rates. We similarly show that the output of the weighted MLE
has the same relationship to the empirical weighted average win rates.

We conclude with a case study using LLM generated answers to a single prompt. We
use LLMs as annotators to generate two preference datasets, where one dataset has addi-
tional cloned alternatives. We then approximate both the standard MLE algorithm and
the weighted MLE algorithm using neural networks. In this experiment, we show that the
output of the standard MLE is significantly more affected by the presence of approximate
clones than the output of the weighted MLE, which supports our theoretical results.

1.2 Related Work

RLHF has recently gained traction as a popular method of aligning LLMs with human
preferences (Bai et al., 2022; Ouyang et al., 2022; Ziegler et al., 2019). The potential benefits
of applying social choice theory to the RLHF setting have not gone unnoticed. Recent work
has mapped classic social choice concepts to RLHF (Dai and Fleisig, 2024) and extended
social choice axioms for RLHF (Ge et al., 2024), considered personalization as a way to
address diversity (Poddar et al., 2024; Park et al., 2024), and studied other methods of
aggregating diverse preferences (Zhong et al., 2024; Swamy et al., 2024).

Our work particularly focuses on the social choice concept of independence of clones, which
was first introduced by Tideman (1987). Follow-up work has studied manipulation by cloning
and clone structures (Elkind et al., 2010, 2012), and recent work has studied an even stronger
notion, obvious independence of clones (Berker et al., 2022). In a position paper, Conitzer
et al. (2024) propose various high-level directions for applying social choice to RLHF, and
in particular identify independence of clones as a desirable property for RLHF algorithms,
because chatbot responses may be very similar to each other. They point out that Borda
count, a voting rule which is implicitly used in current approaches to RLHF (Siththaranjan
et al., 2023), is not independent of clones. In our work, we elaborate on this insight by
considering approximate clones and providing specific instances for which standard RLHF
algorithms are not robust to approximate clones.

We highlight several papers that are especially related to ours, and include more details in
Appendix A. Like us, Xu et al. (2023) are concerned about duplicates in answers shown to
annotators, but unlike us, their results are primarily for dichotomy models and three-way
comparisons. Also like us, both Siththaranjan et al. (2023) and Chakraborty et al. (2024)
give different forms of impossibility results for RLHF algorithms in the presence of diverse
preferences.

Further afield, recent papers have considered other forms of robustness in RLHF, such as
robustness to incorrect or corrupted data (Bukharin et al., 2024; Mandal et al., 2024). In
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our work, we specifically focus on robustness to approximate clones, and expect inconsistent
data due to diversity in the annotator population.

2 Model

Suppose we have a set of annotators N = [n] and an infinite set of all possible alternatives S,
where |S| is the volume of S. Each alternative s ∈ S has a context c(s) ∈ Rd which represents
important features of the alternative. For notational convenience, we will often refer to the
context c(s) simply by s. We only observe a finite subset of alternatives M = [m] ⊂ S.
Each annotator has a reward function r∗i : M → R, where r∗i (x) represents the reward of
annotator i for alternative x.

Given two alternatives, an annotator expresses a preference over the two alternatives based
on their reward function. As is common in RLHF, we assume that the expressed preferences
of annotators follow a Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952; Bai et al.,
2022), in that an annotator i states a preference for alternative x1 over alternative x2 with
probability

pi(x1 ≻ x2) =
er

∗
i (x1)

er
∗
i (x1) + er

∗
i (x2)

.

The BTL model takes into account the fact that annotator preferences may be noisy or
inconsistent across queries, especially when the reward gap of two alternatives is small.
When annotators are drawn randomly, we then denote the expected probability of seeing x1

preferred to x2 as p∗(x1 ≻ x2) = Ei[pi(x1 ≻ x2)].

We assume that annotator reward functions are Lipschitz continuous in the Euclidean dis-
tance between the context of two alternatives, as stated below.

Assumption 2.1. For all players i ∈ N , the reward function r∗i is Lipschitz continuous
with parameter K > 0. Formally, for any i ∈ N and any x1, x2 ∈ S, |r∗i (x1) − r∗i (x2)| ≤
K∥x1 − x2∥2.

Let a query be a pairwise comparison q = {x1, x2}, where x1, x2 ∈ M, and let a set of queries
be denoted Q. For every x1, x2 ∈ M, we assume that {x1, x2} is included in Q at least once.
For x1, x2 ∈ M and i ∈ N , define the random function fBTL({x1, x2}, i) ∈ {x1, x2} such
that Pr(fBTL({x1, x2}, i) = x1) = pi(x1 ≻ x2). In other words, fBTL(q, i) is one sample of
annotator i’s preference between x1 and x2 according to annotator i’s true rewards for x1 and
x2 in the BTL model. Further let fBTL(q) = fBTL(q, i

′) when i′ is drawn uniformly at random
from N . A preference dataset D(Q) is generated from Q by choosing an annotator uniformly
at random for each query and sampling that annotator’s preference over the alternatives in
that query, i.e. D(Q) = {(q, fBTL(q)) : q ∈ Q}.

For a given preference dataset D, define pD(x1 ≻ x2) as the proportion of time that x1 is
preferred to x2 in D. We say that a dataset D is representative if pD(x1 ≻ x2) = p∗(x1 ≻ x2)
for all x1, x2 ∈ M. An RLHF algorithm ALG takes as input a preference dataset D and
returns a reward function r(·) where r : M → R. Note that ALG does not know any

4



information about the annotators (such as N , pi, or p∗). The goal of ALG is to find a
“good” reward function r based on D.

For intuition, it may be helpful to keep the following preference dataset generation example
in mind:

Example 2.1. Suppose that we want to find a reward function r which evaluates responses
to a specific question Z. Then S would be the set of all possible responses to Z, and
M would be a finite subset of responses to Z. We can generate each query q ∈ Q by
randomly sampling two responses x1, x2 from M. We can then generate a preference datum
for this query by randomly sampling an annotator i from N and asking annotator i for their
preference between x1 and x2. The set of all preference datum then forms our dataset D,
which we give as input to an RLHF algorithm ALG.

2.1 MLE with Diverse Preferences

We first consider the setting with only one annotator (n = 1). When n = 1, the query data
is generated from a single BTL model. A natural solution is to estimate the unknown reward
function r∗ as the reward function that best matches the data in D. Using the Kullback-
Leibler divergence KL(·) as the distance metric, the reward function that best approximates
the data in D (minimizes the KL divergence) when n = 1 is

r̂1 := argmin
r

−
∑

x1,x2∈M
pD(x1 ≻ x2) · log

(
er(x1)

er(x1) + er(x2)

)
.

When the number of samples for every pair of alternatives is the same, r̂1 is exactly the MLE
solution for RLHF. In RLHF, maximum likelihood estimation refers to finding the rewards
for the single BTL model that has the highest probability of generating the observed data.

Furthermore, because the true underlying distribution is a single BTL model when n = 1,
standard MLE theory implies that r̂1 will converge to r∗ := Ei[r

∗
i ] = r∗1 as the number of

comparisons for each pair of alternatives goes to infinity (Zhu et al., 2023).

Having r̂D converge to Ei[r
∗
i ] is a natural goal in RLHF, as this means that the reward

function converges to the mean rewards for the underlying population. Unfortunately, when
n > 1, no RLHF algorithm can accurately recover Ei[r

∗
i ] for every possible population even

if the algorithm is given infinite query data. This negative result holds even for n = 2 and
m = 2 and is formally proven in Theorem 2.2 in terms of Euclidean distance. Note that
there is an additive constant in this result because the BTL model is invariant to additive
constants. Furthermore, Theorem 2.2 does not contradict the positive results of Zhang et al.
(2022), as their results require sufficiently many alternatives in order to make the problem
identifiable.

Theorem 2.2. Let n = 2 and suppose D is a representative preference dataset over alter-
natives in M. Then for any algorithm ALG and any C > 0, there exist r∗1 and r∗2 such that
rD := ALG(D) satisfies

min
α∈R

∑
x∈M

(
r∗1(x) + r∗2(x)

2
− rD(x)− α

)2

> C.
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The proof of Theorem 2.2 can be found in Appendix B.

Even though accurately estimating the mean reward functions of the population is not always
possible for n > 1, the same arguments that motivate using r̂1 in the n = 1 case can also be
applied to the n > 1 case. More specifically, we can still find the single BTL model that best
approximates D. As is the case when n = 1, the single BTL model that minimizes the KL-
divergence is also the MLE solution. When n may be greater than 1, a regularization term
must also be included to guarantee that the optimization problem has a solution. Formally,
for λ > 0, define

r̂D := argmin
r

−
∑

x1,x2∈M
pD(x1 ≻ x2) · log

(
er(x1)

er(x1) + er(x2)

)

+
λ

2

∑
x∈M

r(x)2. (1)

Using this regularized MLE is a standard method for RLHF due its interpretability (Siththa-
ranjan et al., 2023). Note that a single BTL model is typically used to approximate D both
for the simplicity of the model and because n is unknown to the algorithm. Another ben-
efit of the above formulation is that the objective in Equation (1) is strictly convex and
has a unique global minimum (Siththaranjan et al., 2023). In practice, the optimization
problem can be solved approximately using a sufficiently large function class for r such as a
neural network. In the following sections, we will analyze this standard MLE-based RLHF
algorithm and propose a new algorithm with additional theoretical guarantees.

2.2 Average Win Rate and Borda Count

In addition to the interpretation discussed above, Siththaranjan et al. (2023) showed that
the order in which the alternatives are ranked by the regularized MLE is the same as the
order in which the alternatives are ranked by the average win rate. In Theorem 2.3, we
show an even stronger relationship between the regularized MLE and the average win rate,
which is that the regularized MLE is the unique solution to a system of equations involving
the empirical average win rates. This gives additional interpretability to the regularized
MLE, as the regularized MLE is therefore similar to an M-estimator where the m moments
correspond to the win rates of the m alternatives.

Definition 2.2. For a dataset D over alternatives M, the average win rate of alternative
x ∈ M is

AWRD(x) :=
1

m

∑
y∈M

pD(x ≻ y).

Theorem 2.3. Let r̂D be the regularized MLE as defined in Equation (1) and define

ÂWR(x) = 1
m

∑
y∈M

er̂
D(x)

er̂D(x) + er̂D(y)
.

Then r̂D is the solution to the system of equations

AWRD(x) = λr̂D(x) + ÂWR(x) ∀x ∈ M.
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The proof of Theorem 2.3 can be found in Appendix F. Importantly, the average win rate
as defined above is conceptually similar to the Borda count score in social choice theory.
Therefore, Theorem 2.3 implies a close relationship between the regularized MLE and the
Borda count voting rule, a relationship first observed by Siththaranjan et al. (2023). The
close relationship between the regularized MLE and Borda count is a key aspect of the proofs
in the following sections.

3 Robustness to Approximate Clones

In this section, we adapt the concept of independence of clones from social choice to the RLHF
setting. In traditional social choice, independence of clones is a desirable characteristic of
voting rules which intuitively states that the winner of an election remains the same when
duplicates of candidates are added to the candidate pool. The Borda count voting rule, which
is closely related to the MLE in RLHF (see Section 2.2), does not satisfy independence of
clones. See Appendix C.1 for a formal definition of independence of clones in traditional
social choice.

We adapt the traditional independence of clones definition for RLHF. Informally, we say that
an RLHF algorithm is robust to approximate clones if adding new alternatives that are clones
of existing alternatives does not significantly change the reward function that is output by the
RLHF algorithm. Note that robustness to approximate clones in RLHF guarantees stability
of the reward function instead of merely the winner, and is therefore a stronger notion. As
an RLHF algorithm only has access to noisy observations regarding human preferences, we
will also only require reward function stability when we have representative datasets, or in
other words, in cases when the empirical pairwise win rates are the same as the true pairwise
win rates. If the dataset is not representative, it is not necessarily desirable that the reward
function is unchanged when a clone is added because there may be value in generating a
larger dataset. When the dataset contains sufficiently many queries, the empirical pairwise
win rates will approximately equal the true pairwise win rates by the law of large numbers.
Additional justification of our definition of robustness to approximate clones in RLHF can
be found in Appendix C.2.

We are now ready to formally present our definition of robustness to approximate clones for
RLHF.

Definition 3.1 (Robust to Approximate Clones). An algorithm ALG is robust to approx-
imate clones if for every M ⊆ S and δ > 0 there exists an ϵ > 0 such that the following
holds. Suppose M′ = M∪ {x′}, where x′ ∈ S and ∃x ∈ M such that ∥x− x′∥ ≤ ϵ. Let D
be a representative dataset of queries over the alternatives M and let D′ be a representative
dataset of queries over the alternatives in M′. Let r̂ = ALG(D) and let r̂′ = ALG(D′).
Then |r̂′(x)− r̂′(x′)| ≤ δ and for all x ∈ M, |r̂(x)− r̂′(x)| ≤ δ.

Informally, a RLHF algorithm satisfies Definition 3.1 if adding a new alternative whose
context is “very close” to that of an existing alternative does not significantly change the
reward function. This is desirable because if the players’ values are Lipschitz continuous,
a new alternative whose context is very similar to that of an existing alternative provides
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little new information. Note that this can intuitively be viewed as requiring that the output
reward function is continuous in the set of alternatives.

Robustness to approximate clones is also reminiscent of core ideas in differential privacy
Dwork (2006), where the goal is to design algorithms that are robust to removing any
data point. Any RLHF algorithm which satisfies robustness to approximate clones also
automatically satisfies exact independence of clones, which informally says that adding new
alternatives which are exact clones does not change the output reward function at all. We
formally define and discuss exact independence of clones in Appendix C.3.

Importantly, the regularized MLE does not satisfy Definition 3.1, as stated formally in
Theorem 3.1. See Appendix D for the proof of Theorem 3.1.

Theorem 3.1. Let r̂D be the regularized MLE as defined in Equation (1). The algorithm
ALG(D) = r̂D is not robust to approximate clones.

4 Weighted MLE

In this section, we propose a modified version of the regularized MLE which satisfies Defini-
tion 3.1 while maintaining the interpretability inherent to the original MLE.

The main idea of the proposed algorithm is to modify the objective function by weighting
each alternative by how unique that alternative is compared to the other alternatives in M.
Therefore, an alternative with context very similar to the context of other alternatives will
have a smaller weight, while an alternative with a context very different than the context of
other alternatives will have a larger weight. Informally, the weight of an alternative y is the
fraction of alternatives in S that are closer to y than to any other alternative in M (with
ties split evenly among all tied alternatives). We define the weights formally in Definition
4.1.

Definition 4.1. For any set of alternatives M ⊆ S and any x ∈ S, define projM(x) =
argminy∈M∥x− y∥2 ⊆ M. For y ∈ M, define

wM(y) =
1

|S|

∫
x∈S

1y∈projM(x)

|projM(x)|
dx.

Note that by this construction,
∑

y∈MwM(y) = 1. Using these weights, we define the

weighted MLE as r̂Dw = argminr fD(r), where

fD(r) = −
∑

x1,x2∈M

(
wM(x1)wM(x2)pD(x1 ≻ x2)

× log

(
er(x1)

er(x1) + er(x2)

))
+

λ

2

∑
x∈M

wM(x)r(x)2. (2)
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Intuitively, fD(r) down-weights terms involving alternatives that provide less new informa-
tion because they are very similar to other alternatives. Consequently, two alternatives that
are approximate clones of each other will both have smaller weights.

We are now ready to state our main result, which is that the weighted MLE is robust to
approximate clones

Theorem 4.1. Under Assumption 2.1, the algorithm ALG(D) = r̂Dw is robust to approximate
clones.

While we defer the formal proof of Theorem 4.1 to Appendix G, we will next provide some
intuition for why this result holds. Consider the Voronoi diagram of the alternatives in M,
which consists of a partitioning of S into regions, where each region corresponds to all of the
points in S that are closest to some alternative in M. For example, if S = [0, 1]× [0, 1] and
M = {(0, 0), (1, 0), (1, 1)}, then we can draw the Voronoi diagram in Figure 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1: Voronoi diagram for M = {(0, 0), (1, 0), (1, 1)}.

The weight wM(y) exactly corresponds to the area of the region in the Voronoi diagram
that corresponds to y. So for the alternatives in Figure 1, we have that wM((0, 0)) = 0.375,
wM((1, 0)) = 0.25, and wM((1, 1)) = 0.375.

Now suppose M′ = M∪ {(0.9, 1)}, i.e. M′ contains a clone of the alternative (1, 1). The
Voronoi diagram of M′ is shown in Figure 2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2: Diagram for M = {(0, 0), (1, 0), (1, 1), (0.9, 1)}.

We now have that wM′((0, 0)) = 0.34, wM′((1, 0)) = 0.239875, and wM′((1, 1)) = 0.025,
wM′((0.9, 1)) = 0.395125. Therefore, the introduction of the approximate clone x′ = (0.9, 1)
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caused the weight of x = (1, 1) to be split between x and x′, and the weights of the other
alternatives only changed by a small amount. Furthermore, because annotator preferences
are continuous, we also have that pD(x

′, y) ≈ pD(x, y) for any alternative y. Therefore, the
introduction of the clone does not significantly change the weighted MLE objective function.
In the proof of Theorem 4.1, we formally show this, and conclude that the weighted MLE
reward function also does not significantly change.

The weighted MLE is not only robust to approximate clones, but also preserves many of
the same interpretations as the standard MLE. For example, the weighted MLE and the
standard MLE are equivalent whenever M is uniformly distributed across S, i.e. when
wM(y) = 1

M for all y ∈ M. In this case, Equation (2) is a scaled version of Equation (1),

and therefore r̂D = r̂Dw . Therefore, the weighted MLE only differs from the standard MLE
when the alternatives in M are not evenly distributed across S.

To further understand this new algorithm, we discuss two additional perspectives on the
weighted MLE and its relationship to the standard MLE.

Relationship to Weighted Average Win Rate

In Theorem 2.3 we established a strong connection between the MLE and the empirical
average win-rate. Similarly, the weighted MLE has a close relationship with the weighted
average win rate defined in Definition 4.2. Specifically, Theorem 4.2 shows that the weighted
MLE is also an M-estimator solving a system of equations relating the weighted average win
rate of r to the empirical weighted average win rate in the data set D.

Definition 4.2. For any dataset D over alternatives M, the weighted average win rate of
alternative x ∈ M is wAWRD(x) =

∑
y∈M wM(y)pD(x ≻ y).

Theorem 4.2. For any datasetD over alternativesM, the reward function r̂Dw from Equation
(2) satisfies the system of equations

wAWRD(x) = λ r̂Dw(x) + ŵAWR(x) ∀x ∈ M,

where ŵAWR(x) =
∑

y∈M wM(y) er̂
D
w (x)

er̂
D
w (x)+er̂

D
w (y)

.

The proof of Theorem 4.2 can be found in Appendix E. Similar to the regularized MLE, a
major consequence is that the order in which the alternatives are ranked in the weighted
MLE is the same as the order in which the alternatives are ranked by weighted average win
rate.

Corollary 4.3. For any dataset D over alternatives M and any x, y ∈ M, r̂Dw(x) ≥ r̂Dw(y) if
and only if wAWRD(x) ≥ wAWRD(y).

Interpretation as an MLE Approximation

One interpretation of the weighted MLE is that the function fD(r) approximates what the
regularized MLE objective would be if the dataset M contained every alternative in the
entire alternative space S. Approximating the regularized MLE objective for the entire
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alternative space S is a natural goal when the algorithm only is given information about a
subset of alternatives M ⊆ S. The MLE objective for the entire alternative space S can be
written as

fS
D(r) = − 1

|S|

∫
y1,y2∈S

L(y1, y2)dy1dy2 +
λ

2

∫
y∈S

r(y)2dy (3)

where the log likelihood term for the comparisons between y1 and y2 is defined as

L(y1, y2) = pD(y1 ≻ y2) log

(
er(y1)

er(y1) + er(y2)

)
.

Theorem 4.4 (proven in Appendix H) shows how the weighted MLE objective can be written
with the same structure as Equation (3) using using the projM function to approximate the
unknown quantities.

Theorem 4.4. The weighted MLE objective function can be written in terms of S and the
projection function projM as:

fD(r) =
−1

|S|2

∫
y1,y2∈S

L(y1, y2)dy1dy2 +
λ

2|S|

∫
y∈S

r2(y)dy.

where we define the estimated log likelihood of two alternatives y1, y2 ∈ S as

L(y1, y2) :=
1

|projM(y1)| · |projM(y2)|

×
∑

x1∈projM(y1)
x2∈projM(y2)

pD(x1 ≻ x2) log

(
er(x1)

er(x1) + er(x2)

)

and we define the estimated reward squared of an alternative y ∈ S as

r2(y) :=
1

|projM(y)|
∑

x∈projM(y)

r(x)2.

For further intuition about Theorem 4.4, note that when y1 and y2 both have a unique closest
alternative in M (i.e. |projM(y1)| = |projM(y2)| = 1), then

L(y1, y2) = pD(y
′
1 ≻ y′2) log

(
er(y

′
1)

er(y
′
1) + er(y

′
2)

)
where y′1 and y′2 to be the unique elements of projM(y1) and projM(y2) respectively. In other
words, in this case L(y1, y2) is simply approximating L(y1, y2) using the closest alternatives in
M. Therefore, Theorem 4.4 shows that the weighted MLE also has a natural interpretation
as an approximate MLE solution that only depends on M through the projection function
projM.
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5 Case Study

Although our contributions are primarily theoretical, we supplement our results with a syn-
thetic case study that highlights an instance where the weighted MLE performs better than
the standard regularized MLE under diverse preferences. This case study moves our theory
closer to practice in a few different ways. First, LLMs typically generate the responses seen
by human annotators, and so our case study considers textual responses generated by the
gpt-4o-mini model. Note that this means each alternative has only one data point, unlike our
theoretical results where we assume sufficiently many comparisons for every pair of alterna-
tives. This better represents what happens in practice when each pair of responses is newly
generated by an LLM at the point when an annotator is asked to report a preference Bai
et al. (2022). LLMs have also been shown to be effective as implicit computational models
of humans (Horton, 2023), and we therefore use an LLM as a stand-in for human annotators
with diverse preferences rather than assuming humans make decisions using a BTL model.

In the case study, our goal is to train a reward function which evaluates answers to a single
question: ‘Describe Paris’. We use OpenAI’s gpt-4o-mini model both to generate textual
descriptions of Paris and to simulate human annotators with diverse preferences. We consider
a population with three types of annotators, each of which attach a different amount of
importance to seeing the topics of food, art, and romance mentioned in a description of
Paris. We then construct two preference datasets for this population, one which includes
additional approximate clones (‘Clones’) and one which does not (‘Original’). More details
on the annotator population and the dataset generation process can be found in Appendix
I.

We approximate both the standard MLE algorithm and the weighted MLE algorithm using
neural networks. Each neural network takes as input a context vector and outputs a reward
value. To generate the context vectors, we use OpenAI’s text-embedding-3-small model to
extract embedding vectors from the textual descriptions of Paris. More details on the neural
network training process can be found in Appendix G. We run each algorithm on both
datasets described in the previous paragraph and observe how the reward function output
by the algorithm changes across datasets. To visualize the change in reward function, we
evaluate each reward function on all of the alternatives, and then plot the mean reward for
three types of answers (food, art, and romance), with error bars corresponding to the sample
standard deviations.

Figure 3 shows how the standard MLE algorithm performs on these two datasets. Training
on dataset ‘Original’ leads to romance being the topic with the highest reward. However,
training on dataset ‘Clones’ leads to art being the topic with the highest reward. The fact
that the topic with the highest reward changes with the addition of clones highlights the
lack of robustness of the MLE. Furthermore, we note that both datasets contain a relatively
large amount of data, and therefore this noticeable change in the reward function cannot be
attributed only to variance in the data generation or training processes.

Figure 4 shows the same results for the weighted MLE algorithm. Recall that the weighted
MLE algorithm requires a choice of S, which is the set of all possible alternatives. In the
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Figure 3: Results for the MLE: The yellow points show the average value of the MLE reward
function for different topics when trained on dataset ‘Original’. The blue points show the
same but when trained on dataset ‘Clones’. In the presence of clones, the rewards for both
art and romance change significantly, showing that the MLE is not robust to clones.

experiment shown in Figure 4, we chose S to be the unit cube in the high-dimensional
context space. We also show that similar results hold for other choices of S in Appendix
I. As shown in Figure 4, the average value for the weighted MLE of each of the different
categories is roughly the same for both the dataset without clones and the dataset with
clones. This shows that the weighted MLE is robust to the presence of clones, which aligns
with the theoretical results of Section 4.
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Figure 4: Results for the weighted MLE: The yellow points show the average value of the
weighted MLE reward function for different topics when trained on dataset ‘Original’. The
blue points show the same but when trained on dataset ‘Clones’. The rewards for the three
topics do not change significantly, demonstrating the robustness of the weighted MLE.

6 Discussion

In this section we discuss some limitations of our findings and outline potential directions
for future research.

There is ample opportunity for further empirical research. Our case study is meant to
highlight a specific instance where clones cause a problem for the standard RLHF methods,
but does not imply any conclusions regarding how frequent or pervasive clones may be in
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practice. For example, we may not expect LLM-generated answers to the vanilla prompt
‘describe Paris’ to have such stark deviation into categories; rather, answers may be more
balanced. The realized impact of approximate clones will also of course depend on the
preferences of the annotator population. Further research could evaluate how often clones
appear in practice and characterize the types of annotator populations which cause clones
to be a problem.

In our theoretical results, we assume that we have sufficient comparisons between each pair of
alternatives. This assumption may be unrealistic if the alternatives are answers generated by
LLMs as in our case study, as then each response would only be involved in one comparison.
The case study suggests a potential solution to this problem, which is to first cluster the
original alternatives based on common features (or context) to form meta-alternatives. There
could still exist approximate clones among these meta-alternatives; however, each meta-
alternative would likely have a larger number of comparisons. One potential question for
future work is to explore how different clustering schemes affect the robustness of both the
MLE algorithm and the weighted MLE algorithm.

Even if each alternative is involved in multiple comparisons, it could be interesting to relax
the assumption that we have sufficient comparisons between each pair of alternatives. As
mentioned in Section 1, one choice for the alternatives in RLHF is the question/answer pairs.
In this case, we would expect the dataset to only include comparisons between alternatives
(question/answer pairs) where the question is the same. Although this would not exactly
match the assumptions in our theory, we expect that similar theoretical results would hold
with regard to robustness to approximate clones.

Finally, we used a simple weighting scheme in Definition 4.1 to balance the objective function
when the observed alternatives are not evenly distributed over the entire alternative space.
However, this is not the unique weighting scheme that can achieve this desired result. One
direction for future work is to experiment with different weighting schemes to see which
perform the best in practice.
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A Additional Related Work Details

In this section, we provide a more comprehensive comparison to several works that are
especially related to ours. Like us, Xu et al. (2023) are concerned about the performance of
current RLHF algorithms in the presence of duplicates. Like us, they show that there are
simple models for human preferences under which the standard RLHF algorithms perform
badly. Unlike us, their results are for a specific class of models they call dichotomy models.
In such models, there are two types of messages and two types of individuals, and each type
of individual has reward 1 for one type of message and reward 0 for the other. Their main
results also focus on three-way comparisons, while our results deal with pairwise comparisons
(which are standard in current RLHF algorithms).

We were inspired by Siththaranjan et al. (2023), who show that standard RLHF implicitly
aggregates over hidden context according to Borda count. We build off their work to show
that standard RLHF algorithms are not robust to approximate clones. Like Siththaranjan
et al. (2023), we assume that humans have diverse preferences, but unlike them, we do not
summarize these preferences by a hidden context. Rather, we directly model populations
with different reward functions. Note that when we refer to ‘context’ in our paper, we are
referring to the underlying context of alternatives, not of annotators as in Siththaranjan
et al. (2023). Like us, Siththaranjan et al. (2023) give an impossibility result for RLHF
algorithms in the presence of diverse preferences. They show that every RLHF algorithm
fails to exactly recover the mean reward function for some population, while our result shows
that every RLHF algorithm does arbitrarily badly at finding the mean reward function for
some populations.

Chakraborty et al. (2024) also evaluate the efficacy of standard RLHF algorithms when
there are diverse human preferences and give an impossibility result for when standard
RLHF outputs a single reward function. However, their impossibility result is of a different
form – they bound the gap between the optimal policy overall and the optimal policy for
a subpopulation by the sum of total variation distances between preference distributions of
subpopulations. By contrast, our impossibility result states that for any RLHF algorithm,
there exists a population such that the distance between the RLHF algorithm output and
the mean rewards of the population is arbitrarily large.

Finally, we also note that because we study RLHF with diverse populations, this work is
inherently related to the study of pluralistic alignment of AI systems, see e.g. the work of
Sorensen et al. (2024) and Anwar et al. (2024).

B Proof of Theorem 2.2

We will prove the desired result by contradiction.

We will show the desired result for any C ≥ log2(2) which will imply the desired result for all

C > 0. For any C ≥ log2(2), define κ := e12
√
C . Consider the following two populations, each

of which consists of two types of annotators which are equally prevalent and two alternatives
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a and b. The reward of each type of voter for each alternative in each population are shown
in the two tables below.

Population 1

Type 1 (50%) Type 2 (50%)
r(a) 0 0
r(b) log(2) log(2)

Population 2

Type 1 (50%) Type 2 (50%)
r(a) 0 0
r(b) log(κ) log(κ+ 4)− log(2κ− 1)

Table 1: Rewards for each annotator type in each population.

For population 1,

Pr(a ≻ b) =
1

2
· e0

e0 + elog(2)
+

1

2
· e0

e0 + elog(2)
=

1

3
.

For population 2,

Pr(a ≻ b) =
1

2
· e0

e0 + elog(κ)
+

1

2
· e0

e0 + elog(κ+4)−log(2κ−1)

=
1

2
· 1

1 + κ
+

1

2
· 1

1 + κ+4
2κ−1

=
1

2
· 1

1 + κ
+

1

2
· 2κ− 1

3κ+ 3

=
1
2
+ 2κ−1

6

1 + κ

=
2κ+2
6

1 + κ

=
1

3
.

Therefore, for both populations the probability that alternative a is preferred to alternative
b is the same (1/3). This implies that based on query data, it is impossible to distinguish
between these two populations. Now consider an arbitrary algorithm ALG that when given
data such that a is preferred to b with probability 1/3, ALG outputs reward function rD.
We want to show that

min
α∈R

∑
x∈M

(
r∗1(x) + r∗2(x)

2
− rD(x)− α

)2

≤ C (4)

cannot hold for both populations. If Equation (4) holds for population 1, then

min
α∈R

((
rD(a) + α

)2
+
(
log(2)− rD(b)− α

)2) ≤ C,

which implies that there exists some α ∈ R such that∣∣rD(a) + α
∣∣ ≤ √

C
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and ∣∣log(2)− rD(b)− α
∣∣ ≤ √

C.

In order for the two equations above to both hold, we must have that

|rD(a)− rD(b)| ≤ log(2) + 2
√
C. (5)

Similarly, if Equation (4) holds for population 2, then

min
α∈R

((
rD(a) + α

)2
+

(
log(κ) + log(κ+ 4)− log(2κ− 1)

2
− rD(b)− α

)2
)

≤ C

which implies that ∣∣rD(a) + α
∣∣ ≤ √

C

and ∣∣∣∣ log(κ) + log(κ+ 4)− log(2κ− 1)

2
− rD(b)− α

∣∣∣∣ ≤ √
C.

In order for the two above equations to hold, we must have that∣∣∣∣ log(κ) + log(κ+ 4)− log(2κ− 1)

2
+ rD(a)− rD(b)

∣∣∣∣ ≤ 2
√
C.

In order for this equation to hold, we must have that

|rD(a)− rD(b)| ≥ log(κ) + log(κ+ 4)− log(2κ− 1)

2
− 2

√
C

=
log(κ) + log(κ+ 4)− log(κ− 1/2)− log(2)

2
− 2

√
C

≥ log(κ)− log(2)

2
− 2

√
C

=
12
√
C − log(2)

2
− 2

√
C

≥ 4
√
C − log(2)

2
. (6)

However, for C ≥ log2(2), Equations (5) and (6) cannot both hold, and therefore we have a
contradiction.

C Adapting Independence of Clones

In this section, we provide further details and justification for our definition of independence
of clones in the RLHF setting.
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C.1 Independence of Clones in Traditional Social Choice

In traditional social choice, independence of clones (Tideman, 1987) is a desirable charac-
teristic of voting rules which intuitively states that the winner of an election remains the
same when duplicates of candidates are added to the candidate pool. More specifically, clas-
sic voting theory considers settings with a set of n voters (denoted N) and m candidates
(denoted M). Each voter then provides a full ranking over the M candidates. A voting
rule takes as input the set of rankings and outputs a single candidate. A subset K ∈ M
of candidates is a set of clones if no voter ranks any candidate in M \K between any two
candidates in K. Finally, a voting rule is Independent of Clones if and only if the following
two properties hold. First, a candidate in M \ K is output by the voting rule if and only
if that same candidate is output by the voting rule after eliminating any candidate in K.
Second, a candidate in K is output by the voting rule if and only if some other member of
K is also output by the voting rule after eliminating any candidate in K.

C.2 Additional Justification for RLHF Definition

This section provides further justification for how we adapt the traditional independence
of clones definition for RLHF. Here, we focus on how we develop a reasonable definition
for exact independence of clones. In the next section, we will then explain why we further
consider robustness to approximate clones.

Informally, we say that an RLHF algorithm satisfies exact independent of clones if adding
new alternatives that are clones of existing alternatives does not change the reward function
that is output by the RLHF algorithm. There are a few major differences between the
definition of independence of clones in the traditional setting and in RLHF. First, while
traditional independence of clones guarantees that the winning alternative does not change,
the RLHF version of independence of clones instead guarantees that the reward function
does not change, which is a stronger notion. This is because in traditional voting theory the
focus is on the winning alternative, while in RLHF we care about the reward function over
all of the alternatives. Second, the input to an RLHF algorithm consists of query results over
pairs of alternatives, rather than full rankings from every voter. Therefore, the definition of
a clone from traditional social choice does not carry over. Instead, we will define a clone in
RLHF as a new alternative with the same context as an existing alternative, which implies
that every voter has the same reward for the new alternative as for the existing one. Finally,
it is generally assumed that an RLHF algorithm has access to noisy observations regarding
human preferences, rather than the true rewards of each voter for each alternative. Due
to randomness, it may be the case that two alternatives for which all voters have the exact
same value may still look different in the dataset of query results given as input to the RLHF
algorithm.

Therefore, we will say that an RLHF algorithm is independent of clones if when the empirical
pairwise win rates are the same as the true pairwise win rates, then the reward function
output by the algorithm is unchanged when a clone is added. Note that when the dataset
contains sufficiently many queries, the empirical pairwise win rates will approximately equal
the true pairwise win rates by the law of large numbers. Further note that it is not necessarily
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desirable that the reward function is unchanged when a clone is added if the empirical
pairwise win rates are not close to the true win rates. This is because in this case, there is
value in generating a larger dataset, and therefore it is no longer true that adding a clone
adds no new information.

C.3 Exact Independence of Clones

In this section, we formally present our definition of exact independence of clones and explain
why our work primarily focuses on robustness to approximate clones. The formal definition
of exact independence of clones is below.

Definition C.1 (Exact Independence of Clones). An RLHF algorithm ALG satisfies in-
dependence of clones if the following holds. Consider a set of alternatives [m + 1] such
that the context of alternative m is the same as the context of alternative m + 1. Let D1

and D2 be representative datasets over the alternative sets [m] and [m+1] respectively. Let
r1 = ALG(D1), and r2 = ALG(D2). Then r2(m+1) = r2(m) and for all i ∈ [m], r1(i) = r2(i).

We note that independence of clones as defined in Definition C.1 is a very weak guarantee,
as two alternatives are only clones if their contexts are exactly equal and reward functions
only need to remain unchanged when there is sufficient data. Even so, as a result of the
equivalence between the regularized MLE for RLHF and Borda count as discussed in Section
2.2, the regularized MLE algorithm does not satisfy Definition C.1. We formally prove this
result in Appendix D. However, because we have the context of the alternatives (as defined
in Section 2), we can easily adapt the regularized MLE to satisfy independence of clones by
a simple pre-processing step. Recall that two alternatives have the same context if and only
if they are clones. Therefore, we can combine the data of any two alternatives with the same
context in order to remove clones. Note that the regularized MLE cannot be made to satisfy
robustness of approximate clones with preprocessing, because Definition 3.1 must hold for
any δ > 0.

As further motivation for moving beyond exact independence of clones, RLHF queries often
ask annotators to compare textual responses generated by LLMs, where it is unlikely that
an exact response will be duplicated. Therefore, it is more realistic in RLHF to consider
robustness to approximate clones. For example, an approximate clone of a textual response
may substitute an adjective for its synonym, or use a slightly different grammar structure.

D Proof of Theorem 3.1

proof. Let M = {a, b, c} and M′ = {a, b, c, c′}, where ∥c − c′∥ = 0. Note that M and
M′ differ only by c′, and c′ is an exact clone of an alternative c ∈ M. Suppose that D is
generated by querying a population which consists of three types of individuals, where each
type is represented by a BTL model.

Suppose further that D′ is generated from the same population after cloning alternative c,
and can be represented by the following:
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Alternative Type 1 (40%) Type 2 (30%) Type 3 (30%)
r(a) ln(100) ln(10) ln(1)
r(b) ln(10) ln(1) ln(100)
r(c) ln(1) ln(100) ln(10)

Table 2: Representation of the population that generated D. The proportions of each type
are indicated in the header row, while the rewards associated with each type for every
alternative are presented in the matrix.

Alternative Type 1 (40%) Type 2 (30%) Type 3 (30%)
r(a) ln(100) ln(10) ln(1)
r(b) ln(10) ln(1) ln(100)
r(c) ln(1) ln(100) ln(10)
r(c’) ln(1) ln(100) ln(10)

Define the Borda Count of an alternative x given the total set of alternativesM as BC(x,M) =∑
y∈M p∗(x ≻ y), and the Borda Count winner ofM to be the y ∈ M with the highest Borda

Count. Further let r̂D and r̂D
′
be the regularized MLE estimators for these two datasets.

By Theorem 2.3, r̂D(x) > r̂D(y) iff BC(x) > BC(y), and similarly for r̂D
′
.

To prove the theorem, it therefore suffices to show that the Borda Count winner of M′ is
not the same as the Borda Count winner in M. To see why, observe that if the Borda
Count winner of M′ is x and the Borda Count winner of M is y, then it must be that
r̂D(x) < r̂D

′
(x) or r̂D(y) > r̂D

′
(y) (or both). If r̂D(x) < r̂D

′
(x), then we can choose δ such

that r̂D
′
(x) − r̂D(x) > δ > 0. Then because ∥c − c′∥ = 0, there is no ϵ > 0 for which

|r̂D(x)− r̂D
′
(x)| ≤ δ, which implies that the regularized MLE is not robust to approximate

clones.

It remains to be shown that the Borda Count winner of M′ is not the same as the Borda
Count winner in M. Let ti represent the proportion of the population that is type i and let
v(ti, x) be the value of type i for alternative x. For any two alternatives x, y in M, the win
percentage of x over y is

p∗(x ≻ y) =
3∑

i=1

ti ·
ev(ti,x)

ev(ti,x) + ev(ti,y)
.

The following table gives BC(x,M) for every x ∈ M. Note that in this table, alternative a
is the Borda Count winner.

Similarly, the following table gives BC(x,M′) for every x ∈ M′. In this table, alternative b
is the Borda Count winner. We have therefore shown that the Borda Count winner of M′

is not the same as the Borda Count winner in M, which proves the theorem.
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p∗(x ≻ a) p∗(x ≻ b) p∗(x ≻ c) BC(x,M)
a 0.50 0.64 0.45 1.59
b 0.36 0.50 0.64 1.50
c 0.55 0.36 0.50 1.41

Table 3: Each row of this table represents an alternative x. The first three columns compute
p∗(x ≻ y) for each alternative y. The last column gives the Borda Count of alternative x,
which is the sum of the first three columns.

p∗(x ≻ a) p∗(x ≻ b) p∗(x ≻ c) p∗(x ≻ c′) BC(x,M)
a 0.50 0.64 0.45 0.45 2.04
b 0.36 0.50 0.64 0.64 2.14
c 0.55 0.36 0.50 0.50 1.91
c′ 0.55 0.36 0.50 0.50 1.91

E Proof of Theorem 4.2

We begin with the following lemma, which we will use multiple times throughout the proof.

Lemma E.1. For an arbitrary set T ∈ Rd, let w : T → R+ such that
∑

y∈T w(y) = 1. Let
λ ∈ R+ and for any x1, x2 ∈ T let p(x1 ≻ x2) ∈ [0, 1]. Define r̂ := argminr f(r), where

f(r) := −
∑

x1,x2∈T

w(x1)w(x2)p(x1 ≻ x2) log

(
er(x1)

er(x1) + er(x2)

)
+

λ

2

∑
y∈T

w(y)r(y)2.

Then f strongly convex with parameter m = λminx∈T w(x). Therefore, f has a unique global
minimum r∗, and for any r,

f(r)− f(r∗) ≥ m

2
∥r − r∗∥22. (7)

proof. Note that the function log
(

er(x1)

er(x1)+er(x2)

)
is strictly convex in r(x1) and r(x2) as shown

in Siththaranjan et al. (2023). Furthermore, for any λ > 0, because w(x) > 0 for all
x ∈ T , we have that λ

2

∑
x∈T w(x)r(x)2 is strongly convex in r(x) for all x ∈ T . Finally,

adding a strongly convex function and a strictly convex function results in a strongly convex
function.

Proof of Theorem 4.2. Recall that r̂Dw = argminr fD(r), where

fD(r) = −
∑

x1,x2∈M

wM(x1)wM(x2)pD(x1 ≻ x2) log

(
er(x1)

er(x1) + er(x2)

)
+

λ

2

∑
x∈M

wM(x)r(x)2.

By Lemma E.1, r̂Dw will be the solution to the equation setting the gradient of fD(r) to 0.
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Define σ(a) = ea

1+ea
. The gradient of fD(r) is the following for x ∈ M,

∂fD(r)

∂r(x)

= λwM(x)r(x)−
∑
y:y ̸=x

wM(x)wM(y)

(
pD(x ≻ y)

er(y)

er(y) + er(x)
+ pD(y ≻ x)

−er(x)

er(y) + er(x)

)

= λwM(x)r(x)−
∑
y:y ̸=x

wM(x)wM(y)

(
pD(x ≻ y)

(
1− er(x)

er(y) + er(x)

)
− (1− pD(x ≻ y))

er(x)

er(y) + er(x)

)
= λwM(x)r(x) +

∑
y:y ̸=x

wM(x)wM(y)σ(r̂Dw(x)− r̂Dw(y))− wM(x)wM(y)pD(x ≻ y). (8)

Also note that

wM(y)σ(r̂Dw(x)− r̂Dw(x))− wM(y)pD(x ≻ x) =
wM(y)

2
− wM(y)

2
= 0. (9)

Dividing Equation (8) by wM(x) and equating to 0 gives that

0 =
1

wM(x)

∂fD(r)

∂ r̂Dw(x)

= λ r̂Dw(x) +
∑
y:y ̸=x

wM(y)σ(r̂Dw(x)− r̂Dw(y))− wM(y)pD(x ≻ y)

= λ r̂Dw(x) +
∑
y∈M

wM(y)σ(r̂Dw(x)− r̂Dw(y))− wM(y)pD(x ≻ y) Equation (9)

= λ r̂Dw(x) +
∑
y∈M

wM(y)σ(r̂Dw(x)− r̂Dw(y))−
∑
y∈M

wM(y)pD(x ≻ y)

= λ r̂Dw(x) +
∑
y∈M

wM(y)σ(r̂Dw(x)− r̂Dw(y))− wAWRD(x)

Rearranging the sides, we have that

wAWRD(x) = λ r̂Dw(x) +
∑
y∈M

wM(y)σ(r̂Dw(x)− r̂Dw(y))

as desired.

F Proof of Theorem 2.3

proof. This result follows exactly the same steps as in the proof of Theorem 4.2, except
substituting wM(x) = 1 for all x ∈ M.
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G Proof of Theorem 4.1

We begin with the following lemma.

Lemma G.1. For an arbitrary set T ∈ Rd, let w : T → R+ such that
∑

y∈T w(y) = 1. Let
λ ∈ R+ and for any x1, x2 ∈ T let p(x1 ≻ x2) ∈ [0, 1]. Define r̂ := argminr f(r), where

f(r) := −
∑

x1,x2∈T

w(x1)w(x2)p(x1 ≻ x2) log

(
er(x1)

er(x1) + er(x2)

)
+

λ

2

∑
y∈T

w(y)r(y)2.

Then

0 < f(r̂) ≤ 1 +
λ

2

and for all y ∈ T

|r̂(y)| ≤

√
2 + λ

λw(y)
.

proof. If r(y) = 1 for all y then f(r) ≤ 1 + λ
2
. This implies that f(r̂) ≤ 1 + λ

2
. Furthermore,

note that no finite values of r can make f(r) = 0 due to the log terms, and therefore f(r̂) > 0.

Finally, using that f(r̂) ≤ 1 + λ
2
, it must be the case that λ

2
w(y)r̂(y)2 ≤ 1 + λ

2
. Rearranging

terms gives the desired bound on |r̂(y)|.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. For any set of alternatives M and any δ > 0, we will define ϵ := c ·δ2,
where c is a constant relative to δ that depends on M which we will defer the definition of
until after Equations (10) and (11). Now consider any x′ such that ∥x′ − x∥2 ≤ ϵ for some
x ∈ M. Define M′ = M∪ {x′}, and suppose D and D′ are representative datasets on M
and M′ respectively. Our goal is to bound the difference between r̂Dw and r̂D

′

w , which are
defined as follows.

r̂Dw = argminr fD(r), where

fD(r) = −
∑

x1,x2∈M

wM(x1)wM(x2)pD(x1 ≻ x2) log

(
er(x1)

er(x1) + er(x2)

)
+

λ

2

∑
x∈M

wM(x)r(x)2.

r̂D
′

w = argminr fD′(r), where

fD′(r) = −
∑

x1,x2∈M′

wM′(x1)wM′(x2)pD′(x1 ≻ x2) log

(
er(x1)

er(x1) + er(x2)

)
+

λ

2

∑
x∈M′

wM′(x)r(x)2.

The objective functions fD(r) and fD′(r) differ in three ways. First, they have different
weights (wM versus wM′). Second, they use different sets of alternatives (M versus M′).
Third, they have different comparison probability functions (pD versus pD′). In order to
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compare r̂Dw to r̂D
′

w , we will first change the weight functions to match, then change the sets
of alternatives to match, and then finally change the comparison probability functions to
match. Therefore, we will consider two intermediate reward functions r1 and r2 that are the
optimal reward functions for objectives f1 and f2 respectively. Informally, f1 can be viewed
as being the same as fD except that it uses different weights that correspond to the weights
from fD′ . Similarly, f2 can be viewed as being the same as fD′ except it uses a different
comparison probability function that corresponds to the comparison probability function
from fD. Finally, f1 and f2 can be viewed as being the same except that they use the sets
M and M′ respectively.

Next we formally define r1, f1 and r2, f2. Define the function w1 : M → R as w1(y) = wM′(y)
for all y ∈ M \ {x} and w1(x) = wM′(x) + wM′(x′). In other words, w1 is the same as wM′

except it allocates all of the probability of both x and x′ to alternative x. Then we can define
r1 as

r1 := argminr f1(r), where

f1(r) = −
∑

x1,x2∈M

w1(x1)w1(x2)pD(x1 ≻ x2) log

(
er(x1)

er(x1) + er(x2)

)
+

λ

2

∑
z∈M

w1(z)r(z)
2.

Define p2(x1 ≻ x2) = pD(x1 ≻ x2) for all x1, x2 ∈ M, and define p2(y ≻ x′) = pD(y ≻ x) and
p2(x

′ ≻ y) = pD(x ≻ y) for all y ∈ M. In other words, p2 is the same as pD except that every
comparison involving x′ has the same probability as the corresponding comparison involving
x. Then we can define r2 as

r2 := argminr f2(r), where

f2(r) = −
∑

x1,x2∈M′

wM′(x1)wM′(x2)p2(x1 ≻ x2) log

(
er(x1)

er(x1) + er(x2)

)
+

λ

2

∑
z∈M′

wM′(z)r(z)2

Lemma G.2 bounds the difference between r̂Dw and r1, Lemma G.3 bounds the difference
between r1 and r2 , and Lemma G.4 bounds the difference between r2 and r̂D

′

w . Using the
triangle inequality, we can combine these three lemmas to get that for any y ∈ M,

| r̂Dw(y)− r̂D
′

w (y)| = | r̂Dw(y)− r1(y) + r1(y)− r2(y) + r2(y)− r̂D
′

w (y)|
≤ | r̂Dw(y)− r1(y)|+ |r1(y)− r2(y)|+ |r2(y)− r̂D

′

w (y)|
≤ O(

√
ϵ) [Lemmas G.2, G.3, G.4]

(10)

and that

| r̂D′

w (x)− r̂D
′

w (x′)| = | r̂D′

w (x)− r2(x
′) + r2(x

′)− r̂D
′

w (x′)|
≤ | r̂D′

w (x)− r2(x
′)|+ |r2(x′)− r̂D

′

w (x′)|
≤ | r̂D′

w (x)− r2(x)|+ |r2(x′)− r̂D
′

w (x′)| [Lemma G.3]

≤ O(
√
ϵ). [Lemma G.4] (11)
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If we define c in the definition of ϵ such that the O(
√
ϵ) from the two above equations is

bounded by δ, then this exactly shows the desired result of Theorem 4.1.

The rest of the proof will focus on stating and proving Lemmas G.2, G.3, and G.4.

Lemma G.2. For all y ∈ M,

| r̂Dw(y)− r1(y)| ≤ O(
√
ϵ). (12)

proof. First, we note that we can choose ϵ to be sufficiently small and assume WLOG that
x is the closest alternative in M to x′. This implies that

wM(x) ≤ w1(x) ≤ wM(x) +O(ϵ),

and that for every y ∈ M \ {x}

wM(y)−O(ϵ) ≤ w1(y) ≤ wM(y).

The previous two equations together imply that for any y ∈ M,

|wM(y)− w1(y)| ≤ O(ϵ). (13)

Note that we also have that for any a, b ∈ R,

log

(
ea

ea + eb

)
≥ −(2 + |a|+ |b|). (14)

Therefore, for any r satisfying |r(y)| ≤ C for all y ∈ M for some constant C, we have that

f1(r)− fD(r)

≥ −
∑

x1,x2∈M
(w1(x1)w1(x2)− wM(x1)wM(x2))pD(x1 ≻ x2) log

(
er(x1)

er(x1) + er(x2)

)
+

λ

2

∑
y∈M

(w1(y)− wM(y))r(x)2

≥ −
∑

x1,x2∈M
(−O(ϵ)w1(x1)−O(ϵ)w1(x2))pD(x1 ≻ x2) log

(
er(x1)

er(x1) + er(x2)

)
+

λ

2

∑
y∈M

−O(ϵ)r(x)2

= −
∑

x1,x2∈M
O(ϵ)(w1(x1) + w1(x2))pD(x1 ≻ x2) (2 + |r(x1)|+ |r(x2)|) +

λ

2

∑
y∈M

−O(ϵ)r(x)2

= −O(ϵ). (15)

Similarly, for any r satisfying |r(y)| ≤ C for all y ∈ M and some constant C, we have that

f1(r)− fD(r) ≤ O(ϵ). (16)

By Lemma G.1, we have for all y ∈ M that |rDw (y)| ≤
√

2+λ
λwM(y)

and |r1(y)| ≤
√

2+λ
λw1(y)

.

Therefore, by Equations (15) and (16), we have that for constants C1, C2,

f1(r1)− fD(r1) ≥ −C1ϵ (17)
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and
fD(r

D
w )− f1(r

D
w ) ≥ −C2ϵ. (18)

Now we will show that
fD(r1)− fD(r̂

D
w) ≤ (C1 + C2)ϵ. (19)

Suppose Equation (19) does not hold. Then

f1(r1)− f1(r̂
D
w) = (f1(r1)− fD(r1)) +

(
fD(r1)− fD(r̂

D
w)
)
+
(
fD(r̂

D
w)− f1(r̂

D
w)
)

> −C1ϵ+ (C1 + C2)ϵ− C2ϵ [Eqs (18) and (17)]

= 0. (20)

This is a contradiction with the definition of r1, and therefore Equation (19) must hold.

We will now use the contrapositive of Equation (19) to prove the desired result. Lemma E.1

implies that for any r such that there exists a y ∈ M where |r(y)− r̂Dw(y)| >
√

(C1+C2)ϵ
λminz∈M wM(z)

,

we must have
fD(r)− fD(r̂

D
w) > (C1 + C2)ϵ.

This combined with Equation (19) implies that for all y, |r(y)− r̂Dw(y)| ≤
√

(C1+C2)ϵ
λminz∈M wM(z)

=

O(
√
ϵ), which is the desired result.

Lemma G.3. For all y ∈ M, r1(y) = r2(y). Furthermore, r2(x
′) = r2(x).

proof. Define σ(a) = ea

1+ea
. Theorem 4.2 implies that r1 is the solution to the set of equations∑

y∈M

w1(y)pD(z ≻ y) = λr1(z) +
∑
y∈M

w1(y)σ(r1(z)− r1(y)) ∀z ∈ M. (21)

which by definition of p2 is equivalent to being the solution to this set of equations:∑
y∈M

w1(y)p2(z ≻ y) = λr1(z) +
∑
y∈M

w1(y)σ(r1(z)− r1(y)) ∀z ∈ M. (22)

Similarly, r2 is the solution to the set of equations∑
y∈M′

wM′(y)p2(z ≻ y) = λr2(z) +
∑
y∈M′

wM′(y)σ(r2(z)− r2(y)) ∀z ∈ M′. (23)

Because p2(x
′ ≻ y) = p2(x ≻ y), we see that the LHS of Equation (23) is the same for x and

for x′. Therefore, r2(x) and r2(x
′) satisfy the same equation (which only has one solution),

and therefore
r2(x) = r2(x

′).
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Now we will show that this implies that r1(y) = r2(y) for all y ∈ M. By definition of w1,
for all z we have that∑

y∈M

w1(y)p2(z ≻ y) = w1(x)p2(z ≻ x) +
∑

y∈M\x

w1(y)p2(z ≻ y)

= (wM′(x) + wM′(x′))p2(z ≻ x) +
∑

y∈M\x

wM′(y)p2(z ≻ y)

=
∑
y∈M′

wM′(y)p2(z ≻ y). (24)

Because r2(x) = r2(x
′), we also have that for all z,

λr2(z) +
∑
y∈M′

wM′(y)σ(r2(z)− r2(y))

= λr2(z) + wM′(x)σ(r2(z)− r2(x)) + wM′(x′)σ(r2(z)− r2(x
′)) +

∑
y∈M′\{x,x′}

wM′(y)σ(r2(z)− r2(y))

= λr2(z) + wM′(x)σ(r2(z)− r2(x)) + wM′(x′)σ(r2(z)− r2(x)) +
∑

y∈M′\{x,x′}

wM′(y)σ(r2(z)− r2(y))

= λr2(z) + (wM′(x) + wM′(x′))σ(r2(z)− r2(x)) +
∑

y∈M′\{x,x′}

wM′(y)σ(r2(z)− r2(y))

= λr2(z) + w1(x)σ(r2(z)− r2(x)) +
∑

y∈M\{x}

w1(y)σ(r2(z)− r2(y))

= λr2(z) +
∑
y∈M

w1(y)σ(r2(z)− r2(y)). (25)

Combining Equations (23), (24), and (25) gives that r2 satisfies the equation∑
y∈M

w1(y)p2(z ≻ y) = λr2(z) +
∑
y∈M

w1(y)σ(r2(z)− r2(y)) ∀z ∈ M.

This means that r2 and r1 are solutions to the same set of equations, and therefore r2(y) =
r1(y) for all y ∈ M.

Finally, we can relate r2 to r̂D
′

w .

Lemma G.4. For all y ∈ M′, | r̂D′

w (y)− r2(y)| ≤ O(
√
ϵ).

proof. Because D and D′ are both representative datasets, by definition of p2, for all x1, x2 ∈
M we have that p2(x1 ≻ x2) = pD(x1 ≻ x2) = pD′(x1 ≻ x2). Therefore, only way in which
f2(r) and fD′(r) differ is that p2(y ≻ x′) = pD(y ≻ x) ̸= pD′(y ≻ x′) for all y ∈ M (and same
for p2(x

′ ≻ y)). Because D and D′ are both representative data sets, the preferences are
Lipschitz continuous, and the BTL model is Lipschitz continuous, we have for some constant
C1 > 0 that

|pD(x ≻ y)− pD′(x′ ≻ y)| = |pD′(x ≻ y)− pD′(x′ ≻ y)| ≤ C1ϵ.
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and
|pD(y ≻ x)− pD′(y ≻ x′)| = |pD′(y ≻ x)− pD′(y ≻ x′)| ≤ C1ϵ.

Next, recall that by Lemma G.1, rD
′

w and r2 both are bounded by
√

2+λ
λwM′

. For any r satisfying

|r(y)| ≤
√

2+λ
λwM′

, we also have that for some constant C2 > 0,

fD′(r)− f2(r)

= −
∑
y∈M

wM′(x′)wM′(y) ((pD′(x′ ≻ y)− p2(x
′ ≻ y))σ(r(x′)− r(y)) + (pD′(y ≻ x′)− p2(y ≻ x′))σ (r(y)− r(x′)))

= −
∑
y∈M

wM′(x′)wM′(y) ((pD′(x′ ≻ y)− pD(x ≻ y))σ(r(x′)− r(y)) + (pD′(y ≻ x′)− pD(y ≻ x))σ (r(y)− r(x′)))

≤ −C1ϵ
∑
y∈M

wM′(x′)wM′(y) (σ(r(x′)− r(y)) + σ (r(y)− r(x′)))

≤ C1ϵ

∑
y∈M

wM′(x′)wM′(y) (2 + |r(y)|+ |r(x′)|+ 2 + |r(y)|+ |r(x′)|)

 [Equation (14)]

≤ C1ϵ

∑
y∈M

wM′(x′)wM′(y)

(
4 + 4

√
2 + λ

λwM′

)
≤ C2ϵ. (26)

By the same logic we also have that

f2(r)− fD′(r) ≤ C2ϵ. (27)

Note that Equations (26) and (27) hold for r = rD
′

w and r = r2 by Lemma G.1, Next we will
show that

f2(r
D′

w )− f2(r2) ≤ 2C2ϵ. (28)

Assume Equation (28) does not hold. Then we have that

fD′(rD
′

w )− fD′(r2) = (fD′(rD
′

w )− f2(r
D′

w )) + (f2(r
D′

w )− f2(r2)) + (f2(r2)− fD′(r2))

> −C2ϵ+ 2C2ϵ− C2ϵ

= 0.

However, this is a contradiction because by definition of rD
′

w , we must have that fD′(rD
′

w ) −
fD′(r1) ≤ 0. Therefore, we have shown that Equation (28) holds.

Lemma E.1 implies that for any r such that there exists a y ∈ M′ such that |r(y)− r2(y)| >√
2C2ϵ

λminz∈M wM(z)
, we must have that

f2(r)− f2(r2) > 2C2ϵ.

The contrapositive of the previous statement combined with Equation (28) implies that for
all y, we must have

|rD′

w (y)− r2(y)| ≤

√
2C2ϵ

λminz∈M wM(z)
= O(

√
ϵ).
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H Proof of Theorem 4.4

proof.

fD(r) = −
∑

x1,x2∈M

(
wM(x1)wM(x2)pD(x1 ≻ x2)× log

(
er(x1)

er(x1) + er(x2)

))
+

λ

2

∑
x∈M

wM(x)r(x)2

= −
∑

x1,x2∈M

((
1

|S|

∫
y1∈S

1x1∈projM(y1)

|projM(y1)|
dy1

)(
1

|S|

∫
y2∈S

1x2∈projM(y2)

|projM(y2)|
dy2

)
pD(x1 ≻ x2)× log

(
er(x1)

er(x1) + er(x2)

))

+
λ

2

∑
x∈M

(
1
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I Additional Case Study Details

I.1 Annotator Types

We use OpenAI’s gpt-4o-mini model to simulate human annotators with diverse preferences.
There are three populations of annotators, each of which attach a different amount of im-
portance to seeing ‘food’, ‘art’, and ‘romance’ mentioned in a description of Paris. Each of
the annotator types and their prevalence in the overall population are shown in the table
below.

I.2 Case Study Preference Dataset Generation

In the dataset ‘Original’, each preference datum is generated in the following manner. First,
we randomly select (with replacement) two categories out of [‘food’, ‘art’, ‘romance’] and ask

31



Alternative Type 1 (40%) Type 2 (30%) Type 3 (30%)
Romance ‘really like’ ‘mildly interested in’ ‘very uninterested in’

Art ‘mildly interested in’ ‘very uninterested in’ ‘really like’
Food ‘very uninterested in’ ‘really like’ ‘mildly interested in’

Table 4: Representation of annotator population. The prevalence of each type of annotator
is indicated in the header row, while the importance that each type of annotator attaches to
each category is presented in the matrix.

OpenAI’s gpt-4o-mini model to generate one response each to the prompt ‘briefly describe
Paris with a focus on [category]’. Next, we randomly select one annotator type with probabil-
ity equal to their prevalence in the overall population. We then instruct the model to act as
the selected annotator type and report a preference between the two responses. The dataset
with a cloned alternative is generated in the same manner, except we randomly select (with
replacement) two categories out of [‘food’, ‘art’, ‘romance’, ‘restaurants’] instead of simply
the first three. Note that the annotator types remain the same. Each dataset contains 1000
data points. Full prompts and sample responses for all interactions with gpt-4o-mini are
given below.

Prompt

You are a helpful assistant. Briefly describe Paris with a focus on food, and highlight
one activity.

Response

Paris, often referred to as the ”City of Light,” is renowned for its rich culinary heritage
and vibrant food scene. The city is a paradise for food lovers, offering a delightful
blend of traditional French cuisine and innovative gastronomy. Iconic dishes such as
coq au vin, bouillabaisse, and ratatouille can be found in charming bistros and upscale
restaurants alike. Paris is also famous for its patisseries, where you can indulge in
exquisite pastries like macarons, éclairs, and the decadent croissant.

Prompt

You are a helpful assistant. Briefly describe Paris with a focus on art, and highlight
one activity.
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Response

Paris, often regarded as the capital of art and culture, is a city steeped in history and
creativity. It boasts renowned museums like the Louvre, which houses masterpieces
such as the Mona Lisa and the Venus de Milo, as well as the Musée d’Orsay, famous
for its collection of Impressionist works. The city’s streets are filled with iconic artistic
sites, from the Montmartre district, once home to artists like Picasso and Van Gogh,
to contemporary galleries in the Marais.

Prompt

You are visiting Paris. You really like food, are mildly interested in romance, and are
very uninterested in art. You are given two answers to the question, ’Describe Paris’.
Which do you prefer? Respond with only (1) or (2).

(1) Paris, often referred to as the ”City of Light,” is renowned for its rich culinary
heritage and vibrant food scene. The city is a paradise for food lovers, offering a
delightful blend of traditional French cuisine and innovative gastronomy. Iconic dishes
such as coq au vin, bouillabaisse, and ratatouille can be found in charming bistros
and upscale restaurants alike. Paris is also famous for its patisseries, where you can
indulge in exquisite pastries like macarons, éclairs, and the decadent croissant.

(2) Paris, often regarded as the capital of art and culture, is a city steeped in history
and creativity. It boasts renowned museums like the Louvre, which houses master-
pieces such as the Mona Lisa and the Venus de Milo, as well as the Musée d’Orsay,
famous for its collection of Impressionist works. The city’s streets are filled with iconic
artistic sites, from the Montmartre district, once home to artists like Picasso and Van
Gogh, to contemporary galleries in the Marais.

Response

(1)

I.3 Extracting Context and Neural Network Training

We approximate both the standard MLE algorithm and the weighted MLE algorithm using
neural networks. Each neural network takes as input a context vector and outputs a reward
value. To generate the context vectors, we first use OpenAI’s text-embedding-3-small model
to extract embedding vectors from the textual descriptions of Paris in each dataset. For each
dataset, we then conduct principal component analysis (PCA) on the associated embedding
vectors using the PCA class from sklearn.decomposition, setting the number of components
equal to 1500. The PCA-transformed data is then given as input to the neural networks.
The neural network we used had 2 layers, and each hidden layer had size 32 (and output size
1). For training we used the Adam optimizer with a learning rate of 10−4 and a batch size
of 512 and implemented the training using PyTorch. We trained the neural networks for 500
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steps and then averaged the results over 20 runs to form the graphs included in this paper.

I.4 Weight Estimation

To estimate the weights for the weighted MLE, we sampled 100000 random vectors within
the chosen space S and computed the weight for each of the alternatives in the dataset.
In Figure 4 we chose S to be the unit cube in the context vector space. Another natural
choice of S is any vector such that every coordinate of that vector is within a factor of 2 of
the corresponding coordinate in one of the vectors in the observed set of alternatives. By
restricting to vectors with coordinates close to those in the observed set of alternatives, this
is potentially a more suitable choice for S than choosing S to be the entire unit cube. This
is because the unit cube may include many alternatives that are not reasonable answers to
the question. While there are arguments for many different choices of S, we also analyze this
choice of S to demonstrate the robustness of the weighted MLE. The results for this choice
of S are shown below in Figure 5, and the weighted MLE remains robust to the addition of
approximate clones.
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Figure 5: Results for the weighted MLE when S is chosen as any vector such that every
coordinate is within a factor of 2 of one of the observed coordinates. The yellow points show
the average value of the weighted MLE reward function for different topics when trained on
dataset ‘Original’. The blue points show the same but when trained on dataset ‘Clones’.
In both cases, the reward function has the highest value for romance, demonstrating the
robustness of the weighted MLE.
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