
Foundations of Safe Online Reinforcement Learning in
the Linear Quadratic Regulator: Generalized Baselines

Benjamin Schiffer and Lucas Janson

Department of Statistics, Harvard University

Abstract

Many practical applications of online reinforcement learning require the satisfaction
of safety constraints while learning about the unknown environment. In this work, we
establish theoretical foundations for reinforcement learning with safety constraints by
studying the canonical problem of Linear Quadratic Regulator learning with unknown
dynamics, but with the additional constraint that the position must stay within a safe
region for the entire trajectory with high probability. Our primary contribution is
a general framework for studying stronger baselines of nonlinear controllers that are
better suited for constrained problems than linear controllers. Due to the difficulty of
analyzing non-linear controllers in a constrained problem, we focus on 1-dimensional
state- and action- spaces, however we also discuss how we expect the high-level take-
aways can generalize to higher dimensions. Using our framework, we show that for any
non-linear baseline satisfying natural assumptions, ÕT (

√
T )-regret is possible when

the noise distribution has sufficiently large support, and ÕT (T
2/3)-regret is possible

for any subgaussian noise distribution. In proving these results, we introduce a new
uncertainty estimation bound for nonlinear controls which shows that enforcing safety
in the presence of sufficient noise can provide “free exploration” that compensates for
the added cost of uncertainty in safety-constrained control.
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1 Introduction

1.1 Background and Motivation

Recent advances in reinforcement learning (RL) have led to many successes in applying RL
algorithms to a variety of practical online applications, from robotics to personalized health
[Levine et al., 2016, Lillicrap et al., 2015, Tewari and Murphy, 2017]. A core concept behind
online RL algorithms is the careful balance between exploration (proactively learning about
the unknown environment) and exploitation (using what is already known to maximize
reward). In practice, however, RL algorithms are restricted in the possible actions and
states by safety constraints. For example, a drone using an RL algorithm must have safety
constraints restricting possible states that would result in the drone crashing into a building
or injuring a bystander. Therefore, the drone cannot explore the environment by accelerating
directly into a building, and instead must explore in a safe manner. To deploy more RL
algorithms to practical applications, instead of just balancing exploration versus exploitation,
the optimal algorithm must now balance exploration versus exploitation versus safety. In
many applications, the safety constraints must be obeyed at all time steps (even at the
beginning), which does not allow for any violation of safety even during the initial learning
period. Therefore, this component of “safety” involves both learning safely as well as learning
how to be safe in the future. Studying simple canonical problems in RL can give insights
into how to develop safe RL algorithms in more complex practical settings. In this paper,
we address safety in the context of online LQR with unknown dynamics. Online LQR with
unknown dynamics can be viewed as one of the simplest RL problems with a continuous
decision space, and this problem has recently gained significant attention within the RL
community both with and without safety constraints (see e.g. Abbasi-Yadkori and Szepesvári
[2011], Dean et al. [2018, 2019]).

1.2 Setting and Motivation

In order to better understand the interaction between safety and the balance of explo-
ration/exploitation, we study the classic problem of controlling a discrete-time linear dy-
namical system with unknown dynamics while minimizing a quadratic cost. In our problem
setting, the position at the next time step depends on the current position, the current
control input, and a random noise. The goal is to choose controls (actions) that keep the
position as close to the origin as possible while using as little control as possible. An example
application of this problem is controlling a drone around a target [Rubio et al., 2016]. In this
scenario, the goal is to maintain a safe distance from the target while preserving fuel despite
random disturbances from air currents. In this paper, we are interested in the setting where
the dynamics are unknown. When the dynamics are unknown, LQR becomes an online RL
problem of balancing exploration (controls that learn about the dynamics) and exploitation
(controls that minimize the cost). Extending the previous example of controlling a drone
around a target, the dynamics could for example be determined by the weather pattern that
is unknown in advance. The goal in this paper is to design an algorithm that can learn
the dynamics safely while not incurring significantly more cost than the best safe algorithm
when the dynamics are known.
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To quantify safety in this setting, we will consider constraints on the position of the
controller which restrict the position to stay within a safe region. Continuing the previous
example, a drone control must be safe in that it must avoid positions that are currently
occupied by walls or other objects. We focus on position constraints rather than control
constraints because position constraints have the added difficulty that, at the time of choos-
ing the control, the next position for any given control is unknown due to the noise and
uncertainty about the dynamics. In contrast, the algorithm has perfect information about
(and control over) the choice of control. We therefore consider the LQR setting with only
position constraints. See Section 5 for discussion on how our results extend to the setting
with control constraints. While the optimal policy with known dynamics and without po-
sition constraints is the well-understood Linear Quadratic Regulator, with constraints the
optimal policy even for known dynamics no longer has a closed-form [Rawlings and Mayne,
2009]. Due to the substantially increased complexity of the constrained LQR problem with
both known and unknown dynamics, we will focus on the setting when both the positions
and controls are one-dimensional. We focus on the one-dimensional setting to highlight the
main ways in which learning unknown dynamics changes in the presence of constraints, with-
out the additional technical overhead that comes with proving results for higher dimensions.
However, we do predict that many of the results in this paper can be generalized to higher
dimensions, and we discuss this further in Section 5. Other works have also taken the same
approach of first studying only the one-dimensional case of LQR, see e.g. Fefferman et al.
[2021], Abeille and Lazaric [2017]. The one-dimensional setting of safe LQR does have its
own applications, for example maintaining a fixed temperature of a room [Oldewurtel et al.,
2008]. In this application, the goal is to maintain a certain range of safe temperatures with
high probability while using as little energy as possible. Taking temperature as the position,
this problem can be formulated as a one-dimensional LQR problem with safety “position”
constraints on the temperature.

1.3 Our Contribution

The main theorems of this paper each establish new regret results for safety-constrained LQR
learning. We improve prior works’ regret bounds for this setting along three dimensions,
the regret rate, the regret baseline, and the types of noise distributions. In contrast to prior
works, we focus on one-dimensional LQR with only positional constraints, but in this setting
we study more general non-linear baselines. The following table summarizes our different
results relative to prior works across these three dimensions:

Regret Rate Regret Baseline Noise Distributions

Previous works ÕT (T
2/3) Best Safe Linear Controller Bounded

Theorem 1 ÕT (
√
T ) Best General Baseline Controller subgaussian+Large Support

Theorem 2 ÕT (T
2/3) Best General Baseline Controller subgaussian

The main contribution of this paper is a general framework for analyzing different base-
lines for the safety-constrained LQR learning problem. Using this framework, we show that
a ÕT (

√
T ) rate of regret is possible for safety-constrained LQR learning in one-dimension
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for noise distributions with large support, improving on ÕT (T
2/3) regret of previous works

[Li et al., 2021, Dean et al., 2019]. This rate of regret for constrained LQR learning matches
the optimal regret rate for unconstrained LQR learning [Ziemann and Sandberg, 2024]. In
addition to improving the rate of regret, this result is also with respect to a stronger and
more general baseline than studied in previous works. The regret for this result is defined
with respect to the best controller from general classes of baseline controllers satisfying only
minimal regularity condition. To the best of our knowledge, this is the first work on con-
strained LQR learning with respect to any baseline other than the best safe linear controller.
Our result also holds for any subgaussian noise distribution, which is the (to the best of
our knowledge) first safety-constrained LQR learning result for unbounded distributions. A
key technical tool used to prove ÕT (

√
T ) regret is a new bound for estimating unknown

dynamics with non-linear controllers, which may be of independent interest.
In addition to showing that ÕT (

√
T ) regret is possible when the noise distribution has

sufficiently large support, we also show that a certainty equivalence algorithm can achieve a
regret rate of ÕT (T

2/3) relative to the best controller from these general classes of baseline
controllers for any subgaussian noise distribution. All of the proofs of the regret results in
this paper are constructive and provide certainty equivalence algorithms for achieving the
guaranteed rates of regret.

1.4 Related Work

RL has been recognized as being a powerful tool in a broad array of applications [Silver et al.,
2016, Kiran et al., 2021, Levine et al., 2016], but there is still a need to better understand
RL in the presence of safety constraints. There exists a wide array of definitions of safety
in RL, many of which focus on some notion of reachability or stability [Ganai et al., 2024,
Garg et al., 2024, Gu et al., 2022, Moldovan and Abbeel, 2012, Wachi et al., 2018, 2024,
Yao et al., 2024]. However, these notions of safety are less directly related to our problem
setting. More related to our problem, there is also a body of literature on algorithms for
RL for control with constraints that maintain safety for the entire trajectory [Fulton and
Platzer, 2018, Cheng et al., 2019, Marvi and Kiumarsi, 2021, Fisac et al., 2018]. These works
study different broad definitions of safety in control, which can apply to a wider variety of
models and settings than our results. However, the technical contribution of these works
focuses specifically on developing safe algorithms, without proving theoretical results about
the rates of regret or the optimality of the proposed safe algorithms.

The LQR problem has many applications despite the simplicity of the problem statement
[Priess et al., 2014, Choi and Seo, 1999, Shabaani and Jalili-Kharaajoo, 2003]. There has
recently been a large body of work focusing on minimizing regret in the unconstrained
LQR setting with unknown dynamics, beginning with Abbasi-Yadkori and Szepesvári [2011]
which gave the first algorithm for ÕT (

√
T ) regret for unconstrained LQR learning. This was

followed by many works that study variations of both the infinite and finite time problem
including (but not limited to) Dean et al. [2018], Mania et al. [2019, 2020], Simchowitz et al.
[2018], Cohen et al. [2019], Wang and Janson [2021, 2022], Mania et al. [2019], Abeille and
Lazaric [2017], Zheng and Li [2020], Sun et al. [2020], Khosravi and Smith [2020], Sattar
and Oymak [2022], Faradonbeh et al. [2018a, 2017], Oymak and Ozay [2019], Ye et al.
[2024], Athrey et al. [2024], Ziemann and Sandberg [2024], Lee et al. [2024]. Certainty
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Equivalence (CE) algorithms estimate the unknown dynamics and find an optimal policy
under the estimated dynamics. Later works on LQR learning showed that CE algorithms
are in fact (rate) optimal for the unconstrained learning problem [Simchowitz and Foster,
2020, Faradonbeh et al., 2018b, Mania et al., 2019, Wang and Janson, 2022]. There are also
some connections between our work and the areas of model predictive control and system
identification, but we defer these to the appendix (Appendix B) in the interest of space
because the connections to our work are not as strong as the works surveyed in the rest of
this subsection.

The two previous works that are most closely related to this paper are Dean et al.
[2019] and Li et al. [2021], which both study safety-constrained LQR learning with unknown
dynamics. Both works study the regret with respect to the baseline of the best linear
controllers of the form ut = −Kxt and derive an upper bound of ÕT (T

2/3) on the regret. In
Dean et al. [2019], they use system level synthesis to develop an algorithm that can safely
inject noise into the system to give statistical guarantees on the learning rate. Li et al. [2021]
provide the first adaptive learning algorithm for constrained LQR learning with unknown
dynamics using a CE approach. While their results hold for higher dimensional LQR, our
results improve on theirs in two ways. First, we are able to show a regret rate of ÕT (

√
T )

for some noise distributions, an improvement over their regret rate of ÕT (T
2/3). Second, our

regret results are with respect to a significantly stronger and more general baseline. These
previous works focused on regret with respect to the best safe linear controller. However,
the class of safe linear controllers is a relatively weak class of safe controllers, and the best
safe linear controller can be far worse than the best overall safe controller. See Section
3.1 for more discussion on the importance of the choice of baseline. Note that these works
allow constraints on both control and positions, while our results focus only on positional
constraints. See Section 5 for more discussion on control constraints.

This work is the first part of a two part series of papers on safe LQR learning. In this
paper, we provide a general framework for studying baselines of non-linear controllers in this
problem. The second part of the series [Schiffer and Janson, 2025] uses the general framework
from this paper to study a specific baseline of non-linear controllers known as the truncated
linear controllers. Schiffer and Janson [2025] shows that the assumptions proposed in this
paper do actually hold for a very natural baseline, and therefore our general framework can
be applied to that baseline. Using the current paper’s framework, Schiffer and Janson [2025]
shows an even stronger result holds for that paper’s specific baseline using a more complex
algorithm. The additional results in Schiffer and Janson [2025] required significant extra
technical work that would have pushed this paper’s already lengthy technical appendix to
an inaccessible length, which is why we split the results into a two part series.

2 Preliminaries

2.1 Outline of Preliminaries

In order to formally state our problem, the preliminaries section is organized as follows.
First, in Section 2.2, we outline the dynamics of the system and the notation we will use for
controllers. In Section 2.3, we define and motivate the expected-position safety constraints
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we use to represent safety throughout the paper. In order for it to be possible to learn safely,
we also need some initial information. In Section 2.4, we outline the exact assumptions we
make on the initial uncertainty. Finally, in Section 2.5, we put everything from the previous
sections together with a definition of regret to formally state our problem.

2.2 Problem Dynamics

Denote the state of the system at time t for t ∈ [T ] as xt ∈ R and the control at time t
as ut ∈ R. For simplicity, we will assume that the system starts at position x0 = 0. The
position at time t + 1 follows dynamics xt+1 = a∗xt + b∗ut + wt, where a∗ ∈ R and b∗ ∈ R
determine the dynamics and wt

i.i.d.∼ D is the noise term drawn from a continuous, mean-0
probability distribution D with cumulative distribution function FD and variance σ2

D = 1.
We will consider the quadratic cost at time t as qx2

t + ru2
t for q, r ∈ R>0, and consider the

sum of cost over the first T steps. Throughout this paper, we will assume that the dynamics
a∗, b∗ are unknown, while all other problem parameters are known (e.g. D, q, r, etc.). For
simplicity, we will denote the unknown dynamics as θ∗ = (a∗, b∗) ∈ R2.

We will also use the following controller notation. Define Ht = (x0, u0, x1, ..., ut−1, xt),
and Ft = σ(Ht), the sigma algebra generated by Ht. We define a (possibly time-dependent
and randomized) controller C such that the control chosen at time t is ut = C(Ht). Note
that any randomness in the controller C must be independent of the noise random variables
{wt}T−1

t=0 . Define the T -step cost of a controller C starting at position x0 under dynamics θ
with noise random variables W = {wt}T−1

t=0 as

J(θ, C, T, x0,W ) =
1

T

(
qx2

T +
T−1∑
t=0

qx2
t + ru2

t

)
, (1)

where ut = C(Ht), xt+1 = axt + but + wt, wt
i.i.d.∼ D.

Notice that J outputs an average cost. We will refer to T ·J(θ, C, T, x0,W ) as the total cost.
We denote J∗(θ, C, T, x0) as the expectation of J(θ, C, T, x0,W ) with respect to only the ran-
domness in W . Formally, this means that J∗(θ, C, T, x0) = E [J(θ, C, T, x0,W ) | θ, C, T, x0]
in case any of θ, C, T , and x0 are random, but in the typical setting when θ, C, T , and x0

are all deterministic, J∗(θ, C, T, x0) will be non-random. For notational simplicity, we also
define J∗(θ, C, T ) = J∗(θ, C, T, 0).

2.3 Constraints

Now we will formalize our positional constraints. Both Dean et al. [2019] and Li et al. [2021]
formulate their positional constraints as realized-position constraints of the form

Dx
L ≤ xt ≤ Dx

U, (2)

which must be satisfied with probability 1 when the dynamics are known. Realized-position
constraints that hold with probability 1 have the easy interpretation that the realized posi-
tion must never exceed the realized-position boundaries given by the user of the algorithm.
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However, in the case of unbounded noise distributions (for example Gaussian noise), having
the realized position never exceed any compact set with probability 1 is impossible even with
known dynamics. This is because with Gaussian noise, there is always a strictly positive
probability that xt will be outside of the safe region [Dx

L, D
x
U] for any choice of control ut−1.

Therefore, in order to allow for unbounded noise distributions, we must relax the requirement
of never exceeding the constraints with probability 1, and instead allow the position xt to
exceed the realized-position boundaries Dx

L and Dx
U with probability at most δtraj throughout

the entire trajectory. Using a union bound, one way to achieve this relaxation for T steps is
to require that for every t,

Dx
L − F−1

D

(
δtraj
2T

)
≤ a∗xt + b∗ut ≤ Dx

U − F−1
D

(
1− δtraj

2T

)
. (3)

Motivated by this result, we will formulate our problem in terms of expected-position con-
straints of the form

D
E[x]
L ≤ a∗xt + b∗ut ≤ D

E[x]
U . (4)

Because D is mean-0, this expected-position constraint has the easy interpretation of con-
straining the expected position, conditional on the history, at every time point (hence the
E[x] superscript). By constraining the expected position, we are also implicitly constraining

the realized position xt to be within the random interval [D
E[x]
L +wt−1, D

E[x]
U +wt−1]. Further-

more, if the noise distribution has support [−w̄, w̄] and δtraj = 0 (as in Dean et al. [2019] and
Li et al. [2021]), then realized-position constraints are a special case of the expected-position
constraints: Equation (2) with realized-position boundaries Dx :=

(
Dx

L, D
x
U

)
is equivalent to

Equation (4) with expected-position boundaries DE[x] := (D
E[x]
L , D

E[x]
U ) =

(
Dx

L + w̄,Dx
U− w̄

)
.

For unbounded noise, Equation (2) is impossible to satisfy with probability 1, while Equa-
tion (4) is possible to satisfy and is directly related to the problem of satisfying the realized-
position constraints with high probability. Therefore, the constraints in Equation (4) can in
some sense be thought of as a generalization of the realized-position constraints in Equation
(2). To maintain that 0 is a safe position, we will also require that D

E[x]
L < 0 < D

E[x]
U (see

Assumption 3).
In order to satisfy the realized position constraints in Equation (2) for all T steps with

constant probability, the magnitude of the boundaries must scale with the max position,
which scales with the magnitude of the largest realized noise. For an unbounded distribution
D, this means that the realized-position boundaries must be a function of T that grows
with T . Now looking at Equation (3), the implied expected-position constraints include
both Dx (which may be a function of T ) and a quantile of the noise distribution (which is
explicitly a function of T ). Therefore, we will allow the expected-position boundary DE[x]

of Equation (4) to depend on T . However, in the typical feasible safe RL problem we will
have expected-position boundaries that are OT (1). The reason for this is that the expected-
position constraints only bound the position in expectation. Therefore, unlike the realized-
position boundary which must scale with the maximum position in order to be feasible, the
expected-position boundary is feasible as long as it scales with the largest product of position
and dynamics estimation error (uncertainty in θ). Under the assumptions in this paper, we
will achieve an estimation error that decreases at a rate that is much faster than the rate at
which the maximum position grows. Thus, while we allow the expected-position boundaries
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to be functions of T , the reader should generally think of them as not growing with T in a
typical problem, and indeed some of our results will explicitly require the expected-position
boundaries to be OT (1).

Formally, we define safety as follows. Note that when the boundaries (D
E[x]
L , D

E[x]
U ) are

clear in context, we will drop the constraints and simply refer to algorithms that are safe for
a specific dynamics θ∗.

Definition 1. A series of controls {ut}T−1
t=0 are safe for dynamics θ∗ and boundaries (D

E[x]
L , D

E[x]
U )

if every control satisfies Equation (4). Similarly, a controller C is safe for dynamics θ∗ and

boundaries (D
E[x]
L , D

E[x]
U ) if the resulting controls {C(Ht)}T−1

t=0 under true dynamics θ∗ are
safe for dynamics θ∗.

2.4 Initial Uncertainty Assumptions

Without any prior knowledge about the unknown dynamics θ∗, it is impossible to choose a
first action that is guaranteed to be safe for all θ∗ ∈ R2. Therefore, to learn anything about
the unknown dynamics while maintaining safety, we require some initial information about
the unknown dynamics. Before getting into our main results, we will therefore formalize our
assumptions about the initial uncertainty in our problem. As is standard in previous works
[Abbasi-Yadkori and Szepesvári, 2011, Li et al., 2021], we will assume the following:

Assumption 1. The algorithm has access to some Θ = Θa × Θb = [a, ā] × [b, b̄] such that
θ∗ ∈ Θ and b̄ ≥ b > 0 and ā ≥ a > 0.

Θ can be thought of as the initial uncertainty set for θ∗. Define the size of such a set Θ as
size(Θ) = max(ā−a, b̄−b). Note that depending on the size of Θ, maintaining safety with re-
spect to the expected-position boundaries for any θ∗ ∈ Θ may be infeasible. Infeasible in our
setting means that there does not exist any adaptive controller C such that for all θ∗ ∈ Θ, the

controller is safe with high probability, i.e. P
(
∀t < T : D

E[x]
L ≤ a∗xt + b∗C(Ht) ≤ D

E[x]
U

)
≥

1− δ. Clearly feasibility of Θ (for some appropriate choice of δ) is a necessary condition for
our problem to have a solution. The assumptions we make are only slightly stronger than
just feasibility, which we discuss further in Appendix H.3. As described in Section 1.4, many
previous works have developed algorithms that maintain guaranteed safety, but to the best
of our knowledge the exact amount of prior information needed has not been quantified.

The assumption that a∗, b∗ > 0 is for algebraic convenience, and the same results can be
shown for any constant a∗, b∗ ∈ R. The assumption that a, b > 0 can actually be removed
given the next assumption, and we discuss this more in Appendix H.1.

The other main assumption about prior information that we make is that we have suffi-
cient information to not violate the safety constraint for some initial period of the algorithm.

Assumption 2. There is a known controller C init such that ∀x ∈
[
D

E[x]
L + F−1

D ( 1
T 4 ), D

E[x]
U + F−1

D (1− 1
T 4 )
]
,

D
E[x]
L +

b∗

log(T )
≤ a∗x+ b∗C init(x) ≤ D

E[x]
U − b∗

log(T )
. (5)
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To get a sense of how strong Assumption 2 is, note that if we ignore the vanishing log
terms in Equation (5), then Assumption 2 is equivalent to assuming that we can identify any
safe controller. If this is not the case, then safe learning is clearly impossible. We further
discuss Assumption 2 and how it relates to the concept of feasibility in Appendix H.3. In
Appendix H.2, we also provide further interpretation of Assumption 2 in the case of bounded
noise.

2.5 Problem Statement

We define Cθ∗ as a baseline class of controllers if every controller C ∈ Cθ∗ is safe with respect
to dynamics θ∗ with probability 1. If θ∗ were known, then the safe LQR problem with Cθ∗

as the baseline would simply be to minimize the expected total cost for all controllers in this
baseline, i.e. to solve

min
C∈Cθ∗

T · J∗(θ∗, C, T ). (6)

We will use the expression in Equation (6) as the baseline cost to which we compare the cost
of our algorithms. We will often consider families of controller classes {Cθ}θ∈Θ such that for
any dynamics θ, every controller in the class Cθ is safe for dynamics θ with probability 1.
For example, the baseline class Cθ could be the class of linear controllers that are safe for
dynamics θ, the class of affine controllers that are safe for dynamics θ, all controllers that
are safe for dynamics θ, etc.

The regret of an algorithm with corresponding controller Calg with respect to baseline
Cθ∗ is the random variable

Regret := T · J(θ, Calg, T, 0,W )− min
C∈Cθ∗

T · J∗(θ∗, C, T ). (7)

Note that this regret random variable compares the realized cost of the algorithm with the
expected cost of a controller from the baseline class, and this definition of regret is typical in
the LQR learning literature [Abbasi-Yadkori and Szepesvári, 2011, Li et al., 2021]. We also
could have defined regret comparing the realized cost of an algorithm to the realized cost of
the best (in expectation) controller from the baseline class. Due to standard concentration
inequalities, the realized total cost of the baseline controller will be within Õ(

√
T ) of the

expected total cost of the baseline controller. Therefore, considering a realized total cost for
both terms in the regret would change our regret bounds by at most Õ(

√
T ) and therefore

not change any of the results.
The overarching goal of this paper is to find a controller Calg that achieves low regret as

defined in Equation (7) and such that for any true dynamics θ∗ ∈ Θ, the controller Calg is safe
for θ∗ with probability 1−oT (1/T ). Note that we only require that the algorithm Calg is safe
with probability 1−oT (1/T ), while we require the baseline to be safe with probability 1. This
(slightly unfair) mismatch is necessary to allow the algorithm to use information “learned”
from historical observations when trying to satisfy the safety constraints. For example, if
D is an unbounded distribution, then it is impossible to conclude anything with probability
1 based on any amount of historical information. We want to allow our algorithm to use
information about θ∗ learned from previous time steps to choose better future safe controls,
and therefore we only require safety with respect to θ∗ with probability 1 − oT (1/T ). We
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chose 1− oT (1/T ) for the safety probability because this is strictly stronger than 1− oT (1)
or 1 − δ for constant δ > 0, and therefore our results hold for these larger probabilities of
satisfying safety as well. In principle, we could also compare to a baseline that allows some
probability of error. However, because the baseline does not need to learn θ∗, allowing it to
be safe with probability slightly less than 1 would not significantly impact its cost, while it
would significantly increase the mathematical complexity of the analysis.

Finally, we will make the following assumptions about the problem specifications through-
out this paper.

Assumption 3 (Problem Specifications). The noise distribution D is mean-0, variance 1,

and subgaussian with bounded density. The boundaries D
E[x]
L , D

E[x]
U (which may be functions

of T ) satisfy that − log2(T ) ≤ D
E[x]
L < 0 < D

E[x]
U ≤ log2(T ) and that D

E[x]
U −D

E[x]
L ≥ 1

log(T )
.

For exposition purposes, we also assume that log2(T
1/12) is an integer. The assumption

of variance 1 gives a simpler uncertainty bound, but as in Abbasi-Yadkori and Szepesvári
[2011] this can be relaxed. We assume that max(|DE[x]

L |, D
E[x]
U ) ≤ log2(T ) because if the

constraints are greater than log2(T ), then the constraints have very little impact on the
optimal controller. This is because with subgaussian noise, with high probability the noise
random variables have magnitude less than o(log(T )), and so reasonable controllers will
with high probability never hit the constraint. Therefore, if both boundaries are greater
than log2(T ) then the problem becomes similar to the unconstrained problem, and if one
boundary is large, then the problem becomes one sided which is an easier version of our
problem. The assumption of mean-0 and subgaussian noise is also standard in the LQR
literature [Abbasi-Yadkori and Szepesvári, 2011, Dean et al., 2019, Li et al., 2021].

Putting everything together, the formal problem we are considering is the following.

Problem 1 (Safe LQR Learning). Suppose we are given D,D,Θ, T that satisfy Assumption
1–3 and a set of baseline classes of controllers {Cθ}θ∈Θ. Then the goal of safe LQR learning
is to find an algorithm Calg that achieves a regret with respect to baseline Cθ∗ that is as low
as possible, while also satisfying supθ∈Θ P

(
Calg is safe with respect to θ

)
= 1− oT (1/T ).

Note that supθ∈Θ P
(
Calg is safe with respect to θ

)
= 1− oT (1/T ) is equivalent to requir-

ing that there exists some probability p = 1− oT (1/T ) such that for any θ ∈ Θ, if the true
dynamics θ∗ = θ then the controls used by Calg are safe with respect θ∗ with probability p.

2.6 Notation

To simplify notation, we use θ = (a, b) to represent an arbitrary set of dynamics and θ∗ =
(a∗, b∗) to represent the true (unknown) dynamics. We will also use D := (DL, DU) :=

(D
E[x]
L , D

E[x]
U ) (i.e., drop the superscripts). We will use ÕT and OT notation to represent

Õ and O with respect to T , where the values of the hidden constants and log terms may
depend on the values of problem inputs such as q, r,D,D,Θ. Because the nature of our
problem requires us to define a significant amount of notation in this paper, we have a table
in Appendix A that lists the common notation used throughout the paper that the reader
can use as a reference if needed.
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3 Theoretical Results

The goal of this paper is to provide a general framework for studying the regret with respect
to non-linear baselines of controllers. We first introduce a general class of baselines satisfying
regularity conditions in Section 3.1. We then present our two main theorems in Section 3.2.

3.1 Regret Rates for General Baselines

In order to present our main theorem, we first need a baseline class of controllers Cθ∗ to
define the regret in Equation (7). In both Li et al. [2021] and Dean et al. [2019], the regret
baseline for the ÕT (T

2/3) results is the cost of the best stationary linear controller of the
form ut = −Kxt that is safe for θ

∗ with probability 1. We will refer to the class of stationary
linear controllers that are safe for θ∗ with probability 1 as the class of safe linear controllers.
Since not all linear controllers are safe for dynamics θ∗, this is restricted to K that will
maintain safety for θ∗ for any realization of the noise, and therefore can be a very weak
baseline. Linear controllers are not always well-suited for safety constrained LQR because
linear controllers only have one degree of freedom (K), but in safety constrained LQR the
controller must balance keeping regret low with being safe. For example, when DU and
DL are not symmetric, the best linear controller must still behave symmetrically. However,
symmetric behavior may be far from optimal for DU and DL that are not symmetric, and
linear controllers lack the flexibility to behave non-symmetrically. Therefore, there exist
much stronger baselines than the safe linear controllers studied in Li et al. [2021], Dean et al.
[2019].

In Section 3.2, we present two results that hold for a wide range of stronger baseline
classes of controllers. Before stating the theorems, we will outline a few assumptions on the
controllers in these general baseline classes.

Let {Cθ}θ∈Θ be the set of baseline classes of controllers for dynamics θ ∈ Θ. For the rest
of this paper, we will assume that the baseline class of controllers satisfies Assumption 4.

Assumption 4. All of the controllers in the baseline class Cθ for all θ ∈ Θ are stationary,
Markovian, deterministic, and safe for dynamics θ with probability 1.

Note that the assumption that every controller in Cθ is safe for dynamics θ with probabil-
ity 1 is consistent with the baselines of Li et al. [2021] and Dean et al. [2019]. Additionally,
this means that the baseline class of controllers could change depending on the dynamics
θ, as the class of controllers that is safe for one dynamics will not necessarily be safe for
a different dynamics. One option is to construct the baseline class from another class of
controllers C̃ (for example the class of linear controllers), as follows:

{C ∈ C̃ : C is safe for dynamics θ}. (8)

If C̃ is a rich enough class of controllers (e.g. all controllers), then Equation (8) would result
in a good safe baseline. However, if C̃ is a relatively small class of controllers (e.g. linear
controllers), then the restriction in Equation (8) to only controllers in the class that are safe
for θ may result in a weak safe baseline. Therefore, instead of simply subsetting the class
of controllers C̃ as in Equation (8), we will preserve the complexity of the function class C̃
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by transforming every controller in C̃ into a controller that is safe for θ. We generalize even
further by allowing the starting class of controllers C̃θ to be different for each θ.

Assumption 5 (Truncation). For any θ, there exists a controller class C̃θ of deterministic
controllers such that the baseline class Cθ consists of all controllers of the following form for
C ∈ C̃θ:

Cθ(x) =


C(x) if DL ≤ ax+ bC(x) ≤ DU

DU−ax
b

if ax+ bC(x) > DU

DL−ax
b

if ax+ bC(x) < DL.

(9)

By this construction, every controller Cθ ∈ Cθ is safe for dynamics θ. We will also assume
that Cθ is parameterizable by a scalar parameterK ∈ R. This allows us to choose the optimal
controller in Cθ in terms of the parameter K.

Assumption 6 (Parametrization). For any θ, there exists Kθ
L, K

θ
U ∈ R such that the Cθ in

Assumption 5 can be parameterized as Cθ = {Cθ
K : K ∈ [Kθ

L, K
θ
U]}. Furthermore, for any θ,

T there exists a Kopt(θ, T ) satisfying

Kopt(θ, T ) = arg min
K∈[Kθ

L,K
θ
U]
J∗(θ, Cθ

K , T ).

Our results require two more key assumptions on the class of controllers.

Assumption 7 (Average Cost Lipschitz in Optimal Controller). There exists ϵA7 = Ω̃T (1)
such that for any ∥θ − θ∗∥∞ ≤ ϵA7 and t ≤ T ,

|J∗(θ∗, Cθ
Kopt(θ,t), t)− J∗(θ∗, Cθ∗

Kopt(θ∗,t), t)| ≤ ÕT

(
∥θ − θ∗∥∞ +

1

T 2

)
.

Assumption 7 relates the expected cost under dynamics θ∗ of the optimal controller for
dynamics θ∗ to the expected cost of the optimal controller for some other dynamics θ close
to θ∗. Intuitively, this is a form of Lipschitz continuity which implies that the performance
of the optimal controller is not too sensitive to the choice of θ. Some sort of continuity
assumption is intuitively required for any form of certainty equivalence algorithm to achieve
low regret guarantees.

Assumption 8 (Total Cost Lipschitz in Initial Position). There exist ϵA8, δA8 = Ω̃T (1) such
that for any θ satisfying ∥θ − θ∗∥∞ ≤ ϵA8 the following holds. For t < T , let W ′ = {wi}t−1

i=0.
Then for any K ∈ [Kθ

L, K
θ
U], there exists a set YA8 ∈ Rt that depends only on Cθ

K such that the
following holds. Define EA8

(
Cθ

K ,W
′) as the event that W ′ ∈ YA8. Then P(EA8

(
Cθ

K ,W
′)) ≥

1 − oT (1/T
10) and for any |x|, |y| ≤ 4 log2(T ) such that |x − y| ≤ δA8, conditional on event

EA8

(
Cθ

K ,W
′),∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ ≤ ÕT (|x− y|+ ∥θ − θ∗∥∞). (10)

Assumption 8 relates the random variables of cost when starting at two different positions,
x and y, but with the same noise random variables W ′. Intuitively, this implies that making
a small non-optimal control will not have significant long-term impact on the total cost.

12



Therefore, this assumption can be thought of as assuming the total cost is Lipschitz in the
initial position.

The final assumption we consider is an assumption that the noise distribution has suffi-
ciently large support, which we require for Theorem 1 but not for Theorem 2. Note that we
only need the noise distribution to have large support relative to one of the two boundaries
(DU or DL). We will w.l.o.g. state Assumption 9 relative to boundary DU, however an
equivalent assumption swapping DL and DU would also be sufficient for Theorem 1.

Assumption 9. For any z, define P (θ,K, z) as the largest x such that ax + bCθ
K(x) ≤ z.

There exists a constant ϵA9 > 0 such that the following equation holds for all t ≥
√
T for

sufficiently large T :

Pw∼D (w ≥ P (θ∗, Kopt(θ
∗, t), DU)−DL) ≥ ϵA9 > 0. (11)

The quantity P (θ∗, Kopt(θ
∗, t), DU) will often be proportional to and greater than DU.

Because D is constant relative to T , Assumption 9 implies that the boundary D must
satisfy ∥D∥∞ = OT (1). When ∥D∥∞ = OT (1), Assumption 9 effectively requires that the
noise distribution D has a constant probability of spanning the distance between DL and
DU. Note that Assumption 9 is automatically satisfied for any ∥D∥∞ = OT (1) when the
noise distribution is Gaussian, unbounded, or bounded with a high enough variance. This
assumption will be necessary to achieve regret of ÕT (

√
T ) in Theorem 1, as the variance

from the noise distribution of Assumption 9 provides the controller with extra exploration
that leads to better estimation. We will also provide a result for general classes of controllers
that does not require this assumption, but achieves a worse regret rate (Theorem 2).

3.2 Theorems

We are now ready to present our first theorem.

Theorem 1. In the setting of Problem 1 and under further Assumptions 4–9, there exists
an algorithm Calg (Algorithm 3) that with probability 1 − oT (1/T ) achieves ÕT (

√
T ) regret

with respect to baseline Cθ∗ while also satisfying supθ∈Θ P
(
Calg is safe with respect to θ

)
=

1− oT (1/T ).

The key lemma in proving Theorem 1 is a new estimation bound for the unknown system
dynamics θ∗ (Lemma 26). Informally, this estimation bound shows that simply by obeying
safety constraints, the unknown dynamics can be estimated at a rate of 1/

√
t without inject-

ing any additional randomness into the controller. This faster rate of learning is because in
order to be safe, the controller must frequently be non-linear, which in turn helps learn the
unknown dynamics. This result of safe behavior leading to faster learning rates may also be
of independent interest in other safe RL problems.

The more general result of this paper is Theorem 2, which achieves a weaker regret
rate of ÕT (T

2/3) but applies for any subgaussian noise distribution (in particular, it drops
Assumption 9).

Theorem 2. In the setting of Problem 1 and under further Assumptions 4–8, there exists
an algorithm Calg (Algorithm 2) that with probability 1 − oT (1/T ) achieves ÕT (T

2/3) regret
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with respect to baseline Cθ∗ while also satisfying supθ∈Θ P
(
Calg is safe with respect to θ

)
=

1− oT (1/T ).

Theorem 2 is an improvement on existing results in that it bounds the regret of con-
strained LQR learning for any subgaussian noise distribution. See Section 4.1 and Section
4.2 for the proof sketches of Theorem 2 and Theorem 1 respectively. Previous works focus
on linear controller baselines, and linear controllers have properties that allow for easier
regret analysis. Theorems 2 and 1 reduce these “useful” properties of linear controllers to
Assumptions 7 and 8. Therefore, many classes of non-linear controllers can be constructed
as described in this section, and all that needs to be done to show that the result of the
theorems hold with such a class of controllers as a baseline is to show that this class of
controllers satisfies Assumptions 7 and 8. Both of Assumptions 7 and 8 are simply Lipschitz
conditions on the cost function (one with respect to the optimal controller and one with
respect to the starting position), and therefore are likely to hold for many classes of con-
trollers. In particular, Schiffer and Janson [2025] shows that both of these assumptions are
satisfied for the class of truncated linear controllers, and therefore Theorems 1 and 2 apply
for this baseline class of controllers. The properties in Assumptions 7 and 8 are the main
tools that allow us to analyze the regret of nonlinear general baselines, and therefore these
properties may be of independent interest outside of these theorems.

The algorithms that achieve the regret bounds of Theorems 1 and 2 follow the same
general form. We outline the algorithm that achieves Theorem 2 below in Algorithm 1.

Algorithm 1 Outline of Algorithm 2 for proof of Theorem 2

1: Explore for Θ̃T (T
2/3) steps using controller C init from Assumption 2 with random noise.

2: for s ∈ [0 : log(T 1/3)− 1] do
3: θ̂s ← regularized least-squares estimate of θ∗ using data seen so far
4: ϵs ← high probability bound on ∥θ∗ − θ̂s∥∞
5: Calg

s ← optimal controller from baseline class for dynamics θ̂s
6: For next T 2/32s steps, use controller Calg

s modified at each step to be safe for all
dynamics θ satisfying ∥θ − θ̂s∥∞ ≤ ϵs

This algorithm mostly behaves like a standard certainty equivalence algorithm, first cal-
culating the regularized least-squares estimate of θ∗ and then finding the best controller for
this estimated dynamics. This algorithm deviates from standard certainty equivalence in the
final line, where the algorithm enforces safety by modifying the controller Calg

s . Because θ∗

with high probability satisfies ∥θ∗ − θ̂s∥∞ ≤ ϵs, the modification in the final line guarantees
safety for dynamics θ∗ with high probability. The bulk of the theoretical work in proving
Theorem 2 is upper bounding the regret contributed by these safety modifications. Theorem
1 follows a similar pattern with a slightly more complicated choice of θ̂s. In the setting of
Theorem 1, the large support of the noise distribution leads to the controls used by con-
troller Calg

s being non-linear by a constant amount for a constant fraction of the steps. This
non-linearity allows the algorithm to learn at a faster rate than in Theorem 2 and results in
the lower regret bound of ÕT (

√
T ). Note also that the length of the exploration period and

the number of steps in each round of the loop are chosen differently for Algorithm 3 than
for Algorithm 2. See the proof sketches in the following section for more details.
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4 Proof Sketches of Main Results

We will present the proof sketches (and formal proofs) of the main results in reverse of the
order in which they were stated in the previous section. We present the proofs in this manner
because the result of Theorem 2 is a weaker result in a more general setting. We therefore
build off of this proof in the subsequent proof of Theorem 1 by strengthening the result of
Theorem 2 in less general settings.

4.1 Proof Sketch of Theorem 2

The full proof of Theorem 2 can be found in Appendix C.
First we state Algorithm 2, which is the algorithm that achieves the guarantee of The-

orem 2. But before presenting the algorithm, we need some additional notation. Fix a
constant λ > 0. Define zt = (xt, ut)

⊤ and Vt = λI +
∑t−1

i=0 ziz
⊤
i , where I is the identity ma-

trix. Define Xt as the column vector (x1, ..., xt)
⊤ and Zt as the matrix with rows z⊤0 , ..., z

⊤
t−1.

Define Bt = α
√
log(det(Vt)) + log(λ2) + 2 log(T 2) +

√
λ(ā2 + b̄2) = ÕT (1) where α is the

subgaussian parameter of D. The algorithm that achieves the regret bound of Theorem 2 is
given as Algorithm 2.

Algorithm 2 Intuition Algorithm 2 can be broken into two phases: a warm-up explo-
ration phase (Lines 2–4) and a safe certainty equivalence phase (Lines 5–13). In the warm-up
phase, the controls are random which allows for sufficient exploration and learning of the
unknown dynamics. In the certainty equivalence phase, θ̂s is the regularized least-square
estimate of θ∗ based on the data seen so far. ϵs is an upper bound on the distance between
θ̂s and θ∗ that holds with high probability. Calg

s is the optimal controller from the baseline
class for dynamics θ̂s. Because C

alg
s is not guaranteed to be safe for dynamics θ∗, we calculate

usafeU
t and usafeL

t which are respectively the largest and smallest possible controls that satisfy
the constraints for all dynamics θ within ϵs distance of θ̂s (which will with high probability
include θ∗). We then censor the control Calg

s (xt) with these two controls to guarantee with
high probability that the final chosen control is safe with respect to dynamics θ∗. In order
to show Theorem 2, we must show that with probability 1 − oT (1/T ), Algorithm 2 is safe
with respect to θ∗ and that Algorithm 2 has ÕT (T

2/3) regret. To show the latter, we will
decompose the regret into four main components and consider each separately.
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Algorithm 2 Safe LQR for General Baselines

Input: D,D,Θ, C init, {Cθ}θ∈Θ, T, λ
1: νT ← T−1/3

2: for t← 0 to 1
ν2T
− 1 do ▷ Safe warm-up exploration phase

3: ϕt ∼ Rademacher(0.5)
4: Use control ut = C init(xt) +

ϕt

log(T )

5: for s← 0 to log2(Tν
2
T )− 1 do ▷ Safe certainty equivalence phase

6: Ts ← 2s

ν2T

7: θ̂s ← (Z⊤
Ts
ZTs + λI)−1Z⊤

Ts
XTs

8: Calg
s ← C θ̂s

Kopt(θ̂s,Ts)

9: ϵs ← BTs

√
max(V 22

Ts
,V 11

Ts )
V 11
Ts

V 22
Ts

−(V 12
Ts

)2

10: for t← Ts to 2Ts − 1 do

11: usafeU
t ← max

{
u : max

∥θ−θ̂s∥∞≤ϵs

axt + bu ≤ DU

}
12: usafeL

t ← min

{
u : min

∥θ−θ̂s∥∞≤ϵs

axt + bu ≥ DL

}
13: Use control ut = max

(
min

(
Calg

s (xt), u
safeU
t

)
, usafeL

t

)
Safety of Algorithm 2 We begin with analyzing the safety of Algorithm 2. The first
loop (warm-up exploration) of Algorithm 2 is safe with respect to dynamics θ∗ as a result
of Assumption 2. In the second loop (safe certainty equivalence), the control in Line 13 is
chosen to enforce safety relative to all θ satisfying ∥θ − θ̂s∥∞ ≤ ϵs. By the choice of ϵs, the
true dynamics θ∗ satisfy ∥θ∗− θ̂s∥∞ ≤ ϵs for all s with probability 1− oT (1/T ) (Lemma 23).
Therefore, the control applied in Line 13 is safe with respect to θ∗ for all t with probability
1− oT (1/T ). Therefore, Algorithm 2 is safe with respect to θ∗ with probability 1− oT (1/T ).

Regret from warm-up period The first component of regret (R0) is the cost of the warm-
up exploration phase, which is the first 1/ν2

T steps of the algorithm. Using Assumption 3,
we can show that the positions and controls during this phase are with high probability
bounded by ÕT (1) (Lemma 4). Therefore, the cost during this phase can be bounded by
ÕT (1/ν

2
T ) (Proposition 3). Importantly, after this initial exploration phase, ϵs = ÕT (νT ) with

probability 1− oT (1/T ) (Lemma 2). This is a result of the Rademacher random variables in
the warm-up phase.

Regret from certainty equivalence The second source of regret (R1) comes from the
certainty equivalence aspect of the algorithm. In other words, R1 is the regret from the fact
thatKopt(θ̂s, Ts) is the optimal controller for dynamics θ̂s and not for dynamics θ∗. By Lemma

2 and Lemma 23, with high probability ∥θ̂s − θ∗∥∞ ≤ ϵs = ÕT (νT ), so by Assumption 7 the

expected cost of using controller C θ̂s
Kopt(θ̂s,Ts)

for Ts steps is at most ÕT (Ts∥θ̂s − θ∗∥∞ + 1/T )

more than the expected cost of using Cθ∗

Kopt(θ∗,Ts)
for Ts steps. Using the aforementioned bound
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comparing θ̂s and θ∗, this source of regret can therefore be upper-bounded by ÕT (TνT ) with
probability 1− oT (1/T ) (Proposition 4).

Regret from deviation from expectation The third source of regret (R2) comes from
the fact that we defined regret as the difference between the cost of the algorithm (which is a
random variable) and the expected cost of the best controller in the baseline class (which is
nonrandom). To bound this regret term, we show that the cost of the algorithm concentrates
within ÕT (

√
T ) of its expectation with probability 1 − oT (1/T ) (Proposition 5). For this

result, we use a variant of McDiarmid’s Inequality that applies to high probability events
combined with Assumption 8 (Lemma 6).

Regret from enforcing safety The final source of regret (R3) is a result of the times
the algorithm “enforces safety” on the controls by sometimes using controls usafeU

t and usafeL
t .

With probability 1− oT (1/T ), when the algorithm enforces safety, the chosen ut differs from
Calg

s (xt) by ÕT (ϵs) (Lemma 9). By Assumption 8 and Lemma 2, the small differences between
Calg

s (xt) and ut each increase the cost by at most ÕT (νT ) with probability 1 − oT (1/T ).
Therefore, the total cost of enforcing safety with these controls is ÕT (νTT ) with probability
1− oT (1/T ) (Proposition 6).

Combining Regret Terms Putting these four sources of regret together, the total regret
can be upper bounded as follows with probability 1− oT (1/T ):

T ·J(θ∗, Calg, T, 0,W )−T ·J∗(θ∗, Cθ∗

Kopt(θ∗,T ), T ) ≤ R0+R1+R2+R3 = ÕT

(√
T + TνT +

1

ν2T

)
= ÕT (T

2/3),

(12)

where the last line comes from the fact that νT = T−1/3. See Appendix C and Equation
(31) for a formal description of these four sources of regret.

4.2 Proof Sketch of Theorem 1

The full proof of Theorem 1 can be found in Appendix F.

Algorithm and Intuition The algorithm that achieves the regret result of Theorem 1 is
Algorithm 3, which is very similar to Algorithm 2. Rather than restating the entire algorithm
here, we defer the full algorithm to the appendix and instead highlight the main differences
between Algorithm 3 and Algorithm 2. The first modification is that for Algorithm 3 we
choose νT = T−1/4, which affects the lengths of the exploration and certainty equivalence
periods. The second major difference is that we change how θ̂s is defined. Recall that in
Algorithm 2, θ̂s is the regularized least-squares estimate of θ∗. For this algorithm we instead
denote the regularized least-squares estimate as

θ̂pres = (Z⊤
Ts
ZTs + λI)−1Z⊤

Ts
XTs . (13)

Recall the function P defined in Assumption 9. We choose θ̂s as

θ̂s = argmin
∥θ̂s−θ̂pres ∥∞≤ϵs

min
∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ̂s, Ts), DU). (14)
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The choice of θ̂s described above is a technical way of ensuring that Calg
s does sufficient

exploration, which in turn guarantees a faster learning rate of the unknown dynamics. The
key difference between the proof of Theorem 1 and the proof of Theorem 2 is a new upper
bound on ϵs which is stronger than Lemma 2. Instead of ϵs = ÕT (νT ) with probability

1 − oT (1/T ), we show that ϵs = ÕT

(
1√
Ts

)
with probability 1 − oT (1/T ) (Lemma 19).

Informally, this means that with high probability, the estimated dynamics at time t are

at most ÕT

(
1√
t

)
different from θ∗, and this is a faster learning rate than in Theorem 2.

This faster learning rate gives better upper bounds on the regret terms than in Theorem 2.

Faster Learning Rate Showing the faster learning rate requires two main results. The
first result is that the uncertainty ϵs can be upper-bounded by ÕT (1/

√
|STs|), where |STs|

is the number of times Algorithm 3 uses the control usafeU
t before time Ts (Lemma 21). To

prove this result, we prove a more general uncertainty bound in Lemma 26. The key insight
is that in order to maintain safety, the control usafeU

t will with high probability be sufficiently
non-linear. This non-linearity combined with the variance in the position leads to a faster
convergence rate of the upper bound in Lemma 23. The second result is that Algorithm 3
uses the control usafeU

t at least ΩT (Ts) times before time Ts (Lemma 20). The key insight to
this result is that every time the position exceeds P (θ∗, Kopt(θ

∗, Ts), DU), Algorithm 3 will
use control usafeU

t . Assumption 9 says that the noise is large enough that (due to the choice
of θ̂s in Equation (14)) the position will exceed P (θ∗, Kopt(θ

∗, Ts), DU) in each round with
constant probability. This implies that with probability 1−oT (1/T ), for every s, the control
usafeU
t is used a constant fraction of the times before time Ts. Combining these two results,

we have for all s that with probability 1− oT (1/T ), ϵs = ÕT (1/
√
|STs|) and |STs| = ΩT (Ts).

Therefore, we can conclude that with probability 1− oT (1/T ), we have ϵs = ÕT

(
1√
Ts

)
.

Regret Proof Changes Equipped with this tighter upper bound on ϵs, we can bound

R1 (the regret of using controller C θ̂s
Kopt(θ̂s,Ts)

rather than Cθ∗

Kopt(θ∗,Ts)
) and R3 (the regret of

enforcing safety at every time step with controls usafeU
t and usafeL

t ) by ÕT (
√
T ) (Proposition

9 and 10, respectively). Because νT = T−1/4, R0 is ÕT (
√
T ). Therefore, we can conclude

as in the proof sketch of Theorem 2 that the regret of Algorithm 3 is upper-bounded by
R0 +R1 +R2 +R3 = ÕT (

√
T ).

5 Discussion

In this paper, we have presented new results for the safety-constrained LQR problem. We
conclude by discussing some possible extensions of our work and remaining open questions.

While our results focus on positional constraints, we also expect that similar results
would hold for algorithms similar to Algorithms 2 and 3 when there are also constraints
on the controls. While we leave the formal derivations of results for control constraints to
future work, we provide a brief discussion of how the algorithm and proofs would change.
With the addition of control constraints, the algorithms can no longer use usafeU

t or usafeL
t

as these constraints may not satisfy the control constraints. To address this, we believe
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that a slight modification to the way the algorithm chooses the controller Calg
s will allow the

algorithms to satisfy both control and position constraints with high probability and achieve

the same regret results as in Theorems 1 and 2. We propose choosing Calg
s = C θ̂s

K , where K
is chosen such that it satisfies positional constraints and control constraints Θ̃T (ϵs) tighter
than the actual constraints. As long as ∥θ̂s − θ∗∥∞ ≤ ÕT (ϵs), this will guarantee both types
of constraints are satisfied. The main additional result that needs to be assumed is that
choosing this Calg

s will not have significantly more regret than in the existing proofs. See
Appendix I.1 for more discussion on the generalization of our results to the setting with both
position and control constraints.

Our results also focus on one-dimensional LQR, but we expect that many of the same
results will generalize to higher dimensions. In higher dimensions, a natural generalization
of our constraints is to consider a compact safe region that is defined as the intersection of
a finite number of half-planes. Therefore, the goal would be to choose controls such that
the expected position stays within this safe region. We expect that the uncertainty bounds
proven in this paper will generalize naturally to higher dimensions, as our bounds are based
on results in Abbasi-Yadkori and Szepesvári [2011] that hold for higher dimensions. There-
fore, we expect that the result of Theorem 2 will directly generalize to higher dimensions

by replacing the controller Calg
s with C θ̂s

K where K is chosen as the optimal control for con-
straints that are Θ̃T (ϵs) tighter than the true constraints. Whether Theorem 1 generalize to
higher dimensions is an open question we leave for future work, though in Appendix I.2, we
discuss stylized settings in which we expect that the ÕT (

√
T ) regret bounds from Theorem

1 will generalize to higher dimensions.
We also note that our algorithms require knowledge of T in advance, as the value of T

determines the length of time spent in the warm-up exploration period. We expect that
similar results will hold when T is not known in advance, however this would require periods
of exponentially growing length that alternate exploration versus exploitation (similar to as
done in, e.g. Li et al. [2021]). Because this greatly increases the complexity of the algorithm
and analysis, we state and prove our results for T known in advance. Finally, while we study
general baselines that are more powerful than just safe linear controllers, the question of
whether we can achieve ÕT (

√
T ) (or even ÕT (T

2/3)) regret on top of the cost of the best
possible among all safe controllers is still open.
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Linear robust adaptive model predictive control: Computational complexity and conser-
vatism. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 1383–1388.
IEEE, 2019.

Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause. Learning-based
model predictive control for safe exploration. In 2018 IEEE conference on decision and
control (CDC), pages 6059–6066. IEEE, 2018.

Bruce Lee, Anders Rantzer, and Nikolai Matni. Nonasymptotic regret analysis of adaptive
linear quadratic control with model misspecification. In 6th Annual Learning for Dynamics
& Control Conference, pages 980–992. PMLR, 2024.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Yingying Li, Subhro Das, Jeff Shamma, and Na Li. Safe adaptive learning-based con-
trol for constrained linear quadratic regulators with regret guarantees. arXiv preprint
arXiv:2111.00411, 2021.

21



Yingying Li, Tianpeng Zhang, Subhro Das, Jeff Shamma, and Na Li. Non-asymptotic system
identification for linear systems with nonlinear policies. arXiv preprint arXiv:2306.10369,
2023.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

Matthias Lorenzen, Mark Cannon, and Frank Allgöwer. Robust mpc with recursive model
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A Notation

A.1 Big O Notation

Throughout this paper, we use notation such as oT (·), OT (·), ωT (·), ΩT (·).

• f(T ) = OT (g(T )) if there exists T0 and M ∈ R such that for T ≥ T0, f(T ) ≤M · g(T ).

• f(T ) = oT (g(T )) if for every constant ϵ > 0 there exists T0 such that for all T ≥ T0,
f(T ) ≤ ϵ · g(T ).

• f(T ) = ÕT (g(T )) if there exists T0 and k,M ∈ R such that for T ≥ T0, f(T ) ≤
M · g(T ) · logk(T ).

Note that ΩT , ωt, and Ω̃T are defined in the same way but with the inequality reversed. While
this is standard notation, we want to highlight exactly how we are using this notation in our
proofs. First, we note that the subscript T is included to indicate that we will always be using
this notation with respect to the variable T . Furthermore, we note that the constant M that
is “hidden” by the big-O notation will always be a function of known problem specification
parameters, such as q, r,Θ,D, D. Therefore, if an expression includes an OT (1) term, this
constant does not depend on any other variables in the expression. For example, suppose we
state that for all K, f(K) ≤ OT (

√
T ). Then this means that there exists T0 and M (where

M is a function of known problem specification parameters) such that for all K and T ≥ T0,
f(K) ≤ M ·

√
T . Furthermore, we will use notation such as f(T ) = OT (ϵ) to mean that

there exists T0 and M such that f(T ) ≤ M · ϵ for T ≥ T0, where M does not depend on ϵ
and only depends on the problem specification parameters {q, r,Θ,D, D}. Finally, note that
we will use the computer science notation of OT (), in that the functions f(T ) and g(t) will
always be non-negative.

A.2 Miscellaneous Notation

Throughout the proofs, any inequalities or equations involving random variables will repre-
sent inequality or equality almost surely unless otherwise stated. Throughout the paper, we
will use the notation {xi}ni=1 to represent the unordered but indexed set of x1, x2, ..., xn.
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A.3 Problem Specifications

The notation below will be used throughout the appendix, however the variables may de-
pend on the algorithm being studied within a section. For example, the event E is defined
slightly differently for each of the two algorithms, and therefore the reader should note which
algorithm each section addresses. The notation never changes within a single section.

• q, r : coefficients for the cost at time t of qx2
t + ru2

t .

• W = {wt}T−1
t=0 : The noise random variables for the T -length trajectory.

• D : Distribution of wt with CDF FD and pdf upper bound BP

• Θ = [a, ā]× [b, b̄] : Given set of dynamics s.t. θ∗ ∈ Θ (size(Θ) = min(ā− a, b̄− b))

• θ∗ = (a∗, b∗) : The true (unknown) dynamics.

• C init : The initial safe controller satisfying Assumption 1.

• D = (DL, DU) : the expected-position boundary for the safety constraint.

• A set of controls {ut} are safe for dynamics {θt} if for all t, DL ≤ atxt + btut ≤ DU.

• Ht = (x0, u0, x1, u1, ..., ut−1, xt) and Ft = σ(Ht).

• J(θ, C, T, x,W ) : The random variable cost of using controller C starting at position
x0 = x for T time steps under dynamics θ with noise random variables W .

• J∗(θ, C, T ) = J∗(θ, C, T, 0) = E[J(θ, C, T, x,W ) | θ, C, T, x] and J∗(θ, C, T ) = J∗(θ, C, T, 0).

• J∗(θ, C) = J∗(θ, C, 0) = limT→∞ J∗(θ, C, T, 0).

• Cθ = {Cθ
K}K∈[Kθ

L,K
θ
U] : a class of controllers that are safe for dynamics θ

• Kopt(θ, T ) : The K that maximizes J∗(θ, Cθ
K , T, 0) for K ∈ [Kθ

L, K
θ
U].

• Kopt(θ) : The K that maximizes J∗(θ, Cθ
K) for K ∈ [Kθ

L, K
θ
U].

• Cunc
K : The unconstrained linear controller with parameter K, i.e. Cunc

K (x) = −Kx.

• Fopt(θ) : The K that maximizes J∗(θ, Cunc
K ).

A.4 Algorithm Notation

• νT : Algorithm specific parameter that is either T−1/4 or T−1/3.

• se : The number of the last round of the safe exploitation phase.

• Ts =
2s

ν2T
: The length and starting time of round s of the safe exploitation phase.

• ϵs : Uncertainty bound for θ∗ used throughout the algorithm.
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• θ̂s : An estimate of θ∗ that is with high probability within ϵs distance of θ∗

• usafeU
t : Largest u such that max

∥θ−θ̂s∥∞≤ϵs

axt + bu ≤ DU

• usafeL
t : Smallest u such that max

∥θ−θ̂s∥∞≤ϵs

axt + bu ≥ DL.

• Calg
s (xt) : the controller that the algorithm uses in round s of the safe exploitation

phase with additional safety modifications, i.e. the algorithm in round s of the safe
exploitation phase uses control ut = max

(
min

(
Calg

s (xt), u
safeU
t

)
, usafeL

t

)
.

• Calg : Controller of the corresponding algorithm as described in the previous point.

• P (θ,K, z) : See Assumption 9.

A.5 Proof Notation

• Ws = {wi}Ts+1−1
i=Ts

: Noise random variables in the round s of safe exploitation phase.

•
(
Cθ∗

K∗ , {Cθ∗
K∗

s
}ses=0

)
: The expected cost minimizing set of controllers to use if the con-

troller Cθ∗
K∗ is used for the first T0 steps and for time t ≥ T0, the controller used is

Cθ∗
Ks
, where s = ⌊log2 (tν2

T )⌋. The sequence (x∗
0, x

∗
1, ...) are the corresponding positions

of using these controllers.

• (x′
0, x

′
1, ...) and (u′

0, u
′
1, ...): Unless otherwise specified, these are the positions and con-

trols of the algorithm being discussed in the current proof.

• (x̂T0 , x̂T0+1, ...) : Unless otherwise defined in the theorem/lemma statement, x̂T0 , x̂T0+1, ...

is the sequence of positions if the control at each time t ≥ T0 is C θ̂s
Kopt(θ̂s,Ts)

(xt) for

s = ⌊log2 (tν2
T )⌋ and starting at x̂T0 = x′

T0
.

• Esafe = {∀t < T : DL ≤ a∗x′
t + b∗u′

t ≤ DU} : Event that all controls are safe

• E1 =
{
∀t < T : |wt| ≤ log2(T )

}
: Event that all noise has magnitude less than log2(T )

• E0 =
{
∀s ≤ se : ∥θ∗ − θ̂s∥∞ ≤ ϵs

}
: Event that all estimates of θ∗ are within ϵs of θ

∗.

• E2 = E0

⋂{
maxs∈[0:se] ϵs ≤ ÕT (νT )

}
.

• Es
2 =

{
∥θ̂s − θ∗∥∞ ≤ ϵs ≤ cT · νT

}
, where cT is the coefficient in the ÕT (νT ) of the

definition of event E2.

• E = Esafe ∩ E1 ∩ E2

• Bx = log3(T ) : Used throughout the appendix to simplify notation.
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B Additional Related Work

The constrained LQR problem is closely related to the problem of model predict control
(MPC) with constraints. For example, there is a large body of work on robust model
predictive control with known dynamics [Bemporad and Morari, 2007]. This is further
extended to MPC with model uncertainties in robust adaptive MPC (RAMPC) in works such
as Köhler et al. [2019], Lu et al. [2021]. There have also been significant work on stochastic
MPC with soft constraints, for example Mesbah [2016], Oldewurtel et al. [2008], which are
closely related to the expected position constraints we use in this paper. In the context of
constrained LQR with no noise, Bemporad et al. [2002] derive the optimal controller as a
piece-wise affine function. In a different MPC setting with deterministic dynamics and noisy
observations, Muthirayan et al. [2022] provide an algorithm that also achieves O(T 2/3) regret.
Learning based MPC using an initial safe controller was also studied in Koller et al. [2018].
MPC results on learning constraints include e.g. Lorenzen et al. [2019], Köhler et al. [2019].
While these works provide algorithms to solve constrained optimization problems such as
LQR, these works do not compare the asymptotic performance of their results to the optimal
algorithm. In contrast, our work studies a similar problem but focuses on algorithmic regret
analysis from an RL perspective, comparing our algorithm to some baseline representation
of the “best” algorithm.

The results in this paper are also closely related to general system identification, the idea
of being able to (in any way) asymptotically estimate the unknown dynamics. There have
been multiple works in this area including Simchowitz et al. [2018], Zhao and Li [2022], Mania
et al. [2020]. A recent work closely related to the results of this paper is Li et al. [2023], which
describes learning rates for non-linear controllers in a similar setting. The results in Li et al.
[2023], however, require i.i.d. noise excitation in every step, while our uncertainty bounds
after the warm-up phase actually require no such excitation. These works are most similar
to our work in that our results rely on identifying the system dynamics to a high accuracy.
However our focus is not simply on learning the system, but also on achieving provably
low regret results. The new uncertainty bounds we use to achieve our results also apply to
nonlinear controllers as in Li et al. [2023], but our uncertainty bounds apply specifically to
the setting with safety constraints.

C Proof of Theorem 2

Before proving Theorem 2, we extend Definition 1 to account for time-dependent dynamics.

Definition 2. A control ut and position xt are safe for dynamics θt if

DL ≤ atxt + btut ≤ DU.

Similarly, a (possibly time-dependent) controller Ct is safe for T steps for dynamics {θt} if
when the dynamics at time t is θt, the sequence of controls C0(H0), C1(H1), ..., CT−1(HT−1)
and the resulting positions x0, ..., xT−1 are safe for dynamics θt at all times t.

Note that in general, a controller being safe is a random event.
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Theorem 2 makes two claims: the first is that Algorithm 2 is safe for dynamics θ∗ for
all T steps with high probability and the second bounds with high probability the regret of
Algorithm 2. In Appendix C.1 we will prove the result about the safety of Algorithm 2 and
in Appendix C.2 we will prove the result about the regret of Algorithm 2.

C.1 Proof of Safety of Algorithm 2

Lemma 1. Under Assumptions 1–8 , Algorithm 2 is safe for T steps for dynamics θ∗ with
probability 1− oT (1/T

2).

proof. We will first analyze the warm-up exploration phase (the first loop in Algorithm 2 in
Lines 2–4). If the control at time t− 1 was safe for dynamics θ∗ as in Definition 2, then with
probability at least 1−OT (

1
T 4 ), the next position satisfies

xt ∈
[
DL − F−1

D (1− 1

T 4
), DU + F−1

D (1− 1

T 4
)

]
.

By Assumption 2 on the controller C init, DL + b∗

log(T )
≤ a∗x + b∗C init(x) ≤ DU − b∗

log(T )
for

all x ∈
[
DL − F−1

D (1− 1
T 4 ), DU + F−1

D (1− 1
T 4 )
]
. In Lines 2–4 of Algorithm 2 the control is

C init(xt) +
ϕt

log(T )
and |ϕt| = 1. Therefore, if at time t − 1 the algorithm’s control was safe,

then with probability 1− OT

(
1
T 4

)
the control at time t will satisfy DL ≤ a∗xt + b∗ut ≤ DU

and be safe. Furthermore, at time 0, the position is x0 = 0, therefore the first control is safe.
Using this as a base case in a proof by induction with a union bound over all 1/ν2

T time steps
t in this loop, with probability 1− OT (1/T

3), the first 1/ν2
T steps will be safe for dynamics

θ∗.
Now we will analyze the second loop in Algorithm 2 (Lines 5–13). Define se = log2(Tν

2
T )−

1. Define the event E0 as

E0 =
{
∀s ≤ se : ∥θ∗ − θ̂s∥∞ ≤ ϵs

}
. (15)

These ϵs are less than the right hand side of the equation in Lemma 23, and therefore by
Lemma 23, under Assumptions 3 and 1,

P(E0) ≥ 1− oT (1/T
2). (16)

Informally, the next event we define is the combination of event E0 and the event that the
ϵs (defined in Line 9 of Algorithm 2) are decreasing at a sufficiently fast rate, which we will
prove in Lemma 2. Define

E2 = E0

⋂{
max
s∈[0:se]

ϵs ≤ ÕT (νT )

}
. (17)

Lemma 2. Under Assumptions 1–8, with probability 1− oT (1/T
2)

max
s∈[0:se]

ϵs ≤ ÕT (νT ).
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The proof of Lemma 2 can be found in Appendix G.2. Combining Lemma 23 and Lemma
2 with a union bound gives that

P(E2) ≥ 1− oT (1/T
2). (18)

Define the event E1 as
E1 =

{
∀t < T : |wt| ≤ log2(T )

}
. (19)

By Assumption 3, the noise is sub-Gaussian, and therefore there exists a constant α such
that for any t and x, P(wt ≥ x) ≤ 2 exp(−x2/α). Taking x = log2(T ) and a union bound
over all wt, we have that

P(E1) ≥ 1−
T−1∑
t=0

2 exp
(
− log4(T )/α

)
= 1− oT

(
1

T log(T )

)
. (20)

We need one last lemma before concluding the proof.

Lemma 3. Under Assumptions 1–8, conditional on E1 ∩ E2 and for sufficiently large T , if
uT0−1 is safe for dynamics θ∗, then for all t ∈ [T0, T ],

usafeL
t ≤ usafeU

t .

The proof of Lemma 3 can be found in Appendix E.1.
Under event E0, θ̂s satisfies ∥θ∗ − θ̂s∥∞ ≤ ϵs for all s ∈ [0 : se] (which recall are the s in

the second for loop of Algorithm 2). Therefore, by the choice of usafeU
t and usafeL

t in Lines 11
and 12, it must be the case that a∗xt+b∗usafeU

t ≤ DU and a∗xt+b∗usafeL
t ≥ DL. By the choice

of ut in Line 13 of Algorithm 2, if usafeL
t ≤ usafeU

t then usafeL
t ≤ ut ≤ usafeU

t . This implies that

DL ≤ a∗xt + b∗ut ≤ DU. (21)

Therefore, by Lemma 3, under E1∩E2∩{uT0−1 is safe for dynamics θ∗}, all controls used in
the second for loop (Lines 5–13) in Algorithm 2 are safe for dynamics θ∗. By a union bound
combining Equations (18) and (20) and the first paragraph of this proof, we have that

P(E1 ∩ E2 ∩ {uT0−1 is safe for dynamics θ∗}) = 1− oT (1/T
2).

Because all of the steps in Algorithm 2 are part of either the first or second loop, and the
first loop steps are safe for dynamics θ∗ with probability 1− oT (1/T

2) and the second loop
steps are safe for dynamics θ∗ with probability 1− oT (1/T

2), a union bound gives that the
overall algorithm is safe for dynamics θ∗ with probability 1− oT (1/T

2).

C.2 Proof of Regret Bound of Algorithm 2

proof. Define the event Esafe as the event that the controls used by the algorithm are safe
at all times. If x′

0, x
′
1, ... and u′

0, u
′
1, ... are respectively the positions and controls of the

algorithm, we have that

Esafe = {∀t < T : DL ≤ a∗x′
t + b∗u′

t ≤ DU} , (22)
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and by Lemma 1 we have that P(Esafe) = 1− oT (1/T
2). Now, define the event E as

E = Esafe ∩ E1 ∩ E2. (23)

A union bound combining Equations (20) and (18) gives that

P(E) = P(Esafe ∩ E1 ∩ E2) ≥ 1− oT (1/T
2). (24)

The rest of the proof of Theorem 2 will focus on proving that the regret of Algorithm 2
is ÕT (T

2/3) with conditional probability at least 1 − oT (1/T ) given E. Let Calg be the
(time-dependent) controller of Algorithm 2. Then the total cost of using Algorithm 2 is
T · J(θ∗, Calg, T, 0,W ), and the regret we are trying to bound is (as in Equation (7) using
the notation Kopt from Assumption 6),

T · J(θ∗, Calg, T, 0,W )− T · J̄(θ∗, Cθ∗

Kopt(θ∗,T ), T ). (25)

Define Ws as the noise random variables from time Ts to Ts+1 − 1, so

Ws = {wi}Ts+1−1
i=Ts

. (26)

For any tuple (K, {Ks}0≤s≤se) whereK,Ks ∈ (Kθ∗
L , Kθ∗

U ), define x
(K,{Ks}0≤s≤se)
0 , x

(K,{Ks}0≤s≤se)
1 , ...

as the random variable sequence of positions that result from starting at x0 = 0 and using
the controller that at each time t < T0 uses controller Cθ∗

K and at each time t ≥ T0 uses the
controller Cθ∗

Ks
, where s = ⌊log2 (tν2

T )⌋. Define (K∗, {K∗
s}0≤s≤se) as follows:

(K∗, {K∗
s}0≤s≤se)

= argmin
(K,{Ks}0≤s≤se)

E

[
1

ν2
T

J

(
θ∗, Cθ∗

K ,
1

ν2
T

, 0, {wt}T0−1
t=0

)
+

se∑
s=0

TsJ(θ
∗, Cθ∗

Ks
, Ts, x

(K,{Ks}0≤s≤se)
Ts

,Ws)

]
.

Here the expectation is taken over both wt and Ws (and recall that xTs is a deterministic
function of the wt andWs because C

θ
K is non-random for allK, θ). We then define x∗

0, x
∗
1, ... as

the random variable sequence of positions such that x∗
t = x

(K∗,{K∗
s }0≤s≤se)

t . By construction,
we could choose K,Ks = Kopt(θ

∗, T ) for every s, and therefore it must be the case that

E

[
1

ν2
T

J

(
θ∗, Cθ∗

K∗ ,
1

ν2
T

, 0, {wt}T0−1
t=0

)
+

se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
≤ T ·J̄

(
θ∗, Cθ∗

Kopt(θ∗,T ), T
)
.

Therefore, upper bounding the cost of Algorithm 2 minus the cost of using K∗ for T0 steps
and then using the sequence of controllers {Cθ∗

K∗
s
} each for Ts steps is sufficient for upper

bounding the regret in Equation (25). Now we will bound

T ·J(θ∗, Calg, T, 0,W )−E

[
1

ν2
T

J

(
θ∗, Cθ∗

K∗ ,
1

ν2
T

, 0, {wt}T0−1
t=0

)
+

se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
.

(27)
Note that we will upper bound the cost in terms of the parameter νT = T−1/3 in Line 1.
In order to bound the quantity in Equation (27), we will break this component of regret
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into four sources: the regret from the warm-up period (Lines 2–4), the regret from using the
estimates θ̂s instead of using θ∗, the regret induced by the randomness of the trajectory, and
the regret from enforcing safety.

The first source of regret is the regret incurred in the warm-up period of Algorithm 2
(Lines 2–4). Recall that Calg

s is the controller used in Algorithm 2 in the s iteration of the
second for loop. We will use Proposition 3 to bound the cost incurred during the warm-up
period.

Proposition 3 (Regret from Warm-up Period). Define x′
0, x

′
1, ... as the sequence of random

variables that are the positions of the controller Calg defined in Algorithm 2. Define R0 as
the cost of the first 1/ν2

T steps, i.e.

R0 = T · J(θ∗, Calg, T, 0,W )−
se∑
s=0

Ts · J(θ∗, Calg
s , Ts, x

′
Ts
,Ws). (28)

Then under Assumptions 1–8 and conditional on event E,

R0

a.s.

≤ ÕT

(
1

ν2
T

)
.

The proof of Propposition 3 can be found in Appendix D.1. The second source of regret

in Equation (27) is that Algorithm 2 uses a controller C θ̂s
Kopt(θ̂s,Ts)

instead of the controller

Cθ∗
K∗

s
. This source of regret (denoted R1) can be interpreted as the “estimation cost” of using

the estimated controller instead of the optimal controller, but without enforcing safety. We
will use Proposition 4 to bound this source of regret.

Proposition 4 (Regret from Non-optimal Controller). Define R1 as

R1 :=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
.

Note that Ws is independent of θ̂s by construction. Then under Assumptions 1–8 and con-
ditional on event E2,

R1

a.s.

≤ ÕT (TνT ) . (29)

The proof of Proposition 4 can be found in Appendix D.2. It may appear odd that the
starting positions of the two terms do not match in the definition of R1 (or in the definition
of R2 below), but we do account for this difference in the proofs of Propositions 4 and 5. The
third source of regret (which we will denote R2) comes from the fact that in Equation (27)
we are comparing the random variable T · J(θ∗, Calg, T, 0,W ) to an expectation. In order to
show that this source of regret is small, we need to show a concentration inequality for the

cost of repeatedly using controllers of the form C θ̂s
Kopt(θ̂s,Ts)

, which we do in Proposition 5.

Proposition 5 (Regret from Randomness). Define x̂T0 , x̂T0+1, ... as the sequence of ran-
dom variables representing the sequence of positions if the control at each time t ≥ T0 is

C θ̂s
Kopt(θ̂s,Ts)

(xt) for s = ⌊log2 (tν2
T )⌋ and starting at x̂T0 = x′

T0
. Define R2 as

R2 :=
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s

]
.
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Then with conditional probability 1− oT (1/T ) given event E,

R2 ≤ ÕT (
√
T ). (30)

The proof of Proposition 5 can be found in Appendix D.3. The final source of regret in
Equation (27) is the extra cost incurred by enforcing safety in Algorithm 2 (Line 13) rather

than using the control given by C θ̂s
Kopt(θ̂s,Ts)

. Each time we enforce safety we potentially incur

an extra cost, but Proposition 6 bounds this extra cost.

Proposition 6 (Regret from Enforcing Safety). Define x̂T0 , x̂T0+1, ... as the sequence of
random variables representing the sequence of positions if the control at each time t ≥ T0

is C θ̂s
Kopt(θ̂s,Ts)

(xt) for s = ⌊log2 (tν2
T )⌋ and starting at x̂T0 = x′

T0
. Define R3 as (the random

variable)

R3 :=
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws).

Then under Assumptions 1–8, with conditional probability 1− oT (1/T ) given event E,

R3 ≤ ÕT (νTT ).

The proof of Proposition 6 can be found in Appendix D.4. Now we are ready to combine
all of the sources of regret. To summarize, we have bounded and broken down the regret
into

T · J(θ∗, Calg, T, 0,W )− T · J̄(θ∗, Cθ∗

Kopt(θ∗,T ), T )

≤ T · J(θ∗, Calg, T, 0,W )− E

[
1

ν2
T

J

(
θ∗, Cθ∗

K∗ ,
1

ν2
T

, 0, {wt}
1/ν2T−1
t=0

)
+

se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]

≤ T · J(θ∗, Calg, T, 0,W )− E

[
se∑
s=0

TsJ̄(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]

=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
︸ ︷︷ ︸

R1

+
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]︸ ︷︷ ︸

R2

+
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)︸ ︷︷ ︸

R3

+ T · J(θ∗, Calg, T, 0,W )−
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)︸ ︷︷ ︸

R0

. (31)
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Now we will use Propositions 3, 4, 5, and 6 to bound the above quantity. Conditional
on event E, Proposition 3 and Proposition 4 respectively imply that R0 ≤ ÕT (1/ν

2
T ) and

R1 ≤ ÕT (νTT ). Proposition 5 and Proposition 6 respectively imply that conditional on event
E with conditional probability 1− oT (1/T ), R2 ≤ ÕT (

√
T ) and R3 ≤ ÕT (νTT ). Therefore,

applying a union bound gives that the bounds on R0, R1, R2, R3 all hold conditional on
event E with probability 1 − oT (1/T ). Putting these bounds into Equation (31), we have
that conditional on event E with probability 1− oT (1/T ),

T ·J(θ∗, Calg, T, 0,W )−T ·J̄(θ∗, Cθ∗

Kopt(θ∗,T ), T ) ≤ R1+R2+R3+R0 ≤ ÕT

(√
T +

1

ν2
T

+ TνT

)
.

Choosing νT = T−1/3 (as in Algorithm 2) will minimize this regret upper bound giving a
total regret upper bound of ÕT (T

2/3). Because the probability of event E is 1 − oT (1/T ),
by a union bound the regret bound holds with unconditional probability 1− oT (1/T ).

D Proofs of Propositions from Appendix C

D.1 Proof of Proposition 3 (Regret of Warm-up)

proof. To bound the cost of the warm-up phase, we need the following lemma. Informally,
Lemma 4 shows that when the noise is relatively small and the controller is “close” to being
safe with respect to dynamics θ∗, the position stays relatively small. Note that in this
lemma we define Bx := log3(T ), which we will use throughout the proofs in the rest of the
appendices.

Lemma 4. Let |x0| ≤ 4 log2(T ). Suppose for all t < T , the control used by controller Ct at
time t is safe for fixed dynamics θt and for all t ≤ T ,

∥θ∗ − θt∥∞ ≤
1

log(T )
. (32)

Then under Assumptions 1–8, for sufficiently large T and conditioned on event E1, using
this controller Ct with dynamics θ∗ for T steps starting at x0 will give positions (x0, ..., xT )
and controls (u0, ..., uT−1) satisfying the following equations.

|xt|
a.s.

≤ 4 log2(T ) < log3(T ) := Bx (33)

|ut|
a.s.

≤ OT (log
2(T )) < log3(T ) := Bx. (34)

Furthermore, if x0 and the controller Ct are deterministic, then the positions (x0, ..., xT ) and
controls (u0, ..., uT−1) satisfy

E[|xt|] ≤ 4 log2(T ) < log3(T ) := Bx (35)

E[|ut|] ≤ OT (log
2(T )) < log3(T ) := Bx. (36)
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The proof of Lemma 4 can be found in Appendix E.2.
Now we will use this lemma to bound the total cost of the warm-up phase of the algorithm.

The controller for the first 1/ν2
T steps is safe for dynamics θ∗ under event E as shown in

Lemma 1. This means by Lemma 4, conditional on event E, the position and controls during
this warm-up period are both bounded in magnitude by Bx (defined in Lemma 4) almost
surely for sufficiently large T . Because the cost at time t is qx2

t + ru2
t , this implies that the

total cost of the first 1/ν2
T steps is upper bounded by OT ((q + r)B

2
x

ν2T
) = ÕT (1/ν

2
T ).

D.2 Proof of Proposition 4 (Regret of Non-optimal Controller)

proof. First, we will use Lemma 5 to rewrite the expression in Proposition 4 in a form
amenable to Assumption 7.

Lemma 5. Under Assumptions 1–8 , for every s ∈ [0 : se] the following hold.∣∣E [TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
− E

[
TsJ(θ

∗, Cθ∗

K∗
s
, Ts, 0,Ws)

]∣∣ ≤ ÕT (1) (37)

The proof of Lemma 5 can be found in Appendix E.3. By Lemma 2, there exists a
cT = ÕT (1) such that under event E2, maxs ϵs ≤ cT · νT . For s ∈ [0 : se], define

Es
2 =

{
∥θ̂s − θ∗∥∞ ≤ ϵs ≤ cT · νT

}
. (38)

Informally, the event Es
2 is the event that the bounds in event E2 hold at time s. Note that

because Es
2 ⊆ E2, by Equation (18),

P(Es
2) ≥ P(E2) ≥ 1− oT (1/T

2). (39)

We will also use the following application of Assumption 7 that holds under event Es
2.

Conditional on event Es
2,∣∣∣E [TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)− TsJ(θ
∗, Cθ∗

K∗
s
, Ts, 0,Ws)

∣∣∣ θ̂s]∣∣∣
=
∣∣∣TsJ̄(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts)− TsJ̄(θ
∗, Cθ∗

K∗
s
, Ts)

∣∣∣
≤ ÕT

(
Tsϵs +

Ts

T 2

)
. Assumption 7 (40)

We can now use the triangle inequality with Equation (37) to rewrite the left side of Equation
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(29) and apply Equation (40). Formally, conditional on event E2,

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]

=

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− se∑

s=0

E
[
TsJ(θ

∗, Cθ∗
K∗

s
, Ts, x

∗
Ts
,Ws)

]
≤ ÕT (1) +

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− se∑

s=0

E
[
TsJ(θ

∗, Cθ∗
K∗

s
, Ts, 0,Ws)

]
By Equation (37)

= ÕT (1) +

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)− TsJ(θ
∗, Cθ∗

K∗
s
, Ts, 0,Ws)

∣∣∣ θ̂s]
≤ ÕT (1) +

se∑
s=0

∣∣∣E [TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,Ws)− TsJ(θ

∗, Cθ∗
K∗

s
, Ts, 0,Ws)

∣∣∣ θ̂s]∣∣∣
≤ ÕT (1) + ÕT

(
se∑
s=0

Tsϵs +
Ts

T 2

)
By Equation (40)

≤ ÕT (TνT ).

D.3 Proof of Proposition 5 (Concentration of Cost)

proof. The following lemma is a result of McDiarmid’s inequality and shows that the random

variable corresponding to TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,W ) concentrates around a conditional ex-

pectation.

Lemma 6. Under Assumptions 1–8 , for every s ∈ [0 : se] there exists an event EM
s such

that EM
s depends only on the random variables in Ws and θ̂s, such that EM

s ⊆ {∀t ∈ [Ts :
Ts+1 − 1], |wt| ≤ log2(T )}, and such that conditional on Es

2, P(EM
s | θ̂s) ≥ 1− oT (1/T

8) and
for ϵ ≥ 1/T and for sufficiently large T ,

P
(∣∣∣TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)− E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]∣∣∣ ≥ ϵ
∣∣∣ θ̂s)

≤ 1

T 8
+ 2 exp

(
− ϵ2

2Tsc2

)
for some c = ÕT (1).

The proof of Lemma 6 can be found in Appendix E.4. We also want that taking expec-
tation conditional on EM

s does not significantly change the expected cost.

Lemma 7. Under Assumptions 1–8, if EM
s ⊆ {∀t ∈ [Ts : Ts+1 − 1], |wt| ≤ log2(T )} and

conditional on event Es
2 we have P(EM

s ) ≥ 1− oT (1/T
8), then conditional on event Es

2,

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] a.s.

≥ E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
− ÕT (1),

(41)
where the term ÕT (1) does not depend on s.
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The proof of Lemma 7 can be found in Appendix E.5. Combining Lemma 6 for ϵ =
c
√
Ts log(T ) and Lemma 7 for sufficiently large T , we have the following conditional on

event Es
2:

P
(
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)− E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≥ c

√
Ts log(T ) + ÕT (1)

∣∣∣ θ̂s)
≤ 1

T 8
+ 2 exp

(
− log2(T )

2

)
. (42)

Now applying a union bound over all s ∈ [0 : se] gives the following result:

P

(
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≥ se∑

s=0

(
c
√
Ts log(T ) + ÕT (1)

))
≤ P

(
∃s ∈ [0 : se] : TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)− E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≥ c

√
Ts log(T ) + ÕT (1)

)
≤

se∑
s=0

P
(
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)− E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≥ c

√
Ts log(T ) + ÕT (1)

)
≤

se∑
s=0

(
1

T 8
+ 2 exp

(
− log2(T )

2

)
+ P(¬Es

2)

)
Equation (42)

≤ ÕT

(
1

T 2

)
. Equation (39) (43)

Note that
se∑
s=0

c
√
Ts log(T ) = ÕT (

√
T ), (44)

therefore combining Equations (44) and (43), we have that

P

(
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≥ ÕT (

√
T )

)

≤ ÕT

(
1

T 2

)
. (45)

Equation (45) differs from the desired result of Proposition 5 in that the first summation is
over trajectories starting at position 0 as opposed to x̂Ts . Therefore, the last part of this
proof is to bound∣∣∣∣∣

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,Ws)

∣∣∣∣∣ .
To do this, we will use the following lemma that is a consequence of Assumption 8.

Lemma 8. Under Assumptions 1–6 and 8, if ∥θ − θ∗∥∞ = ϵ ≤ ϵA8, then for any K ∈
(Kθ

L, K
θ
U), t ≤ T , and |x|, |y| ≤ 4 log2(T ) and any noise random variables W ′, conditional

on event EA8(C
θ
K ,W

′),∣∣t · J(θ∗, Cθ
K , t, x,W

′)− t · J(θ∗, Cθ
K , t, y,W

′)
∣∣ = ÕT (|x− y|+ ϵ) .
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The proof of Lemma 8 can be found in Appendix E.6.
In order to use Lemma 8, we must show that |x̂Ts | ≤ 4 log2(T ). Recall that x̂Ts is the

position at time Ts if the position at time T0 is x̂T0 = x′
T0
, where x′

T0
is the position of the

controller Calg at time T0. Because Esafe ⊆ E, under event E we have that Calg is safe for
dynamics θ∗. Therefore by Lemma 4, |x′

T0
| ≤ 4 log2(T ). Because E2 ⊆ E, under event E we

also have that ∥θ̂s − θ∗∥∞ ≤ ÕT (νT ) for all s ∈ [0 : se] and sufficiently large T . Therefore,

since x̂T0 = x′
T0

and the control C θ̂s
Kopt(θ̂s,Ts)

(x) is safe with respect to θ̂s for any x, again by

Lemma 4 we have that under event E and for sufficiently large T , |x̂Ts| ≤ 4 log2(T ). Now

we can apply Lemma 8 to get that, conditional on event E ∩
⋂se

s=0EA8(C
θ̂s
Kopt(θ̂s,Ts)

,Ws),∣∣∣∣∣
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,Ws)

∣∣∣∣∣
≤

se∑
s=0

∣∣∣TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)− TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣

≤
se∑
s=0

ÕT

(
x̂Ts + ∥θ̂s − θ∗∥∞

)
≤ ÕT (1). (46)

A union bound gives that P(
⋂se

s=0EA8(C
θ̂s
Kopt(θ̂s,Ts)

,Ws)) = 1 − oT (1/T
2). Combining Equa-

tion (45) with Equation (46) with a union bound gives that conditional on event E with
probability 1− oT (1/T ),

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s] ≤ ÕT (

√
T ),

(47)
which is the desired result of Proposition 5.

D.4 Proof of Proposition 6 (Regret of Enforcing Safety)

proof. Intuitively, R3 is the regret caused by enforcing safety and deviating from the con-

troller C θ̂s
Kopt(θ̂s,Ts)

. Lemma 9 bounds the cost of deviating from C θ̂s
Kopt(θ̂s,Ts)

as a sum over all

times the algorithm deviates.

Lemma 9. Recall usafeU
t and usafeL

t defined in Algorithm 2 Lines 11 and 12. Let XU
t and XL

t be
the indicators for the events that at time t, Calg(x′

t) = usafeU
t or Calg(x′

t) = usafeL
t , respectively.

Under Assumptions 1–8 and conditional on event E, with probability 1− oT (1/T )

se∑
s=0

TsJ(θ
∗, Calg, Ts, x

′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)

≤ ÕT

(
se∑
s=0

ϵsTs

)
+

se∑
s=0

Ts+1−1∑
t=Ts

XU
t · ÕT

(∣∣∣usafeU
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)
∣∣∣)+XL

t · ÕT

(∣∣∣usafeL
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)
∣∣∣) .
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The proof of Lemma 9 can be found in Appendix E.7. We also remind the reader that
the coefficients of the ÕT (·) terms in Lemma 9 do not depend on t or s, and are a function
of known problem parameters and log(T ) factors. The next tool we need is to be able to
bound the difference in control when applying safety in Algorithm 2 compared to the control
when not applying safety. We can do that as follows.

Lemma 10. Under Assumptions 1–8 and conditional on event E, for any t such that 1/ν2
T ≤

t ≤ T , if s = ⌊log2 (tν2
T )⌋ and usafeU

t ≤ C θ̂s
Kopt(θ̂s,Ts)

(x′
t) (which is equivalent to Calg(x′

t) =

usafeU
t ), then,

|usafeU
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)| ≤ ÕT (ϵs). (48)

Similarly, if usafeL
t ≥ C θ̂s

Kopt(θ̂s,Ts)
(x′

t), then conditional on event E,

|usafeL
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)| ≤ ÕT (ϵs). (49)

The proof of Lemma 10 can be found in section E.8. Combining Lemmas 9 and 10, we
have that conditional on event E, with probability 1− oT (1/T ),

R3 =
se∑
s=0

TsJ(θ
∗, Calg, Ts, x

′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)

≤ ÕT

(
se∑
s=0

ϵsTs

)
+

se∑
s=0

Ts+1−1∑
t=Ts

(
XU

t · ÕT

(∣∣∣usafeU
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)
∣∣∣)

+XL
t · ÕT

(∣∣∣usafeL
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)
∣∣∣) ) Lemma 9

≤ ÕT

(
se∑
s=0

ϵsTs

)
+

se∑
s=0

Ts+1−1∑
t=Ts

XU
t · ÕT (ϵs) +XL

t · ÕT (ϵs) Lemma 10

≤ ÕT (TνT ) +
T−1∑

t=1/ν2T

XU
t · ÕT (νT ) +XL

t · ÕT (νT ) E2 ⊆ E

≤ ÕT (TνT ) + ÕT (TνT )

= ÕT (TνT ).

The key application of event E in the above result is that E2 ⊆ E implies that under event
E, maxs∈[0:se] ϵs = ÕT (νT ).

E Proofs of Lemmas from Appendix D

E.1 Proof of Lemma 3

Recall the notation that x′
t is the position at time t when using the controller Calg. We will

prove the following. For sufficiently large T and any t ∈ [T0 : T ], if Calg(x′
t−1) is safe for
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dynamics θ∗, then conditional on E1 ∩ E2, we have that both usafeL
t ≤ usafeU

t and Calg(x′
t)

is safe for dynamics θ∗. Because we assume in this lemma that uT0−1 = Calg(x′
T0−1) is safe

with respect to dynamics θ∗, this will prove by induction the desired result that conditional
on E1 ∩ E2 and for sufficiently large T , usafeL

t ≤ usafeU
t for all t ∈ [T0 : T ].

Fix a given t, and define s = ⌊log2(t/ν2
T )⌋. Assume Calg(x′

t−1) is safe for dynamics θ∗.

Then under event E1, we have that |x′
t| ≤ ∥D∥∞ + |wt−1| ≤ Bx. Let v =

DU−a∗x′
t−4ϵsBx

b∗
.

We will show that usafeU
t ≥ v. Note that a∗x′

t + b∗v = DU − 4ϵsBx. For sufficiently large T ,
because DU −DL ≥ 1

log(T )
(Assumption 3) and ϵs = ÕT (νT ) = oT (1/ log(T )) under E1 ∩ E2,

this implies that
DL ≤ a∗x′

t + b∗v ≤ DU.

Therefore v is safe for dynamics θ∗, which implies by Lemma 4 that under event E1 and for
sufficiently large T ,

|v| ≤ Bx.

Under event E1 ∩ E2, ∥θ∗ − θ̂s∥∞ ≤ ϵs, therefore by the above results we have that under
E1 ∩ E2 and for sufficiently large T ,

max
∥θ̂s−θ∥∞≤ϵs

ax′
t + bv ≤ a∗x′

t + b∗v + 2ϵs|x′
t|+ 2ϵs|v|

≤ a∗x′
t + b∗v + 4ϵsBx |v| ≤ Bx, |x′

t| ≤ Bx

= DU. Def of v

This implies by the definition of usafeU
t that

usafeU
t ≥ v =

DU − a∗x′
t − 4ϵsBx

b∗
.

By the same logic, we also have that

usafeL
t ≤ DL − a∗x′

t + 4ϵsBx

b∗
.

For sufficiently large T under event E2,
8ϵsBx

b∗
= ÕT (νT ) ≤ 1

log(T )
. Therefore, using that

DU ≥ DL+
1

log(T )
by Assumption 3, we can conclude that under event E1∩E2 for sufficiently

large T ,

usafeL
t ≤ DL − a∗x′

t + 4ϵsBx

b∗

≤ DU − a∗x′
t − 4ϵsBx

b∗

≤ usafeU
t .

This implies that usafeL
t ≤ Calg(x′

t) ≤ usafeU
t , which by construction under event E1 ∩ E2

implies that DL ≤ a∗x′
t + b∗Calg(x′

t) ≤ DU. Finally, this gives that Calg(x′
t) is safe for

dynamics θ∗. Therefore, we have shown the two desired results that usafeL
t ≤ usafeU

t and
Calg(x′

t) is safe for dynamics θ∗.
As mentioned above, this implies by induction the desired result that usafeL

t ≤ usafeU
t for

all t ∈ [T0, T ] conditional on E1 ∩ E2 as long as Calg(x′
T0−1) is safe with respect to θ∗.
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E.2 Proof of Lemma 4 (Bounded positions and controls)

proof. Define γT = maxt∈[T ]∥θ∗ − θt∥∞, and we know that γT ≤ 1
log(T )

by assumption. At
time t, the control used by controller Ct is safe for dynamics θt by assumption of the lemma,
so by Definition 2, for all t, if ut = Ct(xt) then

DL ≤ atxt + btut ≤ DU. (50)

By definition of γT , this implies that

DL − γT |xt| − γT |ut| ≤ a∗xt + b∗ut ≤ DU + γT |xt|+ γT |ut|. (51)

The right inequality in Equation (51) implies that

b∗ut − γT |ut| ≤ DU + γT |xt| − a∗xt,

which for ut ≥ 0 implies that |ut| ≤ ∥D∥∞+a∗|xt|+γT |xt|
b∗−γT

. The left inequality in Equation (51)

implies the same for ut ≤ 0, and therefore we have that Equation (51) implies that

|ut| ≤
∥D∥∞ + a∗|xt|+ γT |xt|

b∗ − γT
. (52)

First we prove Equations (33) and (34) by induction.
Base Case: At time t = 0, we have by assumption that |x0| ≤ 4 log2(T ). Furthermore,

Equation (52) implies that

|u0| ≤
∥D∥∞ + a∗|x0|+ γT |x0|

b∗ − γT
Equation (52)

≤ ∥D∥∞ + (a∗ + γT )4 log
2(T )

b∗ − 1
log(T )

Equation (32)

≤
log2(T ) + (a∗ + 1

log(T )
)4 log2(T )

b∗ − 1
log(T )

Assumption 3

≤ log2(T ) + (a∗ + b∗/2)4 log2(T )

b∗/2
Sufficiently large T

≤ 2(1 + 4a∗ + 2b∗) log2(T )

b∗
(53)

< Bx,

for T sufficiently large such that 2(1 + 4a∗ + 2b∗)/b∗ ≤ log(T ) and 1/ log(T ) ≤ b∗/2.
Induction Hypothesis: Assume Equations (33) and (34) are true for all times less than

or equal to t.
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Induction Step: Now we will prove that Equations (33) and (34) hold at time t+ 1.

|xt+1| = |a∗xt + b∗ut + wt|
= |atxt + btut + wt + (a∗ − at)xt + (b∗ − bt)ut|
≤ |atxt + btut|+ |wt|+ |(a∗ − at)xt|+ |(b∗ − bt)ut| Triangle Inequality
a.s.

≤ ∥D∥∞ + log2(T ) + γT |xt|+ γT |ut| Equation (32), Equation (50), event E1

≤ ∥D∥∞ +
1

log(T )
(|xt|+ |ut|) + log2(T ) Equation (32)

≤ ∥D∥∞ +
2

log(T )
Bx + log2(T ) Ind. Hyp.

≤ ∥D∥∞ + 3 log2(T )

≤ 4 log2(T ) Assumption 3

< log3(T )

= Bx.

Above we need T large enough such that log(T ) > 4. Since we showed that |xt+1| ≤
4 log2(T ), this also implies by Equations (52) and (53) that for sufficiently large T , |ut+1| <
Bx. Therefore we have shown Equations (33) and (34) for time t+1, completing the induction
proof.

Now we will prove Equations (35) and (36) with a similar proof by induction. If the
controller Ct is non-random and x0 is not random, this implies that E[|x0|] = |x0| ≤ 4 log2(T )

and E[|u0|] = |u0| ≤ 2(5+4a∗) log2(T )
b∗

by Equation (53). This proves the base case. For the
inductive step, we have that

E[|xt+1|]
= E[|a∗xt + b∗ut + wt|]
≤ E[|atxt + btut|] + E[|wt|] + E[|(a∗ − at)xt|] + E[|(b∗ − bt)ut|] Triangle Inequality

≤ ∥D∥∞ + log2(T ) + γT E[|xt|] + γT E[|ut|] Equations (32), (50), wt sub-Gaussian

≤ ∥D∥∞ +
1

log(T )
(E[|xt|] + E[|ut|]) + log2(T ) Equation (32)

≤ ∥D∥∞ +
2

log(T )
Bx + log2(T ) Ind. Hyp.

≤ ∥D∥∞ + 3 log2(T )

≤ 4 log2(T ) Assumption 3

< log3(T )

= Bx.

We have shown that E[|xt+1|] ≤ 4 log2(T ), therefore by Equation (52) and the same algebraic
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steps as used in Equation (53), we have that for sufficiently large T ,

E[|ut+1|] ≤
∥D∥∞ + a∗ E[|xt+1|] + γT E[|xt+1|]

b∗ − γT

≤ ∥D∥∞ + (a∗ + γT )4 log
2(T )

b∗ − 1
log(T )

≤ 2(1 + 4a∗ + 2b∗) log2(T )

b∗

< Bx.

This completes the second proof by induction, proving Equations (35) and (36).

E.3 Proof of Lemma 5

proof. For this proof, we need the following version of Lemma 8 that applies for expectations
rather than with high probability.

Lemma 11. Let x, y be two random variables independent of noises W ′ = {w′
i}t−1

i=0 such that
for some L = ÕT (1), both P(|x| ≥ L)E[x2 | |x| ≥ L] = oT

(
1

T 10

)
and P(|y| ≥ L)E[y2 | |y| ≥

L] = oT
(

1
T 10

)
and P(|x| ≤ 4 log2(T )) = 1−oT (1/T 11) and P(|y| ≤ 4 log2(T )) = 1−oT (1/T 11).

Then under Assumptions 1–6 and 8, if ∥θ − θ∗∥∞ = ϵ ≤ ϵA8, then for any K ∈ (Kθ
L, K

θ
U)

and t ≤ T ,∣∣E [t · J(θ∗, Cθ
K , t, x,W

′)− t · J(θ∗, Cθ
K , t, y,W

′)
]∣∣ = ÕT

(
E[|x− y|] + ϵ+

1

T 2

)
. (54)

The proof of Lemma 11 can be found in Appendix E.10. We also need the following
generalization of Lemma 4, which bounds the positions for any starting position x.

Lemma 12. Let x0, x1, ...xT be the sequences of positions when starting at position x0 = x
and using controller Ct at time t. Suppose that the control Ct(xt) is safe for dynamics θt
and ∥θt − θ∗∥ ≤ 1

log(T )
for all t < T . For sufficiently large T under Assumption 3,

∀t ≤ T, |xt| = OT (|x|+ ∥D∥∞ + max
i≤t−1

|wi|).

∀t < T, |Ct(xt)| = OT (|x|+ ∥D∥∞ + max
i≤t−1

|wi|).

The proof of Lemma 12 can be found in Appendix E.11.
Because Cθ∗

K∗ , {Cθ∗
K∗

s
}ses=0 are safe for dynamics θ∗, the sequence x∗

0, x
∗
1, ... starts at x

∗
0 = 0,

and ∥D∥∞ ≤ log2(T ) by Assumption 3, Lemma 12 implies that

|x∗
Ts
| = OT

(
max
i≤Ts−1

|wi|+ log2(T )

)
. (55)

Lemma 13. Suppose wt for t < T are sub-Gaussian and F is an event such that P(F ) =
1− oT (1/T

11). Then

E[max
i≤t

w2
i | ¬F ]P(¬F ) = oT

(
1

T 10

)
.
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The proof of Lemma 13 can be found in Appendix E.12. Define F = {|x∗
Ts
| < log3(T )}.

Event E1 implies F by Lemma 4, and therefore P(F ) ≥ P(E1) = 1− oT (1/T
11). Therefore,

we have by Equation (55) that

P(¬F )E[|x∗
Ts
|2 | ¬F ]

= OT

(
P(¬F )E

[
max
i≤Ts−1

w2
i

∣∣∣∣ ¬F])+ ÕT (P(¬F )) [Eq. (55) and (a+ b)2 ≤ 2a2 + 2b2]

= oT

(
1

T 10

)
. Lemma 13, P(¬F ) = oT (1/T

11) (56)

Also, note that Lemma 4 implies that P(x∗
Ts
≤ 4 log2(T )) ≥ P(E1) = 1− oT (1/T

11). We can
therefore apply Lemma 11 with x = x∗

Ts
, y = 0, L = log3(T ), ϵ = 0. Applying Lemma 11

gives the following desired result.

E
[∣∣TsJ(θ

∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)− TsJ(θ

∗, Cθ∗

K∗
s
, Ts, 0,Ws)

∣∣]
= ÕT

(
E
[
|x∗

Ts
|
]
+

1

T 2

)
Lemma 11

= ÕT (1). Lemma 4 for sufficiently large T

Note that we can apply the expectation form of Lemma 4 in the second inequality above
because (Cθ∗

K∗ , {Cθ∗
K∗

s
}ses=0) are non-random controllers.

E.4 Proof of Lemma 6 (Concentration of Conditional Expected
Cost)

proof. We will use the following form of McDiarmid’s Inequality for high probability events.

Lemma 14 (McDiarmid’s Inequality Combes [2015]). Let f be a function such that f :
X1 × X2... × Xn → R and let Y ∈ X1 × X2... × Xn be a subset of the domain such that for
some c, if (x1, ..., xn), (x

′
1, ..., x

′
n) ∈ Y, then

|f(x1, ..., xn)− f(x′
1, ..., x

′
n)| ≤

∑
i:xi ̸=x′

i

c.

Let X1, X2, ..., Xn be independent random variables and Xi ∈ Xi for all i. Define p =
1−P((X1, ..., Xn) ∈ Y) and let m = E[f(X1, ..., Xn) | (X1, ..., Xn) ∈ Y ]. Then for any ϵ > 0,

P(|f(X1, ..., Xn)−m| ≥ ϵ) ≤ 2p+ 2 exp

(
−2max(0, ϵ− pnc)2

nc2

)
.

Define the function fθ̂s(Wm) as

fθ̂s(Wm) = TsJ
(
θ∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, 0,Wm

)
.

We want to apply McDiarmid’s Inequality to fθ̂s conditional on θ̂s when Es
2 holds, which

requires the following bounded difference result.
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Lemma 15. Under Assumptions 1–8, given θ̂s there exists a fixed Ys ∈ [− log2(T ), log2(T )]Ts

such that the event EM
s := {Ws ∈ Ys} satisfies P(EM

s | θ̂s) ≥ 1− oT (1/T
8), and conditional

on θ̂s and Es
2, if E

M
s holds when Ws = {wi}Ts+1−1

i=Ts
and when W ′

s = {w′
i}

Ts+1−1
i=Ts

, then

∣∣fθ̂s(Ws)− fθ̂s(W
′
s)
∣∣ ≤ Ts+1−1∑

i=Ts,wi ̸=w′
i

c

for some c = ÕT (1).

The proof of Lemma 15 can be found in Appendix E.9. We will now apply Lemma 14
for the function fθ̂s conditional on θ̂s and Es

2 using Lemma 15. Conditional on Es
2 (where c

is from Lemma 15), the following holds for ϵ ≥ 1/T and T sufficiently large.

P
(∣∣fθ̂s(Ws)− E[fθ̂s(Ws) | EM

s ]
∣∣ ≥ ϵ

∣∣∣ θ̂s)
≤ 2P(¬EM

s | θ̂s) + 2 exp

−2max
(
0, ϵ− cTsP(¬EM

s | θ̂s)
)2

Tsc2


= oT

(
1

T 8

)
+ 2 exp

(
− ϵ2

2Tsc2

)
[ϵ ≥ 1/T , P(¬EM

s |θ̂s) = oT (1/T
8), suff. large T ]

≤ 1

T 8
+ 2 exp

(
− ϵ2

2Tsc2

)
. [Suff. large T ]

E.5 Proof of Lemma 7 (Unconditional Cost vs Conditional Cost)

proof. By the Law of Total Expectation,

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]

= E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
P(EM

s | θ̂s)

+ E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ ¬EM

s , θ̂s

]
P(¬EM

s | θ̂s)

≥ E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
P(EM

s |θ̂s) Cost is non-negative

= E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
− E

[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
P(¬EM

s |θ̂s)

= E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
− oT

(
1

T

)
E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
= E

[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
− oT ((q + r)B2

x)

= E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
− ÕT (1).

To see the step from the 5th to the 6th line, note that EM
s ⊆ {∀t ∈ [Ts : Ts+1 − 1], |wt| ≤

log2(T )} by assumption and that Es
2 implies that for sufficiently large T , ∥θ∗ − θ̂s∥ ≤ 1

log(T )
,

therefore by Lemma 4 we have that the magnitudes of the positions and controls are all
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bounded by Bx conditional on events Es
2 and EM

s . Therefore, the cost at each time step
conditional on these events is at most (q + r)B2

x, which gives that conditional on event Es
2,

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ EM

s , θ̂s

]
≤ Ts(q + r)B2

x Es
2, E

M
s ⊆ {∀t ∈ [Ts : Ts+1 − 1], |wt| ≤ log2(T )}, Lemma 4

≤ T (q + r)B2
x.

E.6 Proof of Lemma 8

proof. If |x − y| ≤ δA8 then this follows directly from Assumption 8. Now for the rest of
this proof assume |x − y| > δA8 and WLOG assume x ≤ y. Choose δ to be the largest real

number satisfying δ ≤ δA8 such that |x−y|
δ

is an integer. Because δA8 < |x − y|, there must

exist an integer in the range
[
|x−y|
δA8

, 2|x−y|
δA8

]
. Therefore, δ ≥ δA8/2 = Ω̃T (1) by definition of

δA8 . Because |x|, |y| < 4 log2(T ) and x ≤ y, we know that for all i ∈ [0 : |x−y|
δ

], we have

|x+ iδ| ≤ 4 log2(T ). For i ∈ [0 : |x−y|
δ
− 1], by Assumption 8, under event EA8(C

θ
K ,W

′)

|t · J(θ∗, Cθ
K , t, x+ iδ,W ′)− t · J(θ∗, Cθ

K , t, x+ (i+ 1)δ,W ′)| = ÕT (δ + ϵ).

By the triangle inequality, this implies that conditional on event EA8(C
θ
K ,W

′),∣∣t · J(θ∗, Cθ
K , t, x,W

′)− t · J(θ∗, Cθ
K , t, y,W

′)
∣∣

≤

|x−y|
δ

−1∑
i=0

∣∣t · J(θ∗, Cθ
K , t, x+ iδ,W ′)− t · J(θ∗, Cθ

K , t, x+ (i+ 1)δ,W ′)
∣∣

= ÕT

(
|x− y|

δ
(δ + ϵ)

)
= ÕT

(
|x− y|+ 8 log2(T )

δ
ϵ

)
|x|, |y| < 4 log2(T )

= ÕT (|x− y|+ ϵ) . δ = Ω̃T (1)

E.7 Proof of Lemma 9 (Cost of safety controls)

proof. The first tool for this proof is the following lemma, which informally states that being
off by a small amount of control has a small impact on the overall cost.

Lemma 16. Under Assumptions 1–8, with conditional probability 1 − oT (1/T ) given event
E, for all s ∈ [0 : se],
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|Ts · J(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, x
′
Ts
,Ws)− Ts · J(θ∗, Calg

s , Ts, x
′
Ts
,Ws)|

= ÕT

(
Ts+1−1∑
t=Ts

|C θ̂s
Kopt(θ̂s,Ts)

(x′
t)− Calg

s (x′
t)|

)
+ ÕT (Tsϵs).

The proof of Lemma 16 can be found in Appendix E.13.

The control C θ̂s
Kopt(θ̂s,Ts)

(x′
t) is safe for dynamics θ̂s and conditional on event E, ∥θ̂s −

θ∗∥∞ ≤ ÕT (νT ) ≤ 1/ log(T ) for sufficiently large T . The controller Calg
s is safe for dynamics

θ∗ for all T steps conditional on event E by definition of E. These together imply by Lemma
4 that, conditional on event E and for sufficiently large T , for all t ∈ [Ts, Ts+1 − 1],

|x′
t|, |x̂t| ≤ 4 log2(T ) ≤ Bx. (57)

By Lemma 8 and 16, we have that conditional on event E, with probability 1− oT (1/T ),

se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)

= ÕT (1) +

se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x

′
Ts
,Ws) Eq. (57), Lemma 8

= ÕT (1) +

se∑
s=0

(
TsJ(θ

∗, Calg
s , Ts, x

′
Ts
,Ws)− TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, x
′
Ts
,Ws)

)

= ÕT (1) + ÕT

 se∑
s=0

Tsϵs +

Ts+1−1∑
t=Ts

|Calg
s (x′t)− C θ̂s

Kopt(θ̂s,Ts)
(x′t)|

 Lemma 16

= ÕT

(
se∑
s=0

ϵsTs

)
+ ÕT

 se∑
s=0

Ts+1−1∑
t=Ts

XU
t ·
∣∣∣usafeUt − C θ̂s

Kopt(θ̂s,Ts)
(x′t)

∣∣∣+XL
t ·
∣∣∣usafeLt − C θ̂s

Kopt(θ̂s,Ts)
(x′t)

∣∣∣
 .

We applied Lemma 8 for every s ∈ [0 : se], so ÕT (1) times. Since Lemma 8 holds with
probability 1 − oT (1/T

10), a union bound gives the first inequality holds with probability
1− ot(1/T

9). Another union bound combining this with the single application of Lemma 16
gives that the probability of the above result is 1− oT (1/T ). The final line simplified using
the fact that the two controls are equal if XL

t = XU
t = 0.

E.8 Proof of Lemma 10 (Difference in Safety Controls)

proof. By symmetry, it is sufficient to show the first part of the lemma statement for usafeU
t .

Because Calg is safe for dynamics θ∗ under event E and E ⊆ E1, we have by Lemma 4
that under event E,

|x′
t| ≤ 4 log2(T ). (58)

Under event E and for sufficiently large T , ∥θ∗ − θ̂s∥∞ ≤ ϵs ≤ 1
log(T )

. This implies by

construction of usafeU
t that under event E and for sufficiently large T , a∗x′

t + b∗usafeU
t ≤ DU.
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By Lemma 3, we also have that under event E and for sufficiently large T , usafeU
t ≥ usafeL

t .
Therefore, by construction of usafeL

t we have that under event E and for sufficiently large T ,
a∗x′

t + b∗usafeU
t ≥ a∗x′

t + b∗usafeL
t ≥ DL. Together, this shows that u

safeU
t is safe for dynamics

θ∗. By Lemma 4 and Equation (58), this gives that under event E and for sufficiently large
T ,

|usafeU
t | ≤ Bx. (59)

Because any control used by controller C θ̂s
Kopt(θ̂s,Ts)

is safe for dynamics θ̂s, by Lemma 4 we

also have that under event E for sufficiently large T ,

|C θ̂s
Kopt(θ̂s,Ts)

(x′
t)| ≤ Bx. (60)

Also, note that by Algorithm 2 Line 11, usafeU
t satisfies, for some θ such that ∥θ− θ̂s∥∞ ≤ ϵs,

ax′
t + busafeU

t = DU. (61)

Under event E, ∥θ∗ − θ̂s∥∞ ≤ ϵs, which implies that ∥θ∗ − θ∥∞ ≤ 2ϵs ≤ ÕT (νT ) ≤ 1/ log(T )
for sufficiently large T . Therefore, applying Lemma 4 gives that under event E and for
sufficiently large T ,

DU ≥ a∗x′
t + b∗usafeU

t usafeU
t safe for θ∗

≥ ax′
t + busafeU

t − |usafeU
t |2ϵs − |x′

t|2ϵs ∥θ∗ − θ∥∞ ≤ 2ϵs

≥ DU − 4Bxϵs. Equations (58),(59), and (61) (62)

If usafeU
t ≤ C θ̂s

Kopt(θ̂s,Ts)
(x′

t), then there must exist some θ such that ∥θ̂s − θ∥∞ ≤ ϵs and

ax′
t + bC θ̂s

Kopt(θ̂s,Ts)
(x′

t) ≥ DU. (63)

Under event E, ∥θ∗ − θ∥∞ ≤ 2ϵs ≤ ÕT (νT ) ≤ 1/ log(T ) for sufficiently large T , therefore
under event E and for sufficiently large T ,

a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t)

≥ ax′
t + bC θ̂s

Kopt(θ̂s,Ts)
(x′

t)− 2ϵs|x′
t| − 2ϵs

∣∣∣C θ̂s
Kopt(θ̂s,Ts)

(x′
t)
∣∣∣

≥ DU − 4Bxϵs. Equations (58),(60), and (63)
(64)

Finally, because C θ̂s
Kopt(θ̂s,Ts)

(x′
t) is safe for dynamics θ̂s,

âsx
′
t + b̂sC

θ̂s
Kopt(θ̂s,Ts)

(x′
t) ≤ DU. (65)

Using that under event E, ∥θ∗ − θ̂s∥∞ ≤ ϵs ≤ ÕT (νT ) ≤ 1/ log(T ) for sufficiently large T ,
Equations 58, 60, and (65) imply that under event E and for sufficiently large T ,

a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t) ≤ DU + 2Bxϵs. (66)
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Combining Equations (64) and (66), if usafeU
t ≤ C θ̂s

Kopt(θ̂s,Ts)
(x′

t) then under event E and for

sufficiently large T ,

DU − 4Bxϵs ≤ a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t) ≤ DU + 2Bxϵs.

Combining this with Equation (62) gives that under event E and for sufficiently large T ,

|(a∗x′
t + b∗usafeU

t )− (a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t))| = 6Bxϵs.

This implies the desired result that under event E and for sufficiently large T ,

|usafeU
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)| = 6Bxϵs/b
∗.

E.9 Proof of Lemma 15 (McDiarmid’s Condition)

proof. First, we will construct the event EM
s . Define

EM
s = {∀t ∈ [Ts : Ts+1 − 1], |wt| ≤ log2(T )} ∩

Ts+1−1⋂
i=Ts

EA8

(
C θ̂s

Kopt(θ̂s,Ts)
, {wt}Ts+1−1

t=i

)
.

Note because P({∀t ∈ [Ts : Ts+1− 1], |wt| ≤ log2(T )}) ≥ P(E1) = 1− oT (1/T
10) and because

under event Es
2, P

(
EA8

(
C θ̂s

Kopt(θ̂s,Ts)
, {wt}Ts+1−1

t=i

) ∣∣∣ θ̂s) = 1− oT (1/T
10) we have by a union

bound that P(EM
s | θ̂s) = 1−oT (1/T

9). Suppose EM
s holds for Ws and W ′

s. For i ∈ [Ts, Ts+1],
define W i as follows.

W i = {wTs , wTs+1, ..., wi−1, w
′
i, w

′
i+1, w

′
i+2, ...w

′
Ts+1−1}.

In other words, W i includes noise wt for t < i and includes w′
t for t ≥ i. For i ∈ [Ts, Ts+1−1],

we will first bound ∣∣fθ̂s(W i)− fθ̂s(W
i+1)
∣∣ .

First, note that if wi = w′
i, then W i = W i+1 and therefore fθ̂s(W

i) = fθ̂s(W
i+1). Now,

assume wi ̸= w′
i. Let xi

0, .., x
i
Ts

be the series of positions when the noise random variables

are W i, xi
0 = 0, and the controller used is C θ̂s

Kopt(θ̂s,Ts)
. Conditional on Es

2, ∥θ̂s − θ∗∥∞ ≤
Õ(νT ) ≤ 1/ log(T ) for sufficiently large T . Because EM

s holds for Ws,W
′
s, we have that E1

holds for W i for all i. Therefore by Lemma 4 for sufficiently large T , |xi
t| ≤ 4 log2(T ) for

all i, t. For any t ≤ i, xi
t = xi+1

t . Therefore, the difference in the two trajectories {xi
t} and

{xi+1
t } only occurs at and after time i + 1. The first difference occurs at time i + 1 when

xi
i+1 = xi+1

i+1 − wi + w′
i. For the next Ts+1 − i − 1 steps, the difference in cost of the two
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trajectories {xi
t} and {xi+1

t } is
(Ts+1 − i− 1)J(θ∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts+1 − i− 1, xi+1

i+1, {w
′
t}

Ts+1−1
t=i+1 )

− (Ts+1 − i− 1)J(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts+1 − i− 1, xi
i+1, {w′

t}
Ts+1−1
t=i+1 )

= ÕT

(
|xi+1

i+1 − xi
i+1|+ |θ̂s − θ∗|

)
Lemma 8, |xi

t| ≤ 4 log2(T )

= ÕT

(
|xi+1

i+1 − xi+1
i+1 + wi − w′

i|+ νT
)

Event Es
2 , x

i
i+1 = xi+1

i+1 − wi + w′
i

= ÕT (|wi − w′
i|+ νT )

= ÕT

(
2 log2(T ) + νT

)
W,W ′ satisfy event EM

s

= ÕT (1). (67)

We have therefore shown that for some c = ÕT (1),

|fθ̂s(W
i)− fθ̂s(W

i+1)| ≤ c.

Because Ws = W Ts+1 and W ′
s = W Ts , we have by the triangle inequality that

|fθ̂s(Ws)− fθ̂s(W
′
s)| = |fθ̂s(W

Ts+1)− fθ̂s(W
Ts)|

≤
Ts+1−1∑
i=Ts

|fθ̂s(W
i)− fθ̂s(W

i+1)|

=

Ts+1−1∑
i=Ts,wi ̸=w′

i

|fθ̂s(W
i)− fθ̂s(W

i+1)|

≤
Ts+1−1∑

i=Ts,wi ̸=w′
i

c.

E.10 Proof of Lemma 11

proof. Define E∗ = {|x|, |y| ≤ 4 log2(T )} ∩ EA8(C
θ
K ,W

′). By assumption of the lemma,
we have that P(|x| ≤ 4 log2(T )) = 1 − oT (1/T

11) and P(|y| ≤ 4 log2(T )) = 1 − oT (1/T
11).

Because ∥θ − θ∗∥∞ ≤ ϵA8, P(EA8(C
θ
K ,W

′)) = 1 − oT (1/T
10). Therefore, by a union bound

we have that P(E∗) = 1− oT (1/T
10). By the Law of Total Expectation,

E[
∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣]

= E
[∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ ∣∣ E∗]P(E∗)

+ E
[∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ ∣∣ ¬E∗]P(¬E∗)

= E
[
ÕT (|x− y|+ ϵ)

∣∣∣ E∗
]
P(E∗)

+ E
[∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ ∣∣ ¬E∗]P(¬E∗) Lemma 8

= ÕT

(
E [|x− y| | E∗]P (E∗) + ϵ

)
+ E

[∣∣t · J(θ∗, Cθ
K , t, x,W

′)− t · J(θ∗, Cθ
K , t, y,W

′)
∣∣ ∣∣ ¬E∗]P(¬E∗)

= ÕT

(
E [|x− y|] + ϵ

)
+ E

[∣∣t · J(θ∗, Cθ
K , t, x,W

′)− t · J(θ∗, Cθ
K , t, y,W

′)
∣∣ ∣∣ ¬E∗]P(¬E∗) LoTE
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Therefore, all we must show is that

E
[∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ ∣∣ ¬E∗]P(¬E∗) = ÕT (T

−2).

Define wm = maxw∈W ′ |w|. By Lemma 12, we can bound the position and controls at every
time step in terms of wm to get that∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣

= T (q + r)OT

(
(wm + x+ ∥D∥∞)2 + (wm + y + ∥D∥∞)2

)
Triangle Inequality, Lemma 12

= OT

(
T
(
(wm + x+ ∥D∥∞)2 + (wm + y + ∥D∥∞)2

))
= ÕT

(
T
(
w2

m + wm|x|+ |x|2 + wm|y|+ |y|2 + wm + |x|+ |y|+ 1
))

. Assum 3 (∥D∥∞ ≤ log2(T ))

Therefore, we have that

E
[∣∣t · J(θ∗, Cθ

K , t, x,W ′)− t · J(θ∗, Cθ
K , t, y,W ′)

∣∣ | ¬E∗]P(¬E∗)

= ÕT

(
T
(
E[w2

m | ¬E∗]P(¬E∗) + E[wm | ¬E∗]P(¬E∗) + E[|y|wm | ¬E∗]P(¬E∗) + E[|y|2 | ¬E∗]P(¬E∗)

+ E[|x|wm | ¬E∗]P(¬E∗) + E[|x|2 | ¬E∗]P(¬E∗) + E[|x| | ¬E∗]P(¬E∗) + E[|y| | ¬E∗]P(¬E∗) + P(¬E∗)
))

.

(68)

Therefore, it is sufficient to show that E[wm | ¬E∗]P(¬E∗), E[w2
m | ¬E∗]P(¬E∗), E[|x| |

¬E∗]P(¬E∗), E[x2 | ¬E∗]P(¬E∗) , E[|y| | ¬E∗]P(¬E∗), E[y2 | ¬E∗]P(¬E∗), E[|x|wm |
¬E∗]P(¬E∗), E[|y|wm | ¬E∗]P(¬E∗) are all ÕT (

1
T 3 ). We will use the following probability

result.

Lemma 17. Suppose X is a non-negative random variable. Then for any L ≥ 0 and any
event E, we have that

E [X | E]P(E) ≤ P(E)L+ P(X ≥ L)E [X | X ≥ L]

proof. For any events A,B such that A ⊆ B, we have that

E[X | B]P(B) = E[X | A,B]P(A | B)P(B) + E[X | ¬A,B]P(¬A | B)P(B)

= E[X | A]P(A) + E[X | ¬A,B]P(¬A | B)P(B) A ⊆ B

≥ E[X | A]P(A). (69)

Therefore, we can conclude that

E [X | E]P(E)

= E [X | E,X ≤ L]P(X ≤ L | E)P(E) + E [X | E,X ≥ L]P(X ≥ L | E)P(E)

≤ P(E)L+ E [X | E,X ≥ L]P(X ≥ L | E)P(E)

≤ P(E)L+ E [X | E,X ≥ L]P(E,X ≥ L)

≤ P(E)L+ E [X | X ≥ L]P(X ≥ L). Eq (69)
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Now, note that by the assumption on x and definition of E∗ (where L is from the lemma
statement),

E[x2 | ¬E∗]P(¬E∗) ≤ P(¬E∗)L2 + P(|x| ≥ L)E[|x|2 | |x| ≥ L] Lemma 17

= ÕT

(
1

T 10

)
+ ÕT

(
1

T 10

)
= ÕT

(
1

T 10

)
.

This also implies by the Cauchy–Schwarz inequality that

E[|x| | ¬E∗]P(¬E∗) ≤
√

E[x2 | ¬E∗]P(¬E∗)

=
√
E[x2 | ¬E∗]P(¬E∗)

√
P(¬E∗)

= ÕT

(
1

T 5

)
.

By Lemma 13, because P(E∗) = 1− oT (1/T
11) we have that

E[w2
m | ¬E∗]P(¬E∗) = ÕT

(
1

T 10

)
.

Once again, by the Cauchy-Schwarz inequality this implies that E[wm | ¬E∗] = ÕT

(
1
T 5

)
.

By the subgaussian assumption on D and a union bound, we have that

P(wm ≥ log3(T )) ≤
∑
w∈W ′

P(|w| ≥ log3(T ))

≤ t · 2e−ΩT (log6(T ))

≤ oT (1/T
11). (70)

Finally, we have by the independence of x and wm and the assumption on x that

E[|x|wm | ¬E∗]P(¬E∗)

≤ P(¬E∗)L log3(T )

+ P(|x| ≥ L,wm ≥ log3(T ))E
[
|x|wm

∣∣ |x| ≥ L,wm ≥ log3(T )
]

+ P(|x| ≤ L,wm ≥ log3(T ))E[|x|wm | |x| ≤ L,wm ≥ log3(T )]

+ P(|x| ≥ L,wm ≤ log3(T ))E[|x|wm | |x| ≥ L,wm ≤ log3(T )] Lemma 17

≤ P(¬E∗)L log3(T )

+ P(|x| ≥ L)P(wm ≥ log3(T ))E [|x| | |x| ≥ L]E [wm | wm ≥ log(T )]

+ LP(wm ≥ log3(T ))E[wm | wm ≥ log3(T )]

+ log3(T )P(|x| ≥ L)E [|x| | |x| ≥ L] [Ind of x and wm]

= ÕT

(
1

T 10

)
+ ÕT

(
1

T 20

)
+ ÕT

(
1

T 10

)
+ ÕT

(
1

T 10

)
[Def of E∗, Lemma 13, Eq (70), Assum on x]

= ÕT

(
1

T 10

)
.
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Note that by symmetry, all of the above results also hold for y. Returning to Equation (68),
we have that

E
[∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣ | ¬E∗]P(¬E∗) = ÕT

(
1

T 2

)
.

This completes the proof that

E
[∣∣t · J(θ∗, Cθ

K , t, x,W
′)− t · J(θ∗, Cθ

K , t, y,W
′)
∣∣] = ÕT

(
E[|x− y|] + ϵ+

1

T 2

)
.

E.11 Proof of Lemma 12

proof. Define γT = maxt≤T−1∥θt − θ∗∥∞ ≤ 1
log(T )

. Because the control at time t is safe for
dynamics θt, we have DL ≤ atxt + btut ≤ DU for all t. By the triangle inequality,

|xt+1| = |a∗xt + b∗ut + wt| ≤ |wt|+ ∥D∥∞ + γT (|xt|+ |ut|).

As in Equation (52),

|ut| ≤
∥D∥∞ + a∗|xt|+ γT |xt|

b∗ − γT
=
∥D∥∞ + (a∗ + γT )|xt|

b∗ − γT
.

For sufficiently large T , γT ≤ b∗/2, and therefore for sufficiently large T ,

|xt+1| ≤ |wt|+ ∥D∥∞ + γT

(
|xt|+

∥D∥∞ + a∗|xt|+ γT |xt|
b∗ − γT

)
= OT (|wt|+ ∥D∥∞ + γT |xt|).

Using x0 = x as the base-case, this recursive relationship implies that for all t,

|xt| ≤ OT

(
t−1∑
i=0

(|wi|+ ∥D∥∞ + |x|)γt−1−i
T

)

≤ OT

((
max
i≤t−1

|wi|+ ∥D∥∞ + |x|
) t−1∑

i=0

γi
T

)

≤ OT

((
max
i≤t−1

|wi|+ ∥D∥∞ + |x|
) t−1∑

i=0

(
1

log(T )

)i
)

= OT

((
max
i≤t−1

|wi|+ ∥D∥∞ + |x|
)

1

1− 1
log(T )

)
.

This implies that for sufficiently large T , |xt| = OT (maxi≤t−1 |wi|+ ∥D∥∞ + |x|) and

|ut| ≤
∥D∥∞ + (a∗ + γT )OT (maxi≤t−1 |wi|+ ∥D∥∞ + |x|)

b∗ − γT
= OT (max

i≤t−1
|wi|+ ∥D∥∞ + |x|),

which are exactly the desired bounds.
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E.12 Proof of Lemma 13

proof. Define wm = maxi≤t |wi|. Because wt is sub-Gaussian, there exists α > 0 such that
for any w ≥ 0, P(|wt| ≥ w) ≤ 2e−w2/(2α). Therefore, we have for any w ≥ 0,

P(w2
m ≥ w) = 1− P

(
∀i ≤ t, |wi| ≤

√
w
)

≤ 1−
(
1− 2e−w/(2α)

)t
= OT (te

−w/(2α)).

This implies by the Law of Total Expectation that

E[w2
m | ¬F ]P(¬F ) ≤ P(¬F ) log6(T ) + P(wm ≥ log3(T ))E[w2

m | wm ≥ log3(T )] Lemma 17

= oT

(
1

T 10

)
+

∫ ∞

log6(T )

P(w2
m ≥ w)dw

= oT

(
1

T 10

)
+OT

(∫ ∞

log6(T )

te−w/(2α)dw

)
= oT

(
1

T 10

)
+OT

(
2tαe− log6(T )/(2α)

)
= oT

(
1

T 10

)
.

E.13 Proof of Lemma 16

proof. Fix a value of s. For i ∈ [0 : Ts], define the controller C
i
t as the controller that at time

t < i uses controller Calg
s and at time t ≥ i uses controller C θ̂s

Kopt(θ̂s,Ts)
. We will compare the

cost of controller Ci
t versus controller C

i+1
t over Ts steps starting at position x′

Ts
. Note that

the cost of the first i steps is the same, as Ci
t = Ci+1

t = Calg
s for t < i. Therefore

|i · J(θ∗, Ci+1
t , i, x′

Ts
, {wj}Ts+i−1

j=Ts
)− i · J(θ∗, Ci

t , i, x
′
Ts
, {wj}Ts+i−1

j=Ts
)| = 0.

The position at time i when using either Ci
t or Ci+1

t is x′
Ts+i. Conditional on event E and

for sufficiently large T , by Lemma 4 we have that |Calg
s (x′

Ts+i)|, |C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)| ≤ Bx.

Therefore conditional on event E and for sufficiently large T ,

r
(
Calg

s (x′
Ts+i)

2 − C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)

2
)

≤ 2r|Calg
s (x′

Ts+i)− C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)|+ r

(
Calg

s (x′
Ts+i)− C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i)
)2

≤ r(2 + 2Bx)|Calg
s (x′

Ts+i)− C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)|. (71)
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The difference in the next position when at position x′
Ts+i and using control Calg

s (x′
Ts+i)

versus C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i) is∣∣∣a∗x′

Ts+i + b∗Calg
s (x′

Ts+i) + wTs+i − (a∗x′
Ts+i + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i) + wTs+i)
∣∣∣

= b∗|Calg
s (x′

Ts+i)− C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)|. (72)

Under event E, the controls C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i) and Calg

s (x′
Ts+i) are safe for dynamics θ̂s and

θ∗, respectively and ∥θ∗ − θ̂s∥∞ ≤ ϵs ≤ ÕT (νT ). Therefore, by Lemma 4, conditional on
event E and for sufficiently large T , we have that |x′

Ts+i| ≤ 4 log2(T ) and that

|a∗x′
Ts+i + b∗Calg

s (x′
Ts+i) + wTs+i|, |a∗x′

Ts+i + b∗C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i) + wTs+i| ≤ 4 log2(T ).

Conditional on event E and for sufficiently large T , we therefore have by Lemma 8 that

conditional on EA8(C
θ̂s
Kopt(θ̂s,Ts)

, {wj}Ts+1−1
j=Ts+i+1), we can bound the difference in future cost of

the next Ts − i − 1 steps starting at time Ts + i + 1 when using control Calg
s (x′

Ts+i) versus

C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i) as follows.

(Ts − i− 1)
∣∣∣J(θ∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts − i− 1, a∗x′

Ts+i + b∗Calg
s (x′

Ts+i) + wTs+i, {wj}Ts+1−1
j=Ts+i+1)

− J(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts − i− 1, a∗x′
Ts+i + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i) + wTs+i, {wj}Ts+1−1
j=Ts+i+1)

∣∣∣
= ÕT

(
b∗|Calg

s (x′
Ts+i)− C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i)|+ ϵs

)
. [Eq (72), Lemma 8] (73)

Therefore, the difference in total cost between Ci
t and Ci+1

t conditional on event E with

probability P(EA8(C
θ̂s
Kopt(θ̂sTs)

, {wj}Ts+1−1
j=Ts+i+1)) = 1− oT (1/T

10) is

|Ts · J(θ∗, Ci+1
t , Ts, x

′
Ts
,Ws)− Ts · J(θ∗, Ci

t , Ts, x
′
Ts
,Ws)

≤
∣∣∣i · J(θ∗, Ci+1

t , i, x′
Ts
, {wj}Ts+i

j=Ts
)− i · J(θ∗, Ci

t , i, x
′
Ts
, {wj}Ts+i

j=Ts
)
∣∣∣+ r

(
Calg

s (x′
Ts+i)

2 − C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)

2
)

+ (Ts − i− 1)
∣∣∣J(θ∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts − i− 1, a∗x′

Ts+i + b∗Calg
s (x′

Ts+i) + wTs+i, {wj}Ts+1−1
j=Ts+i+1)

− J(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts − i− 1, a∗x′
Ts+i + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i) + wTs+i, {wj}Ts+1−1
j=Ts+i+1)

∣∣∣
≤ 0 + r(2 + 2Bx)|Calg

s (x′
Ts+i)− C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i)|

+ ÕT

(
b∗|Calg

s (x′
Ts+i)− C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i)|+ ϵs

)
Eq. (71), (73)

= ÕT

(
|Calg

s (x′
Ts+i)− C θ̂s

Kopt(θ̂s,Ts)
(x′

Ts+i)|+ ϵs

)
. (74)
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We can use Equation (74) for all i ∈ [0 : Ts− 1], the triangle inequality, and a union bound
to get that conditional on event E, with probability 1− oT (1/T

9)

|Ts · J(θ∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, x
′
Ts
,Ws)− Ts · J(θ∗, Calg

s , Ts, x
′
Ts
,Ws)|

≤
Ts−1∑
i=0

|Ts · J(θ∗, Ci+1
t , Ts, x

′
Ts
,Ws)− Ts · J(θ∗, Ci

t , Ts, x
′
Ts
,Ws)|

= ÕT

(
Ts−1∑
i=0

|Calg
s (x′

Ts+i)− C θ̂s
Kopt(θ̂s,Ts)

(x′
Ts+i)|+ Tsϵs

)
. (75)

The above was for a fixed value of s. Taking a union bound over all s ∈ [0 : se], we have
that with conditional probability 1− oT (1/T ) given event E, the desired result holds for all
s ∈ [0 : se].

F Proofs of Sufficiently Large Noise Case

F.1 Proof of Theorem 1

First, we present the algorithm which is used to prove Theorem 1.

Algorithm 3 Safe LQR for Large Noise

proof. Input: D,D,Θ, C init, {Cθ}θ∈Θ, T, λ
1: νT ← T−1/4

2: for t← 0 to 1
ν2T
− 1 do ▷ Safe warm-up exploration phase

3: ϕt ∼ Rademacher(0.5)
4: Use control ut = C init(xt) +

ϕt

log(T )

5: for s← 0 to log2(Tν
2
T )− 1 do ▷ Safe certainty equivalence phase

6: Ts ← 2s

ν2T

7: ϵs ← BTs

√
max(V 22

Ts
,V 11

Ts )
V 11
Ts

V 22
Ts

−(V 12
Ts

)2

8: θ̂pres ← (Z⊤
Ts
ZTs + λI)−1Z⊤

Ts
XTs

9: θ̂s ← argmin∥θ′−θ̂pres ∥∞≤ϵs
min∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ
′, Ts), DU)

10: Calg
s ← C θ̂s

Kopt(θ̂s,Ts)

11: for t← Ts to 2Ts − 1 do

12: usafeU
t ← max

{
u : max

∥θ−θ̂pres ∥∞≤ϵs

axt + bu ≤ DU

}
13: usafeL

t ← min

{
u : min

∥θ−θ̂pres ∥∞≤ϵs

axt + bu ≥ DL

}
14: Use control ut = max

(
min

(
Calg

s (xt), u
safeU
t

)
, usafeL

t

)
Importantly, we note that Algorithm 3 fundamentally only differs from Algorithm 2 in

two ways. The first is that νT changes from T−1/3 (in Algorithm 2) to T−1/4 (in Algorithm
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3), which changes Ts as well. The second is that the definition of θ̂s changes between the
two algorithms. Note that the definition of θ̂pres in Algorithm 3 is equivalent to the definition
of θ̂s in Algorithm 2. This means that the definitions of usafeU

t and usafeL
t are the same in

both Algorithm 2 and Algorithm 3. Of course, the changes in νT and the definition of θ̂s
change the entire trajectory of the algorithm, which affects all of the other variables as well.
However, all other differences in the algorithm trajectory can be derived from these two
changes.

For the rest of Appendix F, let Calg be the controller of Algorithm 3. Because Algorithm 3
and Algorithm 2 differ, we will now redefine the important events and lemmas from Appendix
C with respect to Algorithm 3 (and the corresponding θ̂s), and use this notation for the rest
of Appendix F. Define se = log2(Tν

2
T )− 1, and let

E0 :=
{
∀s ≤ se : ∥θ∗ − θ̂pres ∥∞ ≤ ϵs

}
. (76)

By Lemma 23 we have that with probability 1− oT (1/T
2), ∥θ∗ − θ̂pres ∥∞ ≤ ϵs. Therefore,

P(E0) = 1− oT (1/T
2).

Also note that because ∥θ̂s− θ̂pres ∥∞ ≤ ϵs by construction, we have by the triangle inequality
that under event E0, ∥θ∗ − θ̂s∥∞ ≤ 2ϵs.

For the rest of this section, define

E2 := E0

⋂{
max
s∈[0:se]

ϵs = ÕT (νT )

}
. (77)

We also have the following equivalent result to Lemma 2, but with respect to the ϵs in
Algorithm 3.

Lemma 18. Under Assumptions 1–8, with probability 1− oT (1/T
2)

max
s∈[0:se]

ϵs = ÕT (νT ).

The proof of Lemma 2 relies only on the first νT steps and is written agnostic to the
choice of νT , and therefore the result of Lemma 18 follows directly from that proof. Lemma
18 implies that we have

P(E2) = 1− oT (1/T
2).

For this section, E1 will still refer to the same event as in Equation (19). We also define
the event Esafe the same way as in Equation (22) except with respect to the positions and
controls of Algorithm 3, and finally we define the event E = E1 ∩E2 ∩Esafe (the same as in
Appendix C.2). Therefore by a union bound we still have that P(E) = 1− oT (1/T

2). Using
this new notation and Lemma 18, we can proceed to the main proof.

The safety of Calg follows from an equivalent version of Lemma 1, except stated for
Algorithm 3 instead of Algorithm 2. The proof follows as in the proof of Lemma 1 except
using Lemma 18 instead of Lemma 2, and using the above definitions of E0, E1 and E2 with
respect to Algorithm 3. An equivalent statement of Lemma 3 holds except for the usafeU

t

and usafeL
t coming from Algorithm 3. Note that the only place that the proof of Lemma 3
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relies on νT is that it requires that ϵs = ÕT (νT ) and that ÕT (νT ) = oT (1/ log(T )) at multiple
points in the proof, which still holds under the new definitions of E2 and νT . Finally, as
noted above, the usafeU

t and usafeL
t are constructed in the same way for both algorithms, and

therefore the rest of the proof of Lemma 1 follows directly.
The rest of this section will focus on bounding the regret of Algorithm 3 to be ÕT (

√
T )

with probability 1−oT (1/T ). Informally, the key idea behind the regret bound of Algorithm
3 is that with high probability, the uncertainty upper bound ϵs will decrease at a rate
proportional to 1/

√
Ts. This is formalized in Lemma 19.

Lemma 19. Under Assumptions 1–9, given event E with conditional probability 1−oT (1/T ),

max
s∈[0:se]

ϵs
√
Ts = ÕT (1).

The proof of Lemma 19 can be found in Appendix F.2.
Define event E3 as the event

E3 =

{
max
s∈[0:se]

ϵs
√

Ts = ÕT (1)

}
.

By Lemma 19, P(E3) = 1− oT (1/T ). We can decompose the regret of Algorithm 3 into the
same components of regret as in Appendix C.2. The first two propositions stated below are
exactly equivalent to their counterparts in Appendix C.2.

Proposition 7 (Regret from Warm-up Period). Define x′
0, x

′
1, ... as the sequence of random

variables that are the positions of the controller Calg defined in Algorithm 3. Define R0 as
the cost of the first 1/ν2

T steps, i.e.

R0 = T · J(θ∗, Calg, T, 0,W )−
se∑
s=0

Ts · J(θ∗, Calg
s , Ts, x

′
Ts
,Ws). (78)

Then under Assumptions 1–8 and conditional on event E,

R0

a.s.

≤ ÕT

(
1

ν2
T

)
.

The proof of Proposition 7 can be found in Appendix F.3.

Proposition 8 (Regret from Randomness). Define x̂T0 , x̂T0+1, ... as the sequence of ran-
dom variables representing the sequence of positions if the control at each time t ≥ T0 is

C θ̂s
Kopt(θ̂s,Ts)

(xt) for s = ⌊log2 (tν2
T )⌋ and starting at x̂T0 = x′

T0
. Define R2 as

R2 :=
se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws)−

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s

]
.

Then with conditional probability 1− oT (1/T ) given event E,

R2 ≤ ÕT (
√
T ). (79)
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The proof of Proposition 8 can be found in Appendix F.4. The next two propositions
have different regret bounds than their counterparts in Appendix C.2.

Proposition 9 (Regret from Non-optimal Controller with Sufficiently Large Noise). Define
R1 as

R1 :=
se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]
.

Note that Ws is independent of θ̂s by construction. Then under Assumptions 1–9 and con-
ditional on event E2 ∩ E3,

R1

a.s.

≤ ÕT

(√
T
)
. (80)

The proof of Proposition 9 can be found in Appendix F.5.

Proposition 10 (Regret from Enforcing Safety with Sufficiently Large Noise). Define x̂T0 , x̂T0+1, ...
as the sequence of random variables representing the sequence of positions if the control at

each time t ≥ T0 is C θ̂s
Kopt(θ̂s,Ts)

(x̂t) for s = ⌊log2 (tν2
T )⌋ and starting at x̂T0 = x′

T0
. Define R3

as (the random variable)

R3 :=
se∑
s=0

TsJ(θ
∗, Calg

s , Ts, x
′
Ts
,Ws)−

se∑
s=0

TsJ(θ
∗, C θ̂s

Kopt(θ̂s,Ts)
, Ts, x̂Ts ,Ws).

Then under Assumptions 1–9, with conditional probability 1− oT (1/T ) given event E ∩ E3,

R3 ≤ ÕT (
√
T ).

The proof of Proposition 10 can be found in Appendix F.6.
Using Equation (31) combined with Propositions 7, 8, 9 and 10, the total regret is

upper bounded by the following conditioned on event E ∩ E3, with conditional probability
1− oT (1/T )

T · J(θ∗, Calg, T )− T · J̄(θ∗, Cθ∗

Kopt(θ∗,T ), T ) ≤ R0 +R1 +R2 +R3 = ÕT

(
1

ν2
T

+
√
T

)
.

Because νT = T−1/4 in Algorithm 3, this gives total regret of ÕT (
√
T ) conditional on E3∩E.

Since P(E3) = 1− oT (1/T ) and P(E) = 1− oT (1/T ), a union bound gives that the regret of
Algorithm 3 is ÕT (

√
T ) with unconditional probability 1− oT (1/T ).

F.2 Proof of Lemma 19(Uncertainty bounds using boundary times)

proof. To prove this lemma, we will show that the controller Calg uses the control usafeU
i

“sufficiently frequently”. Let St be the set of times i < t when the control used by Algorithm
3 is usafeU

i . Formally, if u′
0, u

′
1, ...u

′
T−1 are the sequence of controls used by Calg, then

St = {i < t : u′
i = usafeU

i }. (81)
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Lemma 20. Under Assumptions 1–9 and conditional on event E with conditional probability
1− oT (1/T ),

min
s∈[1:se]

|STs|
Ts

= ΩT (1).

The proof of Lemma 20 can be found in Appendix F.8. Equipped with the fact that |St|
scales linearly with t from Lemma 20, we need the following result that will lower the upper
bound for ϵs.

Lemma 21. Under Assumptions 1–9 and conditional on event E with conditional probability
1− oT (1/T ),

max
s∈[0:se]

ϵs
√
|STs| = ÕT (1).

The proof of Lemma 21 can be found in Appendix G.3. To see that ϵ0
√
T0 = ÕT (1),

note that
√
T0 = 1/νT and Lemma 18 imply that conditional on event E, ϵ0 = ÕT (νT ). For

s > 0, a union bound combining Lemma 20 with Lemma 21 gives the desired result that
conditioned on event E with conditional probability 1− oT (1/T ),

max
s∈[0:se]

ϵs
√
Ts = ÕT (1).

F.3 Proof of Proposition 7

proof. The proof of Proposition 7 follows the same as the proof of Proposition 3. The proof
of Proposition 3 relies on the fact that the controller is safe for dynamics θ∗ conditional
on event E. This is still true by construction of event E, and therefore the result follows
directly.

F.4 Proof of Proposition 8

proof. Note that this statement is exactly the same as the statement of Proposition 5 except
for Algorithm 3. The proof of Proposition 5 relies on Lemmas 6 and 7. Define the event Es

2

as
Es

2 =
{
∥θ̂s − θ∗∥∞ ≤ 2 · ϵs ≤ 2cT · νT

}
, (82)

where the cT = ÕT (1) from Lemma 18. Note that we still have P(Es
2) ≥ P(E2) ≥ 1 −

oT (1/T
2). An analogous version of Lemma 6 holds with this new definition of Es

2 for Algo-
rithm 3. Examining Lemma 6, the proof relies on θ̂s and νT through Lemma 15. A version
of Lemma 15 holds with the exact same statement with the new definition of Es

2. Exam-
ining the proof of Lemma 15, we must have that under event Es

2, ∥θ̂s − θ∗∥∞ ≤ ÕT (νT ) ≤
min(ϵA8,

1
log(T )

) in order to apply Lemmas 8 and 4, and this holds for νT = T−1/4. Therefore,
we have shown the equivalent version of Lemma 6 for Algorithm 3.

Similarly, an analogous version of Lemma 7 holds for Algorithm 3. Lemma 7 depends on
θ̂s and νT only in that it uses ∥θ∗ − θ̂s∥∞ ≤ 1/ log(T ) conditional on event Es

2, which still
holds by construction of Es

2 for νT = T−1/4 and sufficiently large T .
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Now that we have shown that equivalent versions of Lemmas 6 and 7 still hold, we can
return to the proof of Proposition 5. Outside of the two lemmas discussed above, the only
places in the proof that depend on the choice of νT and θ̂s is that se = ÕT (1) is still true in
Equation (44) and that conditional on event E, ∥θ̂s − θ∗∥∞ ≤ ÕT (νT ) ≤ min(ϵA8,

1
log(T )

) in
order to apply Lemmas 4 and 8. As both of these still hold for the new definition of E and
for νT = T−1/4, we are done.

F.5 Proof of Proposition 9

proof. The proof of Proposition 9 will mostly follow as in the proof of Proposition 4. The
proof of Proposition 4 relies on Lemma 5. An equivalent version of Lemma 5 holds for
Algorithm 3, where the only difference is that the Ts are now defined differently. To see
this, note that the proof of Lemma 5 works for any Ts ≤ T , and therefore the proof follows
exactly the same.

Returning to the proof of Proposition 4, we can still apply Assumption 7 under the event
Es

2 as defined in Equation (82). Looking at the last block of equations in Proposition 4, we
can follow the logic exactly and pick up from the second to last line. Applying Lemma 19,
conditional on E ∩ E3,

se∑
s=0

E
[
TsJ(θ

∗, C θ̂s
Kopt(θ̂s,Ts)

, Ts, 0,Ws)
∣∣∣ θ̂s]− E

[
se∑
s=0

TsJ(θ
∗, Cθ∗

K∗
s
, Ts, x

∗
Ts
,Ws)

]

≤ ÕT (1) + ÕT

(
se∑
s=0

Tsϵs +
Ts

T 2

)

= ÕT (1) + ÕT

(
se∑
s=0

TsÕT

(
1√
Ts

)
+

Ts

T 2

)
Lemma 19

= ÕT (
√
T ).

F.6 Proof of Proposition 10

proof. The proof of Proposition 10 will mostly follow as in the proof of Proposition 6. The
proof of Proposition 6 relies on Lemmas 9 and 10. We will show that equivalent versions of
these lemmas hold for Algorithm 3.

Starting with Lemma 9, an equivalent version holds for the usafeU
t and usafeL

t defined in
Algorithm 3 and Calg as the controller of Algorithm 3. Looking at the proof of Lemma 9,
the main tool is Lemma 16. An equivalent version of Lemma 16 holds for Algorithm 3.
Looking at the proof of Lemma 16, the dependency on θ̂s and νT is that we must have that
conditional on event E, ∥θ̂s− θ∗∥∞ ≤ ÕT (νT ) ≤ min(ϵA8,

1
log(T )

) in order to apply Lemmas 4

and 8. The union bound at the end of the proof also relies on se = ÕT (1), which also does
still hold. Returning to the proof of the equivalent of Lemma 9 for Algorithm 3, we again
need that conditional on event E, ∥θ̂s − θ∗∥∞ ≤ ÕT (νT ) ≤ min(ϵA8,

1
log(T )

) in order to apply
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Lemmas 4 and 8. Once again using that se = ÕT (1), the rest of the proof of Lemma 9 can
be directly applied.

An equivalent version of Lemma 10 also holds when Calg is the controller of Algorithm 3
with νT = T−1/4. We defer the proof of this to Appendix F.7.

Now we can return to the proof of Proposition 6 and show that a slight modification
gives the desired result. Looking at the last set of equations, we can pick up from the third
line and apply Lemma 19 to get that, conditional on event E ∩ E3,

R3 ≤ ÕT

(
se∑
s=0

Tsϵs

)
+

se∑
s=0

Ts+1−1∑
t=Ts

XU
t · ÕT (ϵs) +XL

t · ÕT (ϵs)

≤ ÕT

(
se∑
s=0

Tsϵs

)

≤
se∑
s=0

Ts · ÕT

(
1√
Ts

)
Lemma 19

= ÕT (
√
T ).

The last line follows from the fact that for all s, Ts ≤ T and that se = ÕT (1).

F.7 Proof of Equivalent Version of Lemma 10 for Algorithm 3

Examining the proof of Lemma 10, the main change when using Algorithm 3 is that we now
have that under event E and for sufficiently large T , ∥θ∗− θ̂s∥∞ ≤ 2ϵs (while for Algorithm 2
there was no factor of 2). Because νT = T−1/4, this still allows us to apply Lemma 4. Picking
up the proof of Lemma 10 directly before Equation (61), the extra factor of 2 mentioned
above will result in the following changes.

By the construction of Algorithm 3, usafeU
t satisfies, for some θ such that ∥θ− θ̂pres ∥∞ ≤ ϵs,

ax′
t + busafeU

t = DU. (83)

Under event E, ∥θ∗ − θ̂s∥∞ ≤ 2ϵs and ∥θ̂s − θ̂pres ∥∞ ≤ ϵs, which implies that ∥θ∗ − θ∥∞ ≤
4ϵs ≤ ÕT (νT ) ≤ 1/ log(T ) for sufficiently large T . Therefore, applying Lemma 4 gives that
under event E and for sufficiently large T ,

DU ≥ a∗x′
t + b∗usafeU

t usafeU
t safe for θ∗

≥ ax′
t + busafeU

t − |usafeU
t |4ϵs − |x′

t|4ϵs ∥θ∗ − θ∥∞ ≤ 4ϵs

≥ DU − 8Bxϵs. Equations (58),(59), and (83) (84)

If usafeU
t ≤ C θ̂s

Kopt(θ̂s,Ts)
(x′

t), then there must exist some θ such that ∥θ̂pres − θ∥∞ ≤ ϵs and

ax′
t + bC θ̂s

Kopt(θ̂s,Ts)
(x′

t) ≥ DU. (85)
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By the same logic as above, under event E, ∥θ∗ − θ∥∞ ≤ 4ϵs ≤ ÕT (νT ) ≤ 1/ log(T ) for
sufficiently large T , therefore under event E and for sufficiently large T ,

a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t)

≥ ax′
t + bC θ̂s

Kopt(θ̂s,Ts)
(x′

t)− 4ϵs|x′
t| − 4ϵs

∣∣∣C θ̂s
Kopt(θ̂s,Ts)

(x′
t)
∣∣∣

≥ DU − 8Bxϵs. Eqs (58),(60), and (85) (86)

Finally, because C θ̂s
Kopt(θ̂s,Ts)

(x′
t) is safe for dynamics θ̂s,

âsx
′
t + b̂sC

θ̂s
Kopt(θ̂s,Ts)

(x′
t) ≤ DU. (87)

Using that under event E, ∥θ∗ − θ̂s∥∞ ≤ 2ϵs ≤ ÕT (νT ) ≤ 1/ log(T ) for sufficiently large T ,
Equations (58), (60), and (87) imply that under event E and for sufficiently large T ,

a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t) ≤ DU + 4Bxϵs. (88)

Combining Equations (86) and (88), if usafeU
t ≤ C θ̂s

Kopt(θ̂s,Ts)
(x′

t) then under event E and for

sufficiently large T ,

DU − 8Bxϵs ≤ a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t) ≤ DU + 4Bxϵs.

Combining this with Equation (84) gives that under event E and for sufficiently large T ,

|(a∗x′
t + b∗usafeU

t )− (a∗x′
t + b∗C θ̂s

Kopt(θ̂s,Ts)
(x′

t))| ≤ 12Bxϵs.

This implies the desired result that under event E and for sufficiently large T ,

|usafeU
t − C θ̂s

Kopt(θ̂s,Ts)
(x′

t)| ≤ 12Bxϵs/b
∗.

F.8 Proof of Lemma 20

proof. In this proof, we will use the following result about the times the algorithm chooses
control usafeU

t .

Lemma 22. Let x′
t, u

′
t be the positions and controls of controller Calg at time t. For t ≥ T0,

let st = ⌊log2(tνT )⌋. Then under Assumptions 1–9, there exists a Pst(θ̂st , ϵst) such that

{x′
t ≥ Pst(θ̂st , ϵst)} ⊆ {u′

t = usafeU
t },

and such that conditional on event E, we have Pst(θ̂st , ϵst) ≤ P (θ∗, Kopt(θ
∗, Tst), DU).

The proof of Lemma 22 can be found in Appendix F.9. Recall that {i ∈ STs} = {u′
i =

usafeU
i }. Therefore, for i ∈ [Ts : Ts+1 − 1], Lemma 22 implies that

{x′
i ≥ P (θ∗, Kopt(θ

∗, Ts), DU)} ∩ E ⊆ {x′
i ≥ Pst(θ̂st , ϵst)} ∩ E

⊆ {u′
i = usafeU

i } ∩ E

= {i ∈ STs} ∩ E. (89)
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By Assumption 9, for any x′
i−1, u

′
i−1 satisfying a∗x′

i−1 + b∗u′
i−1 ∈ [DL, DU], we have that

P
(
x′
i ≥ P (θ∗, Kopt(θ

∗, Tst), DU)
∣∣ x′

i−1, u
′
i−1

)
≥ P (wi ≥ P (θ∗, Kopt(θ

∗, Tst), DU)−DL)

≥ ϵA9. Assumption 9 (90)

Because P(E) ≥ 1 − oT (1/T ), this implies for sufficiently large T and for any x′
i−1, u

′
i−1

satisfying a∗x′
i−1 + b∗u′

i−1 ∈ [DL, DU],

P
(
x′
i ≥ P (θ∗, Kopt(θ

∗, Tst), DU)
∣∣ x′

i−1, u
′
i−1, E

)
≥ ϵA9 − P(¬E)

≥ ϵA9 − oT (1/T )

≥ ϵA9

2
. (91)

Also, recall that conditional on event E, Calg is safe for dynamics θ∗ for all T steps, therefore
conditional on event E, for all i ≥ 1, DL ≤ a∗x′

i−1+ b∗u′
i−1 ≤ DU. Therefore, for T1 ≤ i < Ts

and sufficiently large T ,

P
(
i ∈ STs

∣∣x′
0, x

′
1, ..., x

′
i−1, u

′
0, u

′
1, ..., u

′
i−1, E

)
≥ P

(
x′
i ≥ P (θ∗, Kopt(θ

∗, Ts), DU)
∣∣x′

0, x
′
1, ..., x

′
i−1, u

′
0, u

′
1, ..., u

′
i−1, E

)
Equation (89)

≥ P
(
x′
i ≥ P (θ∗, Kopt(θ

∗, Ts), DU)
∣∣x′

i−1, u
′
i−1, E

)
≥ ϵA9

2
. Equation (91) (92)

Defining Xi = 1i∈STs
, the above equation is equivalent to

E
[
Xi

∣∣ x′
0, x

′
1, ..., x

′
i−1, u

′
0, u

′
1, ..., u

′
i−1, E

]
≥ ϵA9

2
.

Therefore, we can conclude that conditional on event E,
∑Ts−1

i=T0
Xi is stochastically domi-

nated by
∑Ts−1

i=T0
Yi, where Yi are i.i.d. Bernoulli random variables that are equal to 1 with

probability ϵA9/2. By this coupling argument and Hoeffding’s inequality, for s ≥ 1, condi-
tional on event E with conditional probability 1− oT (1/T

2),

|STs| =
Ts−1∑
i=T0

Xi ≥
Ts−1∑
i=T0

Yi ≥
ϵA9

2
(Ts−T0)− log(T )

√
Ts − T0 ≥

ϵA9

4
· (Ts−T0) ≥

ϵA9

8
·Ts, (93)

where the second to last inequality comes from for sufficiently large T and s ≥ 1, Ts −
T0 ≥

√
T and therefore

√
Ts − T0 ≥ 4 log(T )

ϵA9
. The last inequality comes from the fact that

Ts − T0 ≥ Ts

2
by the definition of Ts for s ≥ 1. A union bound over all s ∈ [1 : se] gives that

conditional on event E with conditional probability 1− oT (1/T ),

min
s∈[1:se]

|STs|
Ts

≥ ϵA9

8
.

63



F.9 Proof of Lemma 22

proof. Defining Ps(θ̂s, ϵs) as

Ps(θ̂s, ϵs) = min
∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ̂s, Ts), DU),

we have by definition of usafeU
t in Algorithm (3) that

{x′
t ≥ Ps(θ̂s, ϵs)} =

{
x′
t ≥ min

∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ̂s, Ts), DU)

}
⊆ {u′

t = usafeU
t }. (94)

Under event E, ∥θ∗ − θ̂pres ∥∞ ≤ ϵs, therefore

min
∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ
∗, Ts), DU) ≤ P (θ∗, Kopt(θ

∗, Ts), DU). (95)

Therefore, we can conclude that conditional on event E,

Ps(θ̂s, ϵs) = min
∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ̂s, Ts), DU)

≤ min
∥θ−θ̂pres ∥∞≤ϵs

P (θ,Kopt(θ
∗, Ts), DU) Choice of θ̂s

≤ P (θ∗, Kopt(θ
∗, Ts), DU). Equation (95)

G Uncertainty Bounds

G.1 Tools for Uncertainty Bounds

The proofs of uncertainty bounds will rely on the following result from Abbasi-Yadkori and
Szepesvári [2011].

Lemma 23 (Derived from Theorem 1 in Abbasi-Yadkori and Szepesvári [2011]). Suppose xt

and ut are respectively the position and control at time t when using an arbitrary controller
C starting at position x0 = 0. Define zt = (xt, ut) and let λ > 0. Let Zt ∈ Rt×2 where the
ith row is zi−1, let Xt ∈ Rt×1 where the ith element is xi, and let I ∈ R2×2 be the identity
matrix. Then under Assumptions 1–3, with probability 1 − oT

(
1
T 2

)
the following holds for

all 1 ≤ t ≤ T − 1 and for any S ⊆ [0 : t− 1]:

∥θ∗ − (Z⊤
t Zt + λI)−1Z⊤

t Xt∥∞ ≤

√
max((V S

t )11, (V S
t )22)

det(V S
t )

Bt, (96)

where V S
t = λI +

∑t−1
s=0 zsz

⊤
s 1s∈S, Bt = α

√
log
(
det
(
V

[0:t−1]
t

))
+ log(λ2) + 2 log(T 2) +

√
λ(ā2 + b̄2), and α is from the subgaussian assumption on the noise distribution D, which

implies that there exists an α such that Ew∼D[exp(γw)] ≤ exp(γ2α2/2) for any γ ∈ R.
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Lemma 23 can be directly derived from Theorem 1 in Abbasi-Yadkori and Szepesvári
[2011] as shown in Appendix G.5. The other tool that will be shared by the proofs in the
following sections is the following anti-concentration inequality of the sum of non-negative
random variables.

Lemma 24. For p ∈ (0, 1] and 1 ≤ n ≤ T , suppose X0, ..., Xn−1 are non-negative random
variables such that (X0, ..., Xi−1) is a deterministic function of the random variable set Fi

for all i ∈ [1 : n] and Fi ⊆ Fi+1. Let the set Sn ⊆ [0 : n − 1] be a random variable such
that the event {i ∈ Sn} is a deterministic function of Fi+1. For i ∈ [0 : n − 1], define
Si = {k < i : k ∈ Sn}, therefore Si is a deterministic function of Fi. Let E∗ be an event
such that for all i ∈ [0 : n− 1],

E [Xi | Fi, E
∗, i ∈ Sn] ≥ c · |Si|, (97)

where c > 0 is non-random. Furthermore, assume that conditional on E∗:

0
a.s.

≤ Xi

a.s.

≤ c|Si|
2p

. (98)

Then conditional on event E∗, with conditional probability 1− oT (1/T
2),

n−1∑
i=0

Xi ≥
c

4

(
max(⌊p|Sn| − log(T )

√
|Sn|⌋, 1)

)(
max(⌊p|Sn| − log(T )

√
|Sn|⌋, 1)− 1

)
.

The proof of Lemma 24 can be found in Appendix G.6.

G.2 Proof of Lemma 2

proof. For the rest of this proof, xt and ut are respectively the position and control at time
t of controller Calg that corresponds to Algorithm 2 starting at x0 = 0. Recall that Lemma
2 was stated and used in Appendix C with respect to Algorithm 2, therefore all events and
variables in this subsection refer to those defined with respect to Algorithm 2. To prove
Lemma 2, we will use Lemma 23 applied to S = [0 : 1

ν2T
− 1]. The goal will be to bound the

right side of Equation (96) for this choice of S. Consider any fixed arbitrary s ∈ [0 : se] and
the corresponding matrix V S

Ts
. Define N as the event that for all i < 1/ν2

T , the control ui is
safe for dynamics θ∗. Note that we showed in Lemma 1 that P(N) ≥ P(Esafe) = 1− oT (

1
T 2 ).

Under event N ∩ E1, we can apply Lemma 4 to get the following equations for sufficiently
large T :

(V S
Ts
)11 = λ+

1

ν2
T

−1∑
i=0

x2
i ≤ λ+

1

ν2
T

B2
x (99)

(V S
Ts
)22 = λ+

1

ν2
T

−1∑
i=0

u2
i ≤ λ+

1

ν2
T

B2
x (100)
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(V S
Ts
)212 =


1

ν2
T

−1∑
i=0

uixi


2

. (101)

We can now compute (V S
Ts
)22(V

S
Ts
)11−(V S

Ts
)212. Recall that for the first 1/ν

2
T steps of Algorithm

2, the control is ui = C init(xi) +
ϕi

log(T )
where ϕi is i.i.d. from the Rademacher distribution

and independent from the noise random variables.

(V S
Ts
)22(V

S
Ts
)11 − (V S

Ts
)212

=

λ+

1

ν2
T

−1∑
i=0

u2
i


λ+

1

ν2
T

−1∑
i=0

x2
i

−


1

ν2
T

−1∑
i=0

uixi


2

Equations (99) (100) (101)

≥


1

ν2
T

−1∑
i=0

u2
i




1

ν2
T

−1∑
i=0

x2
i

−


1

ν2
T

−1∑
i=0

uixi


2

=

1

ν2
T

−1∑
i<j

(uixj − ujxi)
2

=

1

ν2
T

−1∑
i<j

(
uixj − C init(xj)xi +

ϕj

log(T )
xi

)2

. (102)

Conditional on N ∩ E1, for all i < 1/ν2
T , we have |ui|, |xi| ≤ Bx by Lemma 4. Define the

random variable Xj as

Xj =

j−1∑
i=0

(uixj − ujxi)
2

=

j−1∑
i=0

(
uixj − C init(xj)xi +

(
ϕj

log(T )

)
xi

)2

≤ 4jB4
x. Conditional on N ∩ E1 by Lemma 4

(103)

We will use the following lemma to lower bound the conditional expectation of Xj.

Lemma 25. Under Assumptions 1–3, let x0, x1, ..., xT be the positions of the controller Calg

starting at x0 = 0. Then there exists an event EL25 such that P(EL25) = 1 − oT (1/T
2) and

for sufficiently large T conditional on EL25, for all j ≥ log8(T ),

j−1∑
i=0

x2
i ≥

j

2 log2(T )
. (104)
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The proof of Lemma 25 can be found in Appendix G.7. Now define E∗ = N ∩E1 ∩EL25.
Note that P(E∗) = 1 − oT (1/T

2) by a union bound. Because ϕj is a Rademacher random
variable, we therefore have that P(ϕj = 1 | E∗) = 1/2 − oT (1/T

2) and P(ϕj = −1 | E∗) =
1/2 − oT (1/T

2). This implies that |E[ϕj | E∗]| = oT (1/T
2), and therefore for sufficiently

large T , we have Var [ϕj | E∗] ≥ 1/2. Then we can bound the conditional expectation
of Xj under event E∗ as follows for all j ≥ log8(T ) and for sufficiently large T . Define
Fj = {x0, u0, ..., xj−1, uj−1, xj}. Then we have

E[Xj | Fj, E
∗] =

j−1∑
i=0

E

[(
uixj − C init(xj)xi +

(
ϕj

log(T )

)
xi

)2
∣∣∣∣∣ Fj, E

∗

]

≥
j−1∑
i=0

Var

[
uixj − C init(xj)xi +

(
ϕj

log(T )

)
xi

∣∣∣∣ Fj, E
∗
]

=

j−1∑
i=0

x2
i Var

[
ϕj

log(T )

∣∣∣∣ Fj, E
∗
]

=

j−1∑
i=0

x2
i Var

[
ϕj

log(T )

∣∣∣∣ E∗
]

ϕj is ind. of Fj

=
Var [ϕj | E∗]

log2(T )

j−1∑
i=0

x2
i

≥ 1

2 log2(T )

j−1∑
i=0

x2
i

≥ j

4 log4(T )
. E∗ ⊆ EL25 (105)

Therefore, we can apply Lemma 24 toXlog8(T ), Xlog8(T )+1, ..., X1/ν2T−1 with n = 1/ν2
T−log

8(T ),

p = 1
32B4

x log4(T )
, Fi = {x0, u0, ..., ui−1, xi}, Sn = [0 : n − 1], and c = 1

4 log4(T )
. Note that this

choice of p is less than 1 for sufficiently large T .
We will also use that for sufficiently large T , n = 1/ν2

T − log8(T ) = T 2/3 − log8(T ) ≥
4 log2(T )/p2. This implies that for sufficiently large T ,

pn− log(T )
√
n ≥ pn/2 =

1/ν2
T − log8(T )

64B4
x log

4(T )
≥ 1. (106)

Recall by Equation (103) that under event E∗, the Xj are bounded by 0 ≤ Xj ≤ 4jB4
x =

c
2p
· j. Lemma 24 gives that for sufficiently large T and conditional on event E∗ with condi-
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tional probability 1− oT (1/T
2),

(V S
Ts
)22(V

S
Ts
)11 − (V S

Ts
)212

≥

1

ν2
T

−1∑
j=0

Xj Equation (102)

≥

1

ν2
T

−1∑
j=log8(T )

Xj Xi ≥ 0

≥ 1

16 log4(T )

(
max(⌊pn− log(T )

√
n⌋, 1)− 1

) (
max(⌊pn− log(T )

√
n⌋, 1)

)
Lemma 24

≥ 1

16 log4(T )

(⌊
1/ν2

T − log8(T )

64B4
x log

4(T )

⌋
− 1

)(⌊
1/ν2

T − log8(T )

64B4
x log

4(T )

⌋)
Equation (106)

= ΩT

( 1
ν4T

B8
x log

12(T )

)
. (107)

Finally, we need to bound the quantity BTs from Lemma 23. The only non-constant term in

BTs is
√

log(det(λI +
∑Ts−1

i=0 ziz⊤i )) + 2 log(T 2). Define VTs = λI +
∑Ts−1

i=0 ziz
⊤
i . Conditional

on event N ∩ E1, we have by Lemma 4 that (VTs)22 ≤ λ + TB2
x and (VTs)11 ≤ λ + TB2

x.
Therefore, conditional on event N ∩ E1,√√√√log

(
det

(
λI +

Ts−1∑
i=0

ziz⊤i

))
+ 2 log(T 2) ≤

√
log((VTs)11(VTs)22) + 2 log(T 2)

≤
√
log
(
(λ+ TB2

x)
2)+ 2 log(T 2)

= ÕT (1). (108)

Now, combining Lemma 23 and Equations (99), (100), (107), and (108) gives that conditional
on event E∗ with conditional probability 1− oT (1/T

2), for all s ∈ [0 : se],

ϵ2s ≤
max((V S

Ts
)11, (V

S
Ts
)22)

det(V S
Ts
)

B2
Ts

=
(λ+

(
1
ν2T

)
B2

x)ÕT (1)

ΩT

 (
1

ν2
T

)2

B8
x log12(T )

 = ÕT

(
ν2
T

)
.

Because P(E∗) = 1 − oT (1/T
2), this gives the desired result with unconditional probability

1− oT (1/T
2).

G.3 Proof of Lemma 21

proof. Recall that Lemma 21 was stated and used in Appendix F with respect to Algorithm
3, therefore all events and variables in this subsection refer to those defined with respect to
Algorithm 3. We will prove a more general result in Lemma 26.
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Lemma 26. Let xt, ut respectively be the position and control of Calg (the controller of
Algorithm 3) at time t starting at x0 = 0. Define Gi = (x0, u0, ..., xi−1, ui−1). For constant
γ > 0, define S ′

t as

S ′
t =

{
i < t : ui = usafeU

i and P(ui = usafeU
i | Gi, E) ≥ γ

}
, (109)

where E is the event defined in Appendix F. Then under Assumptions 1–8 and for sufficiently
large T , with probability 1− oT (1/T ),

max
s∈[0:se]

ϵs

√
|S ′

Ts
| = ÕT (1) ,

where ϵs is from Algorithm 3.

The proof of Lemma 26 can be found in Appendix G.4. We will now prove that Lemma
21 is a direct consequence of Lemma 26. By Equation (92), we have that for all i,

P
(
ui = usafeU

i

∣∣ Gi, E
)
≥ ϵA9

2
.

Therefore, we have that{
i < t : ui = usafeU

i and P(ui = usafeU
i | Gi, E) ≥ ϵA9

2

}
=
{
i < t : ui = usafeU

i

}
. (110)

Lemma 26 for γ = ϵA9

2
gives that with probability 1− oT (1/T ),

max
s∈[0:se]

ϵs ·
√∣∣∣{i < t : ui = usafeU

i and P(ui = usafeU
i | Gi, E) ≥ ϵA9

2

}∣∣∣ = ÕT (1) . (111)

Combining Equation (110) and Equation (111) gives that with probability 1− oT (1/T ),

max
s∈[0:se]

ϵs

√∣∣{i < t : ui = usafeU
i

}∣∣ = ÕT (1) ,

which is the desired result of Lemma 21.

G.4 Proof of Lemma 26

Lemma 26 is stated above to be used in Appendix F with respect to Algorithm 3, therefore
all events and variables in this subsection refer to those defined for Algorithm 3.

proof. The first step of the proof will be to prove that conditional on event E for all i ≥ T0,

usafeU
i = −a∗

b∗
xi +

DU + ei
b∗

, (112)

where |ei| = ÕT (νT ). Let si = ⌊log2(iν2
T )⌋. Recall that usafeU

i is the largest u such that

max
∥θ−θ̂si∥∞≤ϵsi

axi + bu ≤ DU.
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For sufficiently large T and conditional on event E,

ϵsi = ÕT (νT ) ≤ min(a∗, b∗)− ϵsi ≤ min(âsi , b̂si).

This implies that âsi − ϵsi ≥ 0, giving the following equations of casework for usafeU
i :

usafeU
i =


DU−(âsi+ϵsi )xi

b̂si−ϵsi
, if xi ≥ 0 and (âsi + ϵsi)xi ≥ DU

DU−(âsi+ϵsi )xi

b̂si+ϵsi
, if xi ≥ 0 and (âsi + ϵsi)xi ≤ DU

DU−(âsi−ϵsi )xi

b̂si+ϵsi
, if xi ≤ 0

(113)

which implies

usafeU
i =


DU−a∗xi

b∗
b∗

b̂si−ϵsi
+

a∗xi−(âsi+ϵsi )xi

b̂si−ϵsi
, if xi ≥ 0 and (âsi + ϵsi)xi ≥ DU

DU−a∗xi

b∗
b∗

b̂si+ϵsi
+

a∗xi−(âsi+ϵsi )xi

b̂si+ϵsi
, if xi ≥ 0 and (âsi + ϵsi)xi ≤ DU

DU−a∗xi

b∗
b∗

b̂si+ϵsi
+

a∗xi−(âsi−ϵsi )xi

b̂si+ϵsi
, if xi ≤ 0

(114)

which implies

usafeU
i =


DU−a∗xi

b∗
+

b∗−b̂si+ϵsi
b̂si−ϵsi

DU−a∗xi

b∗
+

(a∗−âsi−ϵsi )xi

b̂si−ϵsi
, if xi ≥ 0 and (âsi + ϵsi)xi ≥ DU

DU−a∗xi

b∗
+

b∗−b̂si−ϵsi
b̂si+ϵsi

DU−a∗xi

b∗
+

(a∗−âsi−ϵsi )xi

b̂si+ϵsi
, if xi ≥ 0 and (âsi + ϵsi)xi ≤ DU

DU−a∗xi

b∗
+

b∗−b̂si−ϵsi
b̂si+ϵsi

DU−a∗xi

b∗
+

(a∗−âsi+ϵsi )xi

b̂si+ϵsi
. if xi ≤ 0.

(115)
Under event E, |a∗ − âsi| ≤ ϵsi , |b∗ − b̂si | ≤ ϵsi , and |xi| = ÕT (1), therefore in all three cases
we have that usafeU

i = −a∗

b∗
xi +

DU+ei
b∗

, for some ei satisfying

|ei| = ÕT (ϵsi) = ÕT (νT ). (116)

We now define

S ′′
t =

{
i < t : ui = usafeU

i and P(ui = usafeU
i | Gi, E) ≥ γ and P(E | Gi) ≥

1

2

}
.

Lemma 27. Using the same notation and assumptions as in the proof of Lemma 26, for
any constant c < 1,

P
(
∀i ∈ [0 : t− 1],P(E | Gi) ≥ c

)
= 1− oT (1/T ).

proof. Consider any fixed i ∈ [0 : t−1]. We will show that P
(
P(E | Gi) ≥ c

)
= 1−oT (1/T 2).

Suppose this is not true, i.e. suppose that P
(
P(E | Gi) ≥ c

)
= 1−ΩT (1/T

2), or equivalently

that P
(
P(¬E | Gi) ≥ 1− c

)
= ΩT (1/T

2). Note that by the law of total expectation,

P
(
¬E | P(¬E | Gi) ≥ 1− c

)
= E

[
P
(
¬E | Gi,P(¬E | Gi) ≥ 1− c

)
| P(¬E | Gi) ≥ 1− c

]
≥ E [1− c]

= 1− c.
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This implies that

P(¬E) = P
(
¬E | P(¬E | Gi) ≥ 1− c

)
P
(
P(¬E | Gi) ≥ 1− c

)
= (1− c)ΩT (1/T

2).

This would then imply that P(E) = 1 − P(¬E) = 1 − ΩT (1/T
2), which is a contradiction

with the fact that P(E) = 1− oT (1/T
2). Therefore, we must have that for all fixed i,

P
(
P(E | Gi) ≥ c

)
= 1− oT (1/T

2).

Taking a union bound gives that

P
(
∀i ∈ [0 : t− 1],P(E | Gi) ≥ c

)
≥ 1−

t−1∑
i=0

(1− P(P(E | Gi) ≥ c)) = 1− oT (1/T ),

which is exactly what we want to show.

If ∀i ∈ [0 : t− 1], P(E | Gi) ≥ 1/2, then |S ′
t| = |S ′′

t |. Using Lemma 27 with c = 1/2,

P (|S ′
t| = |S ′′

t |) ≥ P(∀i ∈ [0 : t− 1],P(E | Gi) ≥ 1/2) = 1− oT (1/T ). (117)

Therefore, if we can show that with probability 1− oT (1/T ),

max
s∈[0:se]

ϵs

√
|S ′′

Ts
| = ÕT (1) , (118)

then a union bound combining Equation (118) with Equation (117) gives that with proba-
bility 1− oT (1/T ),

max
s∈[0:se]

ϵs

√
|S ′

Ts
| = ÕT (1) ,

which is our desired result. Therefore, the rest of this proof will focus on proving Equation
(118).

Fix any s ∈ [0 : se]. We will use Lemma 23 with S = S ′′
Ts
. Under event E, we have by

Lemma 4 the following three equations:

(V
S′′
Ts

Ts
)11 = λ+

Ts−1∑
i=0

x2
i 1i∈S′′

Ts
≤ λ+ |S ′′

Ts
|B2

x (119)

(V
S′′
Ts

Ts
)22 = λ+

Ts−1∑
i=0

u2
i 1i∈S′′

Ts
≤ λ+ |S ′′

Ts
|B2

x (120)

(V
S′′
Ts

Ts
)212 =

(
Ts−1∑
i=0

uixi1i∈S′′
Ts

)2

. (121)
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We can now lower bound (V
S′′
Ts

Ts
)22(V

S′′
Ts

Ts
)11 − (V

S′′
Ts

Ts
)212 for sufficiently large T conditional on

event E.

(V
S′′
Ts

Ts
)22(V

S′′
Ts

Ts
)11 − (V

S′′
Ts

Ts
)212

=

(
λ+

Ts−1∑
i=0

u2
i 1i∈S′′

Ts

)(
λ+

Ts−1∑
i=0

x2
i 1i∈S′′

Ts

)
−

(Ts−1∑
i=0

uixi1i∈S′′
Ts

)2


≥

(
Ts−1∑
i=0

u2
i 1i∈S′′

Ts

)(
Ts−1∑
i=0

x2
i 1i∈S′′

Ts

)
−

(Ts−1∑
i=0

uixi1i∈S′′
Ts

)2


=
Ts−1∑
i<j

(uixj − ujxi)
21i,j∈S′′

Ts

=
Ts−1∑
i<j

((
−a∗

b∗
xi +

DU + ei
b∗

)
xj −

(
−a∗

b∗
xj +

DU + ej
b∗

)
xi

)2

1i,j∈S′′
Ts

Equation (112)

=
1

(b∗)2

Ts−1∑
i<j

(DUxj + eixj −DUxi − ejxi)
2 1i,j∈S′′

Ts

=
1

(b∗)2

Ts−1∑
i<j

(xj(DU + ei)− (DU + ej)xi)
2 1i,j∈S′′

Ts

=
1

(b∗)2

Ts−1∑
j=0

Xj1j∈S′′
Ts
. (122)

Above we defined the random variable Xj as

Xj =

j−1∑
i=0

((DU + ej)xi1i∈S′′
Ts
− (DU + ei)xj1i∈S′′

Ts
)2

≤ |S ′′
j |4(DU + 1)2B2

x, Equation (116) (123)

where the last inequality holds by Lemma 4 and because ej ≤ 1 under event E for sufficiently
large T by Equation (116). We need one last lemma to help lower bound the conditional
expectation of Xj.

Lemma 28. Using the same notation and assumptions as in the proof of Lemma 26 (and
recall that BP is the upper bound on the density of the noise random variables), if P(uj =

usafeU
j | Gj, E) ≥ γ and P(E | Gj) ≥ 1/2, then Var

(
wj−1

∣∣ Gj, E, uj = usafeU
j

)
≥ γ2

64BP
.

The proof of Lemma 28 can be found in Appendix G.8. By definition, j ∈ S ′′
Ts

implies
three events: {uj = usafeU

j }, {P(uj = usafeU
j | Gj, E) ≥ γ}, and {P(E | Gj) ≥ 1/2}. Note

that the second and third events are deterministic functions of Gj. Therefore in the algebra
below, the information in {j ∈ S ′′

Ts
} that tells us that P(uj = usafeU

j | Gj, E) ≥ γ and
P(E | Gj) ≥ 1/2 will be absorbed into the conditioning on Gj in the first equality, i.e.,
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starting in the second line below, the Gj being conditioned on should be understood to be
one for which P(uj = usafeU

j | Gj, E) ≥ γ and P(E | Gj) ≥ 1/2. For sufficiently large T ,

E[Xj | Gj , E, j ∈ S′′
Ts
]

= E[Xj | Gj , E, uj = usafeU
j ]

= E

[
j−1∑
i=0

((DU + ej)xi1i∈S′′
Ts
− (DU + ei)xj1i∈S′′

Ts
)2 | Gj , E, uj = usafeU

j

]

=

j−1∑
i=0

E[((DU + ej)xi1i∈S′′
Ts
− (DU + ei)(axj−1 + buj−1)1i∈S′′

Ts
− (DU + ei)wj−11i∈S′′

Ts
)2 | Gj , E, uj = usafeU

j ]

≥
j−1∑
i=0

Var
(
(DU + ej)xi1i∈S′′

Ts
− (DU + ei)(axj−1 + buj−1)1i∈S′′

Ts
− (DU + ei)wj−11i∈S′′

Ts
| Gj , E, uj = usafeU

j

)
=

j−1∑
i=0

Var
(
(DU + ei)wj−1 − ejxi|Gj , E, uj = usafeU

j

)
1i∈S′′

Ts

=

j−1∑
i=0

(DU + ei)
2 Var

(
wj−1 −

ejxi

DU + ei

∣∣∣∣ Gj , E, uj = usafeU
j

)
1i∈S′′

Ts

≥
j−1∑
i=0

(DU + ei)
2

(
Var

(
wj−1

∣∣ Gj , E, uj = usafeU
j

)
−
∣∣∣∣2Cov( ejxi

DU + ei
, wj−1

∣∣∣∣ Gj , E, uj = usafeU
j

)∣∣∣∣) 1i∈S′′
Ts

≥
j−1∑
i=0

(DU + ei)
2

(
Var

(
wj−1

∣∣ Gj , E, uj = usafeU
j

)
− 1

log(T )

)
1i∈S′′

Ts
Suff large T (see below)

≥ (DU − ÕT (νT ))
2 · |S′′

j | ·
(
Var

(
wj−1

∣∣ Gj , E, uj = usafeU
j

)
− 1

log(T )

)
Equation (116)

= (DU − ÕT (νT ))
2 · |S′′

j | ·
(

γ2

64BP
− 1

log(T )

)
P(uj = usafeU

j | Gj , E) ≥ γ, Lemma 28

≥
D2

U|S′′
j |γ2

128BP
. Suff large T (124)

Note that we are able to divide by DU + ei for sufficiently large T by Equation (116).
The for-sufficiently-large-T bound on the covariance comes from the fact that under event
E, we have |wj−1| = ÕT (1) and

ejxi

DU+ei
= ÕT (νT ), and therefore for sufficiently large T the

covariance has magnitude less than 1
2 log(T )

.

We can now apply Lemma 24 to {Xi}Ts−1
i=0 with n = Ts, Sn = S ′′

Ts
, p =

D2
Uγ2

1024BP (DU+1)2B2
x
,

Fi = Gi, E
∗ = E, and c =

D2
Uγ2

128BP
(where Equations (123) and (124) imply Equations (97)

and (98)). Because DU ≤ log2(T ), Bx = log3(T ), and γ is a constant, this choice of p is less
than 1 for sufficiently large T .

Applying Lemma 24 gives that for sufficiently large T , conditional on event E with

73



conditional probability 1− oT (1/T
2),

(V
S′′
Ts

Ts
)22(V

S′′
Ts

Ts
)11 − (V

S′′
Ts

Ts
)212

≥ 1

(b∗)2

Ts−1∑
j=0

Xj Equation (122)

≥ 1

(b∗)2
D2

Uγ
2

512BP

(
max(

⌊
p|S ′′

Ts
| −
√
|S ′′

Ts
| log(T )

⌋
, 1)− 1

)
×
(
max(

⌊
p|S ′′

Ts
| −
√
|S ′′

Ts
| log(T )

⌋
, 1)
)

Lemma 24 (125)

Define E ′
s as the event that Equation (125) holds (therefore P(E ′

s | E) = 1 − oT (1/T
2)). If

|S ′′
Ts
| ≥ 4 log2(T )/p2, then

p|S′′
Ts

|
2
≥ log(T )

√
|S ′′

Ts
|, and therefore

p|S ′′
Ts
| − log(T )

√
|S ′′

Ts
| ≥

p|S ′′
Ts
|

2
≥ 1. (126)

Therefore, conditional on E ∩ E ′
s ∩ {|S ′′

Ts
| ≥ 4 log2(T )/p2},

(V
S′′
Ts

Ts
)22(V

S′′
Ts

Ts
)11 − (V

S′′
Ts

Ts
)212

≥ 1

(b∗)2
D2

Uγ
2

512BP

(
max(

⌊
p|S ′′

Ts
| −
√
|S ′′

Ts
| log(T )

⌋
, 1)− 1

)
×
(
max(

⌊
p|S ′′

Ts
| −
√
|S ′′

Ts
| log(T )

⌋
, 1)
)

Equation (125)

≥ 1

(b∗)2
D2

Uγ
2

512BP

(⌊
p|S ′′

Ts
|/2
⌋
− 1
) (⌊

p|S ′′
Ts
|/2
⌋)

Equation (126)

= Ω̃T

(
|S ′′

Ts
|2
)
. (127)

Because E ⊆ E1, we have by Equation (108) that BTs = ÕT (1) conditional on event E ∩N .
Therefore, by Lemma 23 and Equations (119), (120), (127), and (108), we have conditional
on event E ∩ E ′

s ∩N ∩ {|S ′′
Ts
| ≥ 4 log2(T )/p2} and for sufficiently large T ,

ϵ2s ≤
λ+ |S ′′

Ts
|B2

xÕT (1)

Ω̃(|S ′′
Ts
|2)

≤ ÕT

(
1

|S ′′
Ts
|

)
. (128)

Taking E ′ = ∩s∈[0:se]E ′
s, Equation (128) implies that conditional on E ∩ E ′ ∩ N ∩ {|S ′′

Ts
| ≥

4 log2(T )/p2},
ϵ2s|S ′′

Ts
| ≤ ÕT (1). (129)

Under event E, because E2 ⊆ E, ϵs = ÕT (νT ). Therefore, conditional on E∩E ′∩N∩{|S ′′
Ts
| <

4 log2(T )/p2},
ϵ2s|S ′′

Ts
| ≤ ϵ2s · 4 log2(T )/p2 = ÕT (ν

2
T ) = ÕT (1). (130)

Because Equations (129) and (130) hold for all s ∈ [0 : se], the right hand sides do not
depend on s, and the equations hold almost surely, these two equations together imply that
conditional on E ∩ E ′ ∩N ,

max
s∈[0:se]

ϵ2s|S ′′
Ts
| = ÕT (1).
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Because P(E) ≥ 1− oT (1/T ), P(N) ≥ 1− oT (1/T ), and P(E ′ | E) ≥ 1−
∑se

s=0 P(E ′
s | E) =

1− oT (1/T ), by a union bound we can conclude that with probability 1− oT (1/T ),

max
s∈[0:se]

ϵ2s|S ′′
Ts
| = ÕT (1).

This completes the proof of Equation (118), and therefore completes the proof of this lemma.

G.5 Proof of Lemma 23

Recall that Lemma 23 applies to all algorithms as defined in the lemma statement, and
therefore this lemma is not specific to a previous appendix section.

proof. First, we restate the theorem from Abbasi-Yadkori and Szepesvári [2011] in the no-
tation and setup of this paper.

Lemma 29 (Restatement of Theorem 1 in Abbasi-Yadkori and Szepesvári [2011]). Let θ∗ ∈
R2 and C be a controller. For t ∈ [0 : T − 1], define zt = (xt, C(xt)) and xt+1 = θ∗ · zt + wt

where wt ∼i.i.d. D and D a subgaussian distribution with mean 0 and variance 1, and ∥θ∗∥2 ≤
ā2+ b̄2. Define Vt = λI+

∑t−1
s=0 zsz

⊤
s , Zt as the matrix where row i ∈ [1 : t] is z⊤i−1, and Xt as

the matrix where row i ∈ [1 : t] is xi. Finally, let θ̂t = (Z⊤
t Zt + λI)−1Z⊤

t Xt and ∆t = θ̂− θ∗.
Then with probability 1− oT (1/T

2), for all 1 ≤ t ≤ T .

Tr(∆⊤
t Vt∆t) ≤ B2

t , (131)

where Bt = α
√
log(det(Vt)) + log(λ2) + 2 log(T 2)+

√
λ(ā2+b̄2) and α satisfies Ew∼D[exp(γw)] ≤

exp(γ2α2/2) for any γ ∈ R.

Now define V Sc

t = λI +
∑t−1

s=0 zsz
⊤
s 1s ̸∈S. Then by Lemma 29,

Bt ≥ Tr(∆⊤
t Vt∆t) = Tr(∆⊤

t (V
S
t + V Sc

t )∆t) = Tr(∆⊤
t V

S
t ∆t) + Tr(∆⊤

t V
Sc

t ∆t).

Because both traces are non-negative, this implies that Tr(∆⊤
t V

S
t ∆t) ≤ B2

t . Suppose ∆t =
(∆ta,∆tb). Then expanding the trace gives that

(V S
t )11∆

2
ta + (V S

t )22∆
2
tb + 2∆ta∆tb(V

S
t )12 ≤ B2

t .

The left side of the above equation is a quadratic in ∆tb, with minimum occurring at ∆tb =
−∆ta(V S

t )12
(V S

t )22
. Therefore, plugging this in gives the following inequality.

(V S
t )11∆

2
ta −

∆2
ta(V

S
t )212

(V S
t )22

≤ B2
t .

Simplifying, we have the desired result that ∆2
ta ≤

(V S
t )22

(V S
t )11(V S

t )22−(V S
t )212

B2
t . The proof follows

symmetrically for ∆tb.
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G.6 Proof of Lemma 24

proof. By the law of total expectation, for all k ∈ [0, n− 1],

c|Sk| ≤ E [Xk | Fk, E
∗, k ∈ Sn] Eq (97)

= E
[
Xk

∣∣∣∣ Fk, E
∗, k ∈ Sn, Xk ≤

c|Sk|
2

]
P
(
Xk ≤

c|Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn

)
+ E

[
Xk

∣∣∣∣ Xk >
c|Sk|
2

, Fk, E
∗, k ∈ Sn

]
P
(
Xk >

c|Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn

)
≤ c|Sk|

2
+

c|Sk|
2p

P
(
X >

c|Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn

)
. Eq (98)

For i ∈ [0 : |Sn| − 1], define κi as the (i+ 1)th smallest index in the set Sn. This implies
that |Sκi

| = i and κi ∈ Sn. By Equation (98), for all k,

P
(
Xk ≥

c|Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn, κ|Sk| = k

)
= P

(
Xk ≥

c|Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn

)
≥ c|Sk|/2

c|Sk|/2p
= p.

(132)
Note that the first equality comes from the fact that by definition, κ|Sk| = k if k ∈ Sn, and
|Sk| is a deterministic function of Fk.

Let A0, A1, ..., An−1 be a sequence of i.i.d. Bernoulli random variables with probability
p of being 1 that are independent of all other random variables in this lemma, including
E∗, Sn, Xi, Fi for all i. For i ∈ [0 : n− 1], define the random variable A′

i as

A′
i =

{
1Xκi≥

c·i
2

if i ≤ |Sn| − 1

Ai otherwise.

Define FA
i := Fκmin(i,|Sn|−1)

∪ {A0, ..., Ai−1}. By Equation (132), we have that for all i,

P
(
A′

i = 1
∣∣ FA

i , E∗, i ≤ |Sn| − 1
)

=

n−1∑
k=0

P
(
A′

i = 1
∣∣ FA

i , E∗, i ≤ |Sn| − 1, κi = k
)
P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
LoTE

=

n−1∑
k=0

P
(
Xκi ≥

c · i
2

∣∣∣∣ FA
i , E∗, i ≤ |Sn| − 1, κi = k

)
P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
=

n−1∑
k=0

P
(
Xκi ≥

c · |Sκi
|

2

∣∣∣∣ FA
i , E∗, i ≤ |Sn| − 1, κi = k

)
P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
=

n−1∑
k=0

P
(
Xκi
≥ c · |Sκi

|
2

∣∣∣∣ Fκi , E
∗, κi ∈ Sn, κi = k

)
P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
=

n−1∑
k=0

P
(
Xk ≥

c · |Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn, κi = k

)
P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
=

n−1∑
k=0

P
(
Xk ≥

c · |Sk|
2

∣∣∣∣ Fk, E
∗, k ∈ Sn, κ|Sk| = k

)
P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
i = |Sκi

| = |Sk|

≥
n−1∑
k=0

p · P
(
κi = k

∣∣ FA
i , E∗, i ≤ |Sn| − 1

)
Eq (132)

= p, (133)

76



and

P
(
A′

i = 1
∣∣ FA

i , E
∗, i > |Sn| − 1

)
= P

(
Ai = 1

∣∣ FA
i , E

∗, i > |Sn| − 1
)

Independence of Ai

= p. (134)

Putting together Equations (133) and (134) and the Law of Total Probability,

P
(
A′

i = 1
∣∣ FA

i , E
∗)

= P
(
A′

i = 1
∣∣ FA

i , E
∗, i ≤ |Sn| − 1

)
P
(
i ≤ |Sn| − 1

∣∣ FA
i , E

∗)
+ P

(
A′

i = 1
∣∣ FA

i , E
∗, i > |Sn| − 1

)
P
(
i > |Sn| − 1

∣∣ FA
i , E

∗)
≥ p. Eqs (133) and (134).

(135)

Because A′
i is a deterministic function of FA

i+1 and FA
i ⊆ FA

i+1, Equation (135) implies

that Mk =
∑k−1

i=0 (A
′
i − p) is a submartingale conditional on E∗ with increments bounded in

magnitude by 1. For any non-random m ∈ [1 : n], the Azuma–Hoeffding Inequality therefore
gives that

P

(
m−1∑
i=0

(A′
i − p) ≥ − log(T )

√
m

∣∣∣∣∣ E∗

)
≥ 1− e− log2(T )m/(2m) = 1− oT (1/T

3).

Taking a union bound over all m ∈ [1 : n] (because n ≤ T ), we have that

P

(
∀m ∈ [1 : n],

m−1∑
i=0

A′
i ≥ pm− log(T )

√
m

∣∣∣∣∣ E∗

)
≥ 1− oT (1/T

2).

Define E ′ as the event that for all m ∈ [1 : n],
∑m−1

i=0 A′
i ≥ pm − log(T )

√
m. Because

|Sn| ∈ [0, n], we must have that conditional on event E ′,

|Sn|−1∑
i=0

A′
i ≥ p|Sn| − log(T )

√
|Sn|. (136)

Therefore, conditional on event E ′, we have

n−1∑
j=0

Xj ≥
n−1∑

j=0,j∈Sn

Xj Xj ≥ 0

≥
|Sn|−1∑
i=0

c · i
2
· A′

i Def of A′
i

≥ c

2

max(⌊p|Sn|−log(T )
√

|Sn|⌋,1)−1∑
k=0

k. Eq (136)

=
c

4

(
max(⌊p|Sn| − log(T )

√
|Sn|⌋, 1)

)(
max(⌊p|Sn| − log(T )

√
|Sn|⌋, 1)− 1

)
Because we already showed that P(E ′ | E∗) ≥ 1− oT (1/T

2), this is the desired result.
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G.7 Proof of Lemma 25

Recall that Lemma 25 was stated to be used in Appendix C with respect to Algorithm 2,
therefore all events and variables in this subsection refer to those defined with respect to
Algorithm 2.

proof. Define Ai = 1|xi|≤ 1
log(T )

. Recall that xi = a∗xi−1 + b∗ui−1 + wi−1, where xi−1 and ui−1

are respectively the position and control at time t = i− 1. The probability that Ai is equal
to 1 is the probability that wi−1 ∈ [−(a∗xi−1 + b∗ui−1) − 1

log(T )
,−(a∗xi−1 + b∗ui−1) +

1
log(T )

].

Because D has a bounded density function (bounded by BP ) as assumed in Assumption 3,
the conditional probability given Gi is at most 2BP

log(T )
. Therefore, we have that

P(Ai = 1 | Gi) ≤
2BP

log(T )
.

Therefore, Mj =
∑j−1

i=0 (Ai − 2BP

log(T )
) is a submartingale with differences bounded in magni-

tude by max(1, 2BP

log(T )
) ≤ 1 for sufficiently large T . By Azuma–Hoeffding’s inequality, with

probability 1− oT (1/T
3),

Mj ≤ log(T )
√
j.

Define Ej
L25 as the event that this bound on Mj holds. By construction of Mj, under event

Ej
L25, ∣∣∣∣{i < j : |xi| ≤

1

log(T )

}∣∣∣∣ = j−1∑
i=0

Ai ≤
2jBP

log(T )
+ log(T )

√
j ≤ 4jBP

log(T )

for j ≥ log8(T ) assuming T is large enough that log2(T ) ≥ 1
2BP

. As long as log(T ) ≥ 8BP ,

this implies that under event Ej
L25,∣∣∣∣{i < j : |xi|2 ≥

1

log2(T )

}∣∣∣∣ ≥ j − 4jBP

log(T )
≥ j

2
.

Finally, we can conclude that under event Ej
L25,

j−1∑
i=0

x2
i ≥

j

2 log2(T )
.

We have shown that Equation (104) holds for any fixed j under event Ej
L25 for sufficiently

large T . Therefore, the same result holds for all j ≥ log8(T ) under eventEL25 = ∩j≥log8(T )E
j
L25.

By a union bound and because P(Ej
L25) = 1 − oT (1/T

3) for all j, we have that P(EL25) =
1− oT (1/T

2).

G.8 Proof of Lemma 28

Recall that Lemma 28 is defined to be used in Appendix F with respect to Algorithm 3,
therefore all events and variables in this subsection refer to those defined with respect to
Algorithm 3.
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proof. By assumption of this lemma,

P(uj = usafeU
j , E | Gj) = P(uj = usafeU

j | Gj, E)P(E | Gj) ≥
γ

2
. (137)

We also note the following result:

Lemma 30. For any event E∗ such that P(E∗) > 0,

Var
w∼D

(w | E∗) ≥ P(E∗)2

16B2
P

proof. First, we will show that any continuous distribution D′ with density function bounded
by B must have variance at least 1

16B2 . Let fD′ be the probability density function of D′.
First, we can assume WLOG that D′ has mean 0 (this is without loss of generality because
variance is invariant to shifts in mean). If D′ has mean 0, then by the law of total expectation

E
x∼D′

[x | x ≥ 0]Px∼D′(x ≥ 0) = − E
x∼D′

[x | x ≤ 0]Px∼D′(x ≤ 0).

Note that we can have non-strict inequalities because D′ is continuous. Furthermore, either
Px∼D′(x ≤ 0) ≥ 1/2 or Px∼D′(x ≥ 0) ≥ 1/2. Because variance is invariant to multiplying
by −1, we can assume WLOG that Px∼D′(x ≥ 0) ≥ 1/2. If Px∼D′(x ≥ 0) ≥ 1/2 then∫∞
0

fD′(x)dx ≥ 1/2. Define f ∗(x) = 1
2B

for x ∈ [0, B] and f ∗(x) = 0 otherwise. Note that
f = f ∗ achieves the minimum possible value of

∫∞
0

x · f(x)dx subject to the constraints∫∞
0

f(x)dx ≥ 1/2 and 0 ≤ f(x) ≤ B for all x. This is because f ∗ puts as much weight as
possible close to 0 without violating the bounded by B constraint. Furthermore, any f such
that

∫∞
1/2B

f(x)dx > 0 puts non-0 weight on values of x greater than B and therefore has a

larger value of
∫∞
0

x · f(x)dx than f ∗. Using this, we have that

E
x∼D′

[x | x ≥ 0]Px∼D′(x ≥ 0) =

∫ ∞

0

x · fD′(x)dx ≥
∫ 1/2B

0

x ·Bdx =
1

8B
.

Therefore, we must have (again by the law of total expectation) that

E
x∼D′

[|x|] = E
x∼D′

[x | x ≥ 0]Px∼D′(x ≥ 0)− E
x∼D′

[x | x ≤ 0]Px∼D′(x ≤ 0) ≥ 1

4B
.

By Jensen’s inequality,

Varx∼D′(x) = E
x∼D′

[x2] = E
x∼D′

[|x|2] ≥ E
x∼D′

[|x|]2 ≥ 1

16B2
.

We have therefore shown that any continuous distribution D′ with probability density func-
tion f such that f(x) ≤ B for all x must have variance at least 1

16B2 .
We know that the conditional distribution of w given E∗ has a probability density function

that is bounded by BP

P(E∗)
. Therefore, we must have that Var(w | E∗) ≥ P(E∗)2

16B2
P
.
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Recall that wj−1 is independent of Gj. Therefore, Var
(
wj−1

∣∣ Gj, E, uj = usafeU
j

)
is simply

the variance of wj−1 conditional on an event that has probability P(E, uj = usafeU
j | Gj).

Therefore, we can apply Lemma 30 and Equation (137) to get that for some event E ′ such
that P(E ′) ≥ γ/2,

Var
(
wj−1

∣∣ Gj, E, uj = usafeU
j

)
= Var (wj−1 | E ′) ≥ γ2

64B2
P

.

H Feasibility and Boundary Proofs

H.1 Relaxation of Assumption 1

The assumption that a, b > 0 in Assumption 1 can actually be dropped under Assumptions
2 and 3. Informally, this is because the controller C init can be used for log10(T ) steps to,
with high probability, obtain an estimate θ̂ such that ∥θ̂ − θ∗∥∞ ≤ 1

log(T )
(by the same logic

as in Lemma 2). Therefore, we could include an initial phase in every algorithm that does
log10(T ) steps of initial exploration and then replaces Θ with Θ′ = {θ : ∥θ − θ̂∥∞ ≤ 1

log(T )
},

and this Θ′ will satisfy a′, b′ > 0 for sufficiently large T because a∗ > 0. However, to simplify
the algorithms and proofs we will assume that the initial uncertainty set Θ is small enough
that this is unnecessary. Note that this assumption of sufficiently small bounded initial
uncertainty appears in other safe LQR literature such as Li et al. [2021].

H.2 Discussion on Assumption 2

To better understand Assumption 2, consider the case of bounded noise and constant
boundaries as in Li et al. [2021], Dean et al. [2019]. In this case, to satisfy Assump-

tion 2, it is sufficient to replace the ∀x ∈
[
D

E[x]
L + F−1

D ( 1
T 4 ), D

E[x]
U + F−1

D (1− 1
T 4 )
]
with

∀x ∈ [D
E[x]
L − w̄,D

E[x]
U + w̄]. Li et al. [2021] makes a similar assumption that there is an

initial linear controller that satisfies this property. For the bounded noise case, Assumption
2 can be shown to be equivalent to an assumption on the size of the initial uncertainty set.
Let C init(xt) = −a

b
xt for some arbitrary θ ∈ Θ. When using this controller, the position and

control at time t (denoted xt and ut respectively) satisfy

|a∗xt+b∗ut| ≤ |xt|
∣∣∣∣a∗ − ab∗

b

∣∣∣∣ ≤ |xt|
∣∣∣∣a∗ − a− (b∗ − b)a

b

∣∣∣∣ ≤ (1 + a

b

)
|xt|size(Θ) ≤

(
1 +

ā

b

)
|xt|size(Θ).

This controller C init satisfies Assumption 2 under bounded noise if

size(Θ) ≤
min(D

E[x]
U , |DE[x]

L |)− b̄
log(T )∣∣∣1 + ā

b

∣∣∣ (∥DE[x]∥∞ + w̄)
.

Therefore, instead of assuming Assumption 2, it is sufficient to assume that size(Θ) ≤
min(D

E[x]
U ,|DE[x]

L |)− b̄
log(T )

|1+ ā
b |(∥DE[x]∥∞+w̄)

, as the controller C init(xt) = −a
b
xt satisfies Assumption 2. The bound
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on size(Θ) does still depend on the end points of Θ. As a sanity check, suppose ∥DE[x]∥∞ =
OT (1) and ā, b̄, 1

b
≤ c for some constant c. Then there exists a constant such that if size(Θ)

is less than that constant, then Assumption 2 is satisfied for sufficiently large T .

H.3 Assumptions Relationship to Infeasibility

In this section we briefly relate the assumptions we make to a notion of infeasibility. We begin
with two formal definitions. The first is a formal definition of feasibility for our problem.
The second is a property of a controller that is slightly stronger than regular safety.

Definition 3 (Feasibility). An initial uncertainty set of system dynamics Θ is feasible for
boundary DE[x] and trajectory length T with probability 1 − δ if there exists a controller C
that satisfies the following. For any θ∗ ∈ Θ, if the true dynamics are θ∗, then

P
(
∀t < T : D

E[x]
L ≤ a∗xt + b∗C(Ht) ≤ D

E[x]
U

)
≥ 1− δ.

Definition 4 (Robust safety). A controller C is robustly safe for T0 time steps for dynamics
θ∗ if the following holds for some known distribution ρ with mean 0 and constant variance

η2 > 0. If st
i.i.d.∼ ρ and ut = C(Ht) +

st
log(T )

, then

P
(
∀t ∈ [0, T0 − 1] : D

E[x]
L ≤ a∗xt + b∗ut ≤ D

E[x]
U

)
≥ 1− oT (1/T

4).

Proposition 11. The result of Theorem 1 hold without Assumption 2 if we assume access
to a controller Crs that is robustly safe for

√
T steps. Similarly, the result of Theorem 2

holds without Assumption 2 if we assume access to a controller Crs that is robustly safe for
T 2/3 steps.

proof. In the exploration phase of any of the three algorithms, instead of sampling ϕt from
Rademacher distribution we can instead sample i.i.d. from ρ and keep the rest of the algo-
rithm the same. Then the robust feasibility implies that with probability 1− oT (1/T

4) the
algorithm will be safe for the warm-up period of the first 1

ν20
steps. We can then proof a

variation of Lemma 2 that holds using the distribution ρ instead of the Rademacher distri-
bution.

By Definition 3, as T approaches infinity, the existence of a robustly safe controller
Crs becomes intuitively equivalent to Θ being feasible for boundary DE[x] with probability
1 − oT (1/T

4). Therefore by Proposition 11, Assumption 2 is intuitively asymptotically
equivalent to the assumption that the problem is feasible for dynamics Θ and that a controller
that achieves feasibility is known.

I Generalizations

I.1 Control Constraints

Our results focus on positional constraints, but we believe that our results with the same rates
of regret will also hold with both positional and control constraints under some additional
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assumptions. While we leave the formal derivations of results for control constraints to future
work, we provide a brief discussion of how the algorithm and proofs from this paper could
be extended to include control constraints.

First, we briefly mention how control constraints change the definitions and notation
used. Control constraints would be of the form Du

L ≤ ut ≤ Du
U for all t < T (for the

rest of this section, we will refer to the expected-position constraints as DE[x]). We also
define the function Kopt(θ, T,D

E[x], Du) as choosing the optimal parameter K for a controller
satisfying both the position constraints DE[x] and the control constraints Du. We also need
the additional assumption that there exists a (non-empty) set of baseline controllers that
can satisfy both the position and control constraints. Finally, we need to assume that the
controller C init satisfies both position and control constraints (i.e. an analogue of Assumption
2).

I.1.1 Theorem 2 and Algorithm 2

We start with considering how Algorithm 2 would need to be modified with the addition
of control constraints. The key idea behind Algorithm 2 satisfying the position constraints
is that the algorithm sometimes uses controls usafeU

t and usafeL
t to enforce positional safety.

However, in the presence of control constraints, we can no longer use the controls usafeU
t and

usafeL
t , as these controls may not satisfy the control constraints. The key modification of

Algorithm 2 is to choose the controller Calg
s in such a way that Calg

s will satisfy a tighter

positional constraint with respect to DE[x]′ = (D
E[x]
L + Θ̃T (ϵs), D

E[x]
U − Θ̃T (ϵs)) for dynamics

θ̂s and a tighter control constraint Du′
= (Du

L + Θ̃T (ϵs), D
u
U − Θ̃T (ϵs)). In other words,

choosing Calg
s = C θ̂s

Kopt(θ̂s,Ts,DE[x]′ ,Du′ )
. Within each iteration of the safe exploitation phase,

the algorithm then can directly use Calg
s . Because ∥θ̂s−θ∗∥∞ ≤ ÕT (ϵs) with high probability

and this Calg
s is chosen to satisfy the tighter position constraints DE[x]′ for dynamics θ̂s,

the controller Calg
s will satisfy the true position constraints DE[x] for dynamics θ∗ with high

probability. Because Calg
s satisfies the tighter control constraints Du′

, with the additional
assumption that the controller class is continuous, the controls used by Calg

s under dynamics
θ∗ will also satisfy the control constraints with high probability.

Now we will briefly describe what additional results need to be proven in order for the
modified version of Algorithm 2 described above to achieve the same regret rate of ÕT (T

2/3)
in the presence of control constraints. We will do this by analyzing each of the terms of
regret from the proof of Theorem 2.

The regret term R0, which is the regret from the warm-up period of the first 1/ν2
T steps,

would have the same definition and the same regret bound of Õ(T 2/3) as in the analysis of
Algorithm 2.

To bound the regret term R1, we would need to show that Cs
alg as described above does

not have much more expected cost than the true best controller, Cθ∗

Kopt(θ∗,T,DE[x],Du)
. This

can be incorporated into an analogue of Assumption 7: assuming that for ∥θ− θ∗∥∞, ∥Du−
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Du′∥∞, ∥DE[x] −DE[x]′∥∞ all sufficiently small,

|J̄(θ∗, Cθ
Kopt(θ,T,DE[x]′ ,Du′ )

, t)− J̄(θ∗, Cθ∗

Kopt(θ∗,T,DE[x],Du), t)|

= ÕT

(
∥θ − θ∗∥∞ + ∥DE[x] −DE[x]′∥∞ + ∥Du −Du′∥∞ +

1

T 2

)
.

This can be made into a new assumption on the baseline class of controllers that replaces
Assumption 7.

We expect that the regret source R2 (converting from expected regret to realized regret)
will still be ÕT (

√
T ), as this was a result of a concentration inequality that will still apply.

Regret R3 no longer exists as we no longer use the controls usafeU
t or usafeL

t , and instead
this source of regret is being incorporated into the chosen Calg

s in regret term R1.
To summarize, the main modification to the algorithm would be the choice of controller

Calg
s , and the main change to the proof is moving the burden of bounding the regret term R3

to the version of Assumption 7 described above that accounts for the tightened constraint
arguments to Kopt.

I.1.2 Theorem 1 and Algorithm 3

In order to show a version of Theorem 1 that works for control constraints, Algorithm 3
would need the same modifications as described for Algorithm 2. Specifically, instead of

using controls usafeU
t and usafeL

t , the controller Calg
s is chosen as Calg

s = C θ̂s
Kopt(θ̂s,Ts,DE[x]′ ,Du′ )

.

The main way that the proof of regret for Algorithm 3 differs from the regret for Algorithm
2 is that the proof for Algorithm 3 relies on the faster rate of convergence for θ̂s given by
Lemma 21. Proving a form of Lemma 21 for the modified algorithm would be the main
additional step in proving that ÕT (

√
T ) regret is possible with control constraints. As

discussed in the proof sketch of Theorem 1, the proof of Lemma 21 comes from the fact
that a constant fraction of the time, usafeU

t is non-linear by an amount larger than a positive
constant. The non-linearity of usafeU

t occurs because enforcing safety constraint satisfaction
requires non-linear controls. While the modified controller Calg

s described in the previuos
paragraph does not use the non-linear controls usafeU

t , Calg
s must still be frequently non-linear

in order to satisfy the safety constraints. Therefore, we expect that for noise distributions
with large enough support, the modified Algorithm 3 will a constant fraction of the time use
a control that is non-linear by a constant amount, which will give that ϵs decreases at a rate
of 1/

√
t.

I.2 Higher Dimensions

This work focuses on the one-dimensional LQR setting, but many LQR applications have
higher dimensional positions and controls. We leave the formal extension of our results to
higher dimensions for future work, but discuss here when and how we believe our results
will extend to higher dimensions. Suppose xt ∈ Rn and ut ∈ Rm, which implies that the
dynamics are a pair of matrices θ∗ = (A∗, B∗) where A∗ ∈ Rn×n and B∗ ∈ Rn×m. A
natural extension of our constraints to higher dimensions is to consider a (origin-containing)
polytopal constraint, i.e., the intersection of a finite number of half-spaces that contain the

83



origin. Specifically, we could consider constraints of the form ∆(A∗xt + B∗ut) ≤ d where
∆ ∈ Rk×n and d ∈ Rk. This still has the interpretation as the expected position at each time
is within the convex region {x ∈ Rn : ∆x ≤ d}. Analogous to in Appendix I.1, we define the
function Kopt(θ, T,∆, d) as choosing the optimal parameter K for a controller satisfying the
constraints ∆(Axt + But) ≤ d. Before talking about specific algorithms, we first note that
we expect that the results of Lemmas 23 and 2 generalize directly to higher dimensions. This
is necessary for all of our algorithmic results. Note that because the dynamics are matrices,
the dynamics estimates will also be matrices denoted θ̂s.

I.2.1 Theorem 2 and Algorithm 2

In higher dimensions, Assumption 5 becomes slightly more complicated. Specifically, we
define the truncated version of a controller C in higher dimensions as using either control
C(x) if C(x) would result in an expected position inside the convex safe region, and otherwise
using the smallest magnitude control that takes the position in expectation to inside of the
convex safe region. The other assumptions have direct higher dimensional counterparts.

The key modification of Algorithm 2 is to choose the controller Calg
s in such a way that

∆(Âsxt + B̂sC
alg
s (xt)) ≤ d − Θ̃T (ϵs). In other words, choosing Calg

s = C θ̂s
Kopt(θ̂s,Ts,∆,d−Θ̃T (ϵs))

.

Within each iteration of the main loop of Algorithm 2, the algorithm can directly use Calg
s

without the need for usafeU
t or usafeL

t . By this construction, ∆(Âsxt + B̂sC
alg
s (xt)) ≤ d −

ÕT (ϵ). Because with high probability ∥θ̂s − θ∗∥∞ ≤ ÕT (ϵs), this will imply that ∆(A∗xt +
B∗Calg

s (xt)) ≤ d with high probability. This in turn means that the algorithm will satisfy
the constraints with high probability.

Analyzing the regret of this algorithm, the regret terms R0, R1, and R2 stay the same
as in the proof of Theorem 2. The regret term R3 is no longer needed, as we no longer use
controls usafeU

t or usafeL
t . To bound the regret term R1, we want to show that the cost of Cs

alg

is close to the cost of Cθ∗

Kopt(θ∗,T,∆,d). Like we did in Appendix I.1, we need an analogue of

Assumption 7, which is that for ∥θ − θ∗∥∞ and ∥d− d′∥∞ both sufficiently small,

|J̄(θ∗, Cθ
Kopt(θ,T,∆,d′), t)− J̄(θ∗, Cθ∗

Kopt(θ∗,T,∆,d), t)|

= ÕT

(
∥θ − θ∗∥∞ + ∥d− d′∥∞ +

1

T 2

)
.

By similar arguments as in our current proof, we expect this assumption will be sufficient
to bound R1 for this modified algorithm. We expect that the bound on R2 would be very
similar as in the proof of Theorem 2, as this regret term corresponds to concentration of the
cost. Similarly, the regret term R0 can also be bounded the same as in the proof of Theorem
2, as this term corresponds to the warm-up period which still has length Õ(T 2/3). Therefore,
we expect that the total regret of this modified algorithm can still be bounded by Õ(T 2/3).

I.2.2 Theorem 1

We leave whether or not Theorem 1 generalizes to higher dimensions in all situations as an
open question. However, we will briefly outline a setting in which we do expect the result
to generalize. Suppose that m = n and that A∗ and B∗ are invertible and diagonalizable.
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Algorithm 3 for higher dimensions would require the same changes as in the previous sub-

subsection, which means that Calg
s = C θ̂s

Kopt(θ̂s,Ts,∆,d−Θ̃T (ϵs))
. The main new result that would

be necessary is an analogue of Lemma 21 for higher dimensions. Intuitively, the result of
Lemma 21 holds because Algorithm 3 will a constant fraction of the time use the non-linear
control usafeU

t which allows for faster learning. The analogue for higher dimensions is to show
that the modified algorithm will a constant fraction of the time use a non-linear control. A
difficulty in higher dimension is that it is not sufficient to just be non-linear along one di-
mension. Instead, there must be sufficient non-linearity in all m dimensions. Therefore, the
higher dimensional version of Assumption 9 requires that the noise distribution is sufficiently
large relative to the constraints in all m dimensions, which for example would be satisfied
by the multivariate normal distribution with mean 0 and constant variance matrix. Under
this assumption, the modified algorithm will a constant fraction of the time use controls ut

that satisfy ∆i(A
∗xt + B∗ut) ≥ di − OT (ϵs) for some i ∈ [1 : k]. Furthermore, if the noise

is sufficiently large in all dimensions, then we expect that for every side of the boundary of
the convex compact region (corresponding to ∆i and di for i ∈ [1 : k]), xt will at times be
sufficiently far from that side and a point on that side will be the closest point to xt. Because
A∗ is invertible, the previous sentence will also hold for A∗xt. Because B∗ut must bring the
position back to within the safe region in expectation, for every side of the boundary we
must have that B∗ut is large and perpendicular to that side. Because B∗ is invertible, this
implies that the ut used to enforce safety will be sufficiently non-linear in all directions. We
believe this would allow the algorithm to learn the matrix B∗ up to accuracy OT (1/

√
t) at

time t. Equipped with an analogue of Lemma 21, we expect that the rest of the proof will
follow directly. If m > n or A∗ and B∗ are not invertible, then showing that the non-linear
controls ut are sufficient for learning every column of the matrix B∗ is more difficult. We
leave the details of analyzing this case for future work.
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