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Abstract

Rent division is the well-studied problem of fairly assigning rooms and dividing
rent among a set of roommates within a single apartment. A shortcoming of existing
solutions is that renters are assumed to be considering apartments in isolation, whereas
in reality, renters can choose among multiple apartments. In this paper, we generalize
the rent division problem to the multi-apartment setting, where the goal is to both
fairly choose an apartment among a set of alternatives and fairly assign rooms and
rents within the chosen apartment. Our main contribution is a generalization of envy-
freeness called negotiated envy-freeness. We show that a solution satisfying negotiated
envy-freeness is guaranteed to exist and that it is possible to optimize over all negotiated
envy-free solutions in polynomial time. We also define an even stronger fairness notion
called universal envy-freeness and study its existence when values are drawn randomly.
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1 Introduction

Rent division is a classic and intuitive problem within the space of fair division, in which a
number of roommates are faced with the joint decision of how to assign rooms and split the
total rent in a shared apartment. The problem is complicated by the fact that the rooms
may vary widely and that players may have very different values for different rooms; for
example, one room may have a better view, or one player may derive higher utility from
having larger closets. Preferences over prices may also be complex, but it is commonly
assumed that players’ utilities are quasi-linear : utility equals value minus price. The goal is
to find an assignment of players and prices to rooms that takes such player preferences into
account and satisfies a rigorous notion of fairness.

The gold standard for fairness in rent division is envy-freeness, which guarantees that each
player has higher utility for their own room than for any other room, given the prices assigned
to each room. In other words, in an envy-free allocation, no roommate would want to trade
their room for any other room. Along with being easily justifiable (Procaccia, 2019), a
solution which satisfies envy-freeness is also guaranteed to exist for the rent division problem
(Svensson, 1983) under the assumption of quasi-linearity. Furthermore, such a solution can
be found in polynomial time (Aragones, 1995), and it is possible to optimize linear objectives
over envy-free solutions in polynomial time as well (Gal et al., 2017). Therefore, envy-freeness
is both a compelling and computationally tractable fairness notion in the rent division setting.

The study of rent division is not driven merely by theoretical interest— it is a poster child
for applications of fair division more broadly. In particular, the not-for-profit fair division
website Spliddit (Goldman and Procaccia, 2014) operated between 2014 and 2022 and offered
“provably fair solutions to everyday problems.” Its rent division application implemented
the algorithm of Gal et al. (2017); among the five applications on Spliddit, it was the most
popular, with more than 30,000 instances solved (Peters et al., 2022).

A shortcoming of the prevalent approach to fair rent division, however, is that it assumes
that the players have already chosen an apartment, and the only question remaining is how
to divide the rooms and rent. By contrast, groups looking for an apartment are often not
considering each potential apartment separately. Rather, many groups can further optimize
by choosing among a set of available apartments which fit their budget and location con-
straints. This setting gives rise to new sources of complexity as the players are required not
only to assign rooms and prices in the chosen apartment, but also to collectively decide on
which apartment to rent. Such a decision can be contentious. Imagine, for instance, three
players whose apartment hunting priorities are a short commute, proximity to green spaces,
and an exciting neighborhood, respectively. Suppose further that current apartment options
include one apartment that is close to player 1’s workplace, one which neighbors the largest
park in the city, and one in the center of Restaurant Row. The rooms in each apartment
may be asymmetric as well. Given all of these factors, how should the players decide which
apartment to rent and who gets which room?

Crucially, it does not suffice to merely compute an envy-free solution in each individual
apartment. Consider the following example:
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Example 1.1. There are two players and two apartments. Each apartment has total rent
300 and contains two symmetric rooms. The value of each player (rows) for each room
(columns) is shown below:

r11 r12
1 200 200
2 100 100

r21 r22
1 100 100
2 200 200

In this example, the only solution which is individually envy-free in each apartment assigns
equal rent in each apartment. However, the players will then disagree on which apartment
to rent, as player 1 will prefer apartment 1 while player 2 will prefer apartment 2. It also
seems intuitively unfair to assign equal rent in each apartment, as this would result in
the two players having unequal utilities, even though their utility functions are symmetric.
Therefore, a new fairness notion is needed for the multi-apartment rent division problem.

1.1 Our Contributions

First and foremost, we present a formal model of the rent division problem in the multi-
apartment setting, and show that new fairness notions are necessary in this model. Our main
contribution is a generalization of envy-freeness called negotiated envy-freeness. We show
that negotiated envy-freeness satisfies several desirable properties such as Pareto optimality
and individual rationality, and reduces to envy-freeness in the single apartment setting.
We provide an intuitive justification for negotiated envy-freeness based on negotiating rent
between players who have different favorite apartments, and show how such negotiations
allow players to reach a consensus apartment while maintaining fair rent burdens across
players. We then show that a solution satisfying negotiated envy-freeness is guaranteed to
exist and that it is possible to optimize linear objectives over all negotiated envy-free solutions
in polynomial time, mirroring a similar result by Gal et al. (2017) for the single-apartment
setting. Finally, we introduce strong negotiated envy-freeness, a variant of negotiated envy-
freeness which imposes additional fairness constraints on negotiations.

We also explore universal envy-freeness, which is the most direct generalization of envy-
freeness. Unlike negotiated envy-freeness, however, we show that a universal envy-free solu-
tion is not guaranteed to exist (and, in fact, there are many instances where such a solution
does not exist). Therefore, we instead study the probability of such a solution existing
when players’ utilities are drawn i.i.d. from an arbitrary distribution with a fixed number of
players. For discrete distributions, we show that the probability that a universal envy-free
solution exists approaches 1 as the number of apartments approaches infinity. For continu-
ous distributions, on the other hand, we show that the probability that a universal envy-free
solution exists does not converge to either 0 or 1. However, if we add apartments one by
one, the probability that there exists a stopping point where a universal envy-free solution
exists converges to 1, even for continuous distributions.
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1.2 Related Work

As mentioned earlier, our work is most closely related to the paper of Gal et al. (2017). They
study envy-free solutions for (single-apartment) rent division under quasi-linear utilities,
and—building on earlier work by Alkan et al. (1991)—single out the maximin solution
(which maximizes the minimum utility subject to envy-freeness) as especially desirable.
They also develop an algorithmic framework that allows for efficient computation of the
maximin solution and a range of other objectives.

By contrast, Peters et al. (2022) consider a different type of objective: they seek envy-free
solutions that— rather than optimizing a welfare function—are robust to perturbations of
the utilities. This objective is beyond the scope of our work.

There are several approaches to rent division that relax the assumption of quasi-linear util-
ities or provide (incomparable) alternatives. One line of work allows players to express a
(hard or soft) budget constraint (Procaccia et al., 2018; Airiau et al., 2023; Velez, 2022,
2023). Arunachaleswaran et al. (2021) develop a fully-polynomial approximation scheme
for envy-free rent division under the assumption that each player’s utility (as a function of
price) is continuous, monotone decreasing, and piecewise-linear. Finally, classic work by Su
(1999) uses Sperner’s Lemma to construct an algorithm for envy-free rent division under
the “miserly tenants” assumption, which requires players to prefer a free room to any other
room (even if its rent is $1); while his approach is elegant, it has several shortcomings, in-
cluding that preference elicitation requires repeated interaction with the players and that it
is infeasible to optimize over envy-free solutions. Segal-Halevi (2022), however, shows that
techniques developed for miserly tenants extend to the quasi-linear setting. All of these pa-
pers are orthogonal to ours, as we focus on the (widely used in practice) quasi-linear setting
and instead extend the standard rent division problem to multiple apartments.

It is worth noting that even in the basic setting of a single apartment and quasi-linear utilities,
envy-freeness is incompatible with strategyproofness. For this reason, work on incentives in
fair rent division is relatively limited. A notable exception is the work of Velez (2018), who
studies mechanisms whose equilibria give rise to envy-free solutions.

2 Model

A multi-apartment rent division instance is composed of a set of players [n] = {1, ..., n}
and a set of apartments [m] = {1, ...,m}, where each apartment j consists of n rooms
{rj1, ..., rjn}. For each room rjk in apartment j, player i has a non-negative value Vi(rjk).
Each apartment j also has a total rent Rj. Unless otherwise noted, we will assume that∑

j

∑
k Vi(rjk) =

∑
j Rj for all i. In other words, we do not assume that players have the

same value for each apartment, but do assume that players have the same total value for
all apartments under consideration. In our model, players are therefore able to express
preferences over apartments, but their overall utility is still normalized as in the single
apartment setting (Gal et al., 2017). The entire instance can be represented by a valuation
matrix V ∈Mn×m×n(R+) and a rent vector R ∈ Rn.
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An apartment assignment Aj : [n] → [n] is a mapping of players to rooms in apartment j,
where Aj(i) is the room assigned to player i in apartment j. An assignment A = {A1, ..., Am}
is the vector of mappings for all apartments. An assignment for apartment j is welfare-
maximizing if it maximizes

∑n
i=1 Vi(Aj(i)) − Rj over all possible assignments in j. Rent is

allocated via the price matrix P ∈ Rm×n, and we denote the price of a specific room r as
P (r). We require that

∑
k∈[n] P (rjk) = Rj for any valid price matrix, and will refer to the

price vector for apartment j as Pj, where Pj is the jth row of P . For a specific Aj, P , the
quasi-linear utility of player i is Ui(Aj, P ) = Vi(Aj(i))− P (Aj(i)). A solution for the multi-
apartment rent division instance is a tuple (A,P, j∗), where A and P contain all assignments
and prices and j∗ denotes the chosen apartment. We will often refer to a partial solution
(A,P ) where the apartment has not yet been chosen.

When there is only a single apartment (m = 1), a solution (A1, P ) is envy-free (EF) if each
player prefers her room over every other room. Formally, a solution is envy-free if for all
i, i′ ∈ [n],

Vi(A1(i))− P (A1(i)) ≥ Vi(A1(i
′))− P (A1(i

′)). (1)

In the single apartment setting, an envy-free solution always exists and can be found in
polynomial time (Gal et al., 2017). The goal of this paper is to generalize the notion of
envy-freeness in Equation (1) to the multi-apartment setting when m > 1. In the multi-
apartment setting, one starting point is to simply enforce the single apartment definition of
envy-freeness for each apartment separately, i.e. for all i, i′ ∈ [n], j ∈ [m],

Vi(Aj(i))− P (Aj(i)) ≥ Vi(Aj(i
′))− P (Aj(i

′)). (2)

We will refer to partial solutions (A,P ) that satisfy Equation (2) as individually envy-free.
However, as we showed in the introduction, it may be impossible for the players to agree on
the final apartment choice j∗, and therefore this does not lead to an obviously fair solution.

3 Universal Envy-Freeness

We first consider universal envy-freeness, a natural generalization of envy-freeness which
captures the spirit of the original definition. Informally, a universal envy-free assignment
guarantees that no player will want to switch her room in the chosen apartment with any
room in any apartment. We formalize this definition below.

Definition 3.1. A solution (A,P, j∗) is universal envy-free (UEF) if for all i, i′ ∈ [n]
and j ∈ [m],

Vi(Aj∗(i))− P (Aj∗(i)) ≥ Vi(Aj(i
′))− P (Aj(i

′)).

Unfortunately, a universal envy-free solution does not always exist, as can be seen in Example
1.1. In that example, the only way for both apartments to be individually envy-free is for rent
to be assigned evenly in each apartment; i.e. that the price of each room is 150. However, if
rent is assigned in this way, then one of the players will be envious in the final apartment: if
apartment 1 were chosen, then player 2 would rather have either room in apartment 2, while
if apartment 2 were chosen, then player 1 would rather have either room in apartment 1.
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Therefore, no universal envy-free solution exists for Example 1.1. It turns out that this is not
a knife’s edge example, and that there are many instances which have no universal envy-free
solution. For example, there are instances with no universal envy-free solution even when we
restrict all players to have the same total value for each apartment (

∑n
k=1 Vi(rjk) = Rj ∀i, j).

We note, however, that it is easy to check whether a universal envy-free solution exists via
a simple linear program [Appendix A.4].

3.1 Probabilistic Universal Envy-Freeness

In computational fair division, when researchers were faced with the unfortunate non-
existence of envy-free allocations of indivisible goods, they have asked whether such solutions
are likely to exist in random instances, at least in the large Dickerson et al. (2014); Manu-
rangsi and Suksompong (2017, 2020). In this section, we adopt the same approach in the
context of universal envy-freeness.

Specifically, we assume that the valuation matrix V is drawn randomly, where each player’s
value for each room is drawn from a distribution D supported on [0, 1]. In other words, for

any player i and room rjk in apartment j, the value of player i for room rjk is Vi(rjk)
i.i.d.∼ D.

Because each apartment is drawn symmetrically, we will also assume for this section only
that the rent in every apartment is equal to R. Importantly, note that under this model we
are no longer requiring player utilities to be normalized to add up to the total rent. However,
as values are drawn i.i.d, every player will have the same total value for all of the rooms in
expectation.

Define Em as the event that there exists a universal envy-free solution with m apartments
when values are drawn i.i.d from distribution D. First, we consider the simpler case when
D is a discrete distribution with a finite number of values (see Appendix A for the proof).

Theorem 3.2. If Vi(rjk)
i.i.d.∼ D for all i, j, k where D is a discrete distribution that takes on

κ <∞ distinct values, then for any constant n, Pr (Em) −−−→
m→∞

1.

The above result holds in the limit as m goes to infinity, which is unrealistic in the real-
world setting of searching for an apartment. However, a group of roommates may consider
dozens of apartments in their search, in which case limit laws such as this result can become
useful approximations. We would also ideally like to generalize this result to continuous
distributions. Somewhat surprisingly, the same result does not hold in the case of continuous
distributions supported on [0, 1]. In fact for sufficiently largem, we can bound the probability
that there exists a universal envy-free solution away from both 0 and 1 for a fixed value of
n. Note that the lower bound is the same for any continuous distribution, while the upper
bound is distribution-dependent.

Theorem 3.3. Suppose that Vi(rjk)
i.i.d.∼ D for all i, j, k where D is a continuous distribution

supported on [0, 1]. Then there exists a p0(n) > 0 such that for any m and D, Pr (Em) ≥
p0(n). Furthermore, for any distribution D, there exists a p1(n) < 1 such that for any
m ≥ n+ 1, Pr (Em) ≤ p1(n).
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Proof sketch. We provide a brief sketch of the proof of Theorem 3.3 and defer the formal proof
to Appendix A. The structure of the proof is to construct two events F and E (both with
probabilities independent ofm) such that under event F a universal envy-free solution always
exists and under event E a universal envy-free solution never exists. The key idea behind both
constructed events is to consider the highest welfare achievable by potentially non-bijective
assignments that can assign multiple rooms within an apartment to the same player. Note
that these are not necessarily valid regular assignments. We will denote the maximum
total utility achievable by a potentially non-bijective assignment for a given apartment j
as MUW (j). Suppose the apartments are numbered in order of MUW , and therefore
apartment 1 has the highest MUW . We define F as the event when the potentially non-
bijective assignment with the highest total utility in apartment 1 is actually bijective, and
therefore is a valid regular assignment. Under event F , a universal envy-free solution exists
(Lemma A.3). We then show that Pr(F) is always positive and independent of m (Lemma
A.4). To show non-existence of a universal envy-free solution, we construct the event E with
the three following conditions on the first n + 1 apartments based on the MUW ordering.
The event E occurs when apartment n + 1 is the unique maximum welfare apartment, the
potentially non-bijective assignment which achieves MUW (n+ 1) is a bijective assignment,
and for every j ∈ [n], the potentially non-bijective assignment which achieves MUW (j)
assigns every room to player j (Lemma A.6). Conditioned on event E , we show that no
universal envy-free solution exists. Once again, Pr(E) is always positive and independent of
m.

Theorem 3.3 implies that simply starting with a very large number of apartments is not suffi-
cient for guaranteeing existence of a universal envy-free solution. However, the construction
of event F in Theorem 3.3 also implies the following. Suppose there are n players trying
to find a universal envy-free solution, starting with m0 apartments. If new apartments are
added one at a time, and we check for universal envy-freeness before each new apartment is
added, then with probability 1 this process will terminate with a universal envy-free solution
in a finite number of apartments. The proof of this result leverages the fact that event F
relies only on the ordering of utilities within the apartment with the highest value of MUW .
This result is formally outlined in Corollary 3.4 and proven in Appendix A.

Corollary 3.4. Suppose there exists an infinite sequence of apartments with Vi(rjk) drawn
i.i.d from a continuous distribution D. Then for any constant m0 > 0,

Pr (inf {m ≥ m0 : Em} <∞) = 1.

Conceptually, this corollary sends an encouraging message to apartment hunters: persever-
ance will likely lead to a fair outcome!

4 Consensus and Negotiated Envy-Freeness

As universal envy-freeness is often too strong of a requirement, we would like to find a weaker
condition that is always feasible, but still acts as a natural extension of envy-freeness in the
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single apartment setting. In this section, we introduce a fairness condition for the multi-
apartment rent division problem that satisfies multiple desirable properties and is always
guaranteed to exist.

4.1 Definition and Motivation

First, we observe that a desirable condition in the multiple apartment setting is for all players
to agree on the chosen apartment. In order for this to happen, every player must be at least
as happy with their assignment in the chosen apartment as with their assignment in any
other apartment. If this is the case, then we say that the chosen apartment is a consensus
apartment.

Definition 4.1. A solution (A,P, j∗) satisfies consensus if every player weakly prefers their
assignment in j∗ to their assignment in any other apartment j ̸= j∗. Formally, for every
player i,

Vi(Aj∗(i))− P (Aj∗(i)) ≥ max
j∈[m]

Vi(Aj(i))− P (Aj(i)). (3)

A partial solution (A,P ) satisfies consensus if there exists an apartment j∗ satisfying Equa-
tion (3). We will refer to such a j∗ as a consensus apartment for (A,P ).

Given a partial solution that satisfies consensus, the set of consensus apartments is exactly
the set of apartments which have the highest sum of player utilities. If there is more than
one consensus apartment, every player has the same utility for their assigned room in each
consensus apartment; the next lemma, whose proof is in Appendix B.1, formalizes this.

Lemma 4.2. Let (A,P ) be a partial solution satisfying consensus. Apartment j is a con-
sensus apartment for (A,P ) if and only if

n∑
i=1

Vi(Aj(i))−Rj ≥
n∑

i=1

Vi(Aj′(i))−Rj′

for all j′ ̸= j. Furthermore, if j1 and j2 are both consensus apartments for (A,P ), then for
all i, Ui(Aj1 , P ) = Ui(Aj2 , P ).

Intuitively, consensus is a desirable property because a lack of consensus would imply that
the players cannot decide on which apartment to rent. However, consensus alone is not
sufficient. In the motivating example, for instance, a possible solution that satisfies consensus
is to have player 1 pay 300 for room r11 and 200 for room r21. However, this is clearly
not a fair assignment, as player 1 has −100 utility in both apartments while player 2 has
100 utility in both apartments, despite their valuations being perfectly symmetrical. This
example can be further extended to make player 1 arbitrarily unhappy in the consensus
apartment. Therefore, we need a requirement stronger than just consensus to guarantee
reasonable fairness for all players.

To prevent one player being significantly more unhappy in every apartment as in the previous
example, we can instead try to reach consensus from a “fair” starting partial solution. One
such natural starting point is a partial solution (A,P ) which is individually envy-free. If this
starting partial solution satisfies consensus, then the solution with a consensus apartment
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already satisfies universal envy-freeness. However, this starting partial solution may not
satisfy consensus, as in Example 1.1. If no j∗ exists such that (A,P, j∗) satisfies consensus,
then we would like to adjust the rents P in a fair way such that the resulting solution
(A,P ′, j∗) satisfies consensus. One way to do this is by negotiating a “fair” compromise
by conducting fair negotiations that change the prices P . An example of when negotiating
prices may be useful is when apartment j is player 1’s favorite apartment and apartment j′ is
player 2’s favorite apartment. Then a negotiation between these two players and apartments
could help balance the prices and either convince player 1 to rent apartment j′ or convince
player 2 to rent apartment j, therefore bringing the partial solution closer to consensus.

We formalize this notion of negotiating as follows. Suppose we have a partial solution (A,P )
and a negotiation tuple τ = (δ, i1, i2, j1, j2), where δ > 0, i1, i2 ∈ [n], j1, j2 ∈ [m]. Then a
negotiation will consist of player i1 increasing their rent in apartment j1 by δ and decreasing
their rent in apartment j2 by δ, while player i2 decreases their rent in apartment j1 by δ
and increases their rent in apartment j2 by δ. Importantly, this negotiation only affects
the players’ rents and does not change the assignment A. Formally, the partial solution
after making negotiation τ is (A,P ′), where P ′(Aj1(i1)) = P (Aj1(i1)) + δ, P ′(Aj2(i1)) =
P (Aj2(i1))− δ, P ′(Aj1(i2)) = P (Aj1(i2))− δ, P ′(Aj2(i2)) = P (Aj2(i2)) + δ, and for all other
(i, j) pairs, P ′(Aj(i)) = P (Aj(i)). Note that each negotiation involves a player increasing rent
in one apartment by δ and decreasing rent in another apartment by δ, which enforces that
the negotiations are fair. We define the partial solution (A,P ) as reachable by negotiation
from the partial solution (A,Q) if there exists a series of T negotiations {(δt, it1, it2, jt1, jt2)}Tt=1

such that after making all T negotiations starting from (A,Q), the resulting partial solution
is (A,P ). Returning to our concept of fairness, we want to consider partial solutions (A,P )
that are reachable by this form of fair negotiations from some individually envy-free starting
partial solution (A,Q). By construction of negotiations, the total utility of any player across
all of their assigned rooms is the same in the final partial solution (A,P ) as in the individually
envy-free starting partial solution (A,Q).

Lemma 4.3. A partial solution (A,P ) is reachable by negotiation from an individual envy-
free starting partial solution (A,Q) if and only if there exists an individually envy-free solu-
tion (A,Q) such that for every player i,

∑m
j=1 P (Aj(i)) =

∑m
j=1 Q(Aj(i)).

Proof sketch. The “only if” direction follows from the fact that each negotiation does not
change any player’s total rent for all m of their assigned rooms. Therefore, if there exists a
sequence of negotiations that reach (A,P ) starting from (A,Q), then every player has the
same total rent for their m assigned rooms in (A,P ) and (A,Q).

The “if” direction requires a more technical construction, so we provide a brief proof sketch
here and leave the formal proof to Lemma B.1 in Appendix B.2. Suppose we start with
an assignment A and price matrices Q and P such that

∑m
j=1 P (Aj(i)) =

∑m
j=1Q(Aj(i)).

We want to construct a series of negotiations to transform Q into P . We do this for each
apartment 1 through m, one at a time. First, we construct a series of negotiations involving
only apartments 1 and m such that the resulting price matrix Q1 has the same prices as P for
apartment 1. This is possible because the two price matrices have the same total rent within
each apartment. We repeat this process for apartments j ∈ {2, ...,m − 1} by constructing

8



negotiations between apartment j and apartment m such that the resulting price matrix Qj

has the same prices as P for apartments 1 through j. We then show that the final set of
negotiations between apartment m−1 and m results in a post-negotiation price matrix equal
to the desired price matrix P . Therefore, (A,P ) is reachable by negotiation from (A,Q).

We now formally present the notion of fairness that comes from starting at an individually
envy-free solution and conducting a sequence of negotiations until reaching consensus.

Definition 4.4. A solution (A,P, j∗) satisfies negotiated envy-freeness if (A,P, j∗) sat-
isfies consensus and there exists a price matrix Q such that (A,Q) is individually envy-free
and for every player i,

m∑
j=1

P (Aj(i)) =
m∑
j=1

Q(Aj(i)).

By Lemma 4.3, a solution that satisfies negotiated envy-freeness also satisfies that (A,P ) is
reachable by negotiations from an individually envy-free partial solution (A,Q).

Note that the final chosen apartment and prices in a solution satisfying negotiated envy-
freeness do not have a meaningful fairness interpretation in isolation; that is, without the
context of the original problem. Fundamentally, negotiated envy-freeness should be viewed
as constructing a fair compromise when no single solution exists that every player prefers.
The fairness of a compromise cannot (and should not) be evaluated without considering the
full context, because all players must give something up in order to reach a compromise.
For example, consider two friends A and B committed to renting an apartment together. To
convince B to rent an apartment closer to A’s workplace, A might offer the larger bedroom
to B while paying equal rent, even though A prefers the larger bedroom. To an outside
observer, it seems unfair that A pays equal rent but gets the smaller bedroom. However, in
the context of the original decision, this was a natural compromise. Similarly, the fairness
of the negotiated envy-free solution cannot be evaluated by the chosen apartment only, but
also needs to account for the original set of apartments.

For the rest of this section, we will study solutions (A,P, j∗) that satisfy negotiated envy-
freeness, and argue that this is a good generalization of single apartment envy-freeness.

4.2 Properties of Negotiated Envy-Freeness

We will first show that a solution which satisfies negotiated envy-freeness also satisfies several
desirable properties. In particular, such a solution satisfies Pareto optimality and individual
rationality, and reduces to an envy-free solution in the single-apartment setting. Proofs of
the below can be found in Appendix B.

Property 4.5 (Pareto optimality). A solution (A,P, j∗) which satisfies negotiated envy-
freeness also satisfies Pareto optimality, in that there exists no other solution (A′, P ′, j′) such
that Ui(A

′
j′(i), P

′) ≥ Ui(Aj∗(i), P ) ∀i and the inequality is strict for at least one player.
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Property 4.6 (Individual rationality). A solution (A,P, j∗) which satisfies negotiated envy-
freeness also satisfies individual rationality, in that all players have non-negative utility for
their assigned rooms in the chosen apartment j∗.

Property 4.7 (Reduces to single-apartment setting). In the single-apartment setting (when
m = 1), a solution (A,P, j∗) satisfies negotiated envy-freeness if and only if (A,P, j∗) is
envy-free within the single apartment.

4.3 Existence of Negotiated Envy-Freeness

We have shown that solutions which satisfy negotiated envy-freeness have both an intuitive
explanation based on fair negotiating and desirable properties including Pareto optimality
and individual rationality. Crucially, and in contrast to universal envy-freeness, it is also
always possible to find a solution which satisfies negotiated envy-freeness.

Theorem 4.8. There exists a solution which satisfies negotiated envy-freeness for every
multi-apartment rent division instance.

Proof sketch. We provide a brief sketch of the proof of Theorem 4.8 and defer the formal
proof to Appendix B.6. To prove this result, we will construct a solution (A,P ∗, j∗) that
satisfies negotiated envy-freeness for any instance of the problem. To do this, we first start
with a partial solution (A,Q) that is individually envy-free within each apartment. Such a
solution is guaranteed to exist. We then consider the solution (A,P ), where P is the price
matrix that, for each apartment, induces equal utilities for all players in that apartment.
(A,P ) satisfies consensus, as the apartment which gives the highest utility for any player
will be a consensus apartment. While (A,P ) may not satisfy negotiated envy-freeness, we can
redistribute the prices evenly in (A,P ) through negotiating to get a new solution (A,P ∗) that
satisfies the following two properties. First, the utility of a given player for each apartment in
(A,P ∗) will be the same as in (A,P ), except that the utility may be scaled up or down by the
same additive factor for all apartments. Second, we have

∑m
j=1 P

∗(Aj(i)) =
∑m

j=1Q(Aj(i)).
By this construction, we can conclude by showing that (A,P ∗) is a valid price assignment
and satisfies negotiated envy-freeness and consensus.

4.4 Polynomial-Time Optimization

We have shown that there always exists a solution which satisfies negotiated envy-freeness,
and the proof provides a constructive way to find such a solution in polynomial time. How-
ever, there may be many solutions which satisfy negotiated envy-freeness. In the single
apartment setting, there exists a polynomial-time algorithm that optimizes a linear objec-
tive function over all envy-free solutions in polynomial time (Gal et al., 2017). This raises the
question of whether it is also possible to find a solution that optimizes a linear objective func-
tion in polynomial time over all negotiated envy-free solutions. As in the single-apartment
setting, objective functions of special interest include maximin, which maximizes the utility
of the least happy player, and equitability, which minimizes the disparity between players’
utilities. Our main theorem of this section, Theorem 4.9, generalizes Theorem 3.1 of Gal
et al. (2017) to the multi-apartment setting with negotiated envy-freeness.
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Algorithm 1 Optimizing an objective function subject to Negotiated Envy-Freeness

for j ← 1 to m do
Aj ← welfare-maximizing assignment in j via max-weight bipartite matching

end for
A← {A1, ..., Am}
Choose j∗A such that

∑n
i=1 Vi(Aj∗A

(i))−Rj∗A
≥ maxj

∑n
i=1 Vi(Aj(i))−Rj

P ∗, Q∗ ← argmax
P,Q

Z

s.t. Z ≤ fq(U1(Aj′ , P ), ..., Un(Aj′ , P ))

Vi(Aj′(i))− P (Aj′(i)) ≥ Vi(Aj(i))− P (Aj(i))

Vi(Aj(i))−Q(Aj(i)) ≥ Vi(Aj(i
′))−Q(Aj(i

′))∑
j

P (Aj(i)) =
∑
j

Q(Aj(i))∑
i

P (Aj(i)) = Rj

return (A,P ∗, j∗)

Theorem 4.9. Let f1, ..., ft : Rn×m → R be linear functions, where t is polynomial in n and
m. Given a multi-apartment rent division instance, a solution (A,P, j∗) that maximizes the
minimum of fq(U1(Aj∗ , P ), ..., Un(Aj∗ , P )) over all q ∈ [t] subject to negotiated envy-freeness
can be computed in time polynomial in both n and m.

Under this formalization, the maximin objective function can be represented by the linear
functions fi(U1(Aj∗ , P ), ..., Un(Aj∗ , P )) = Ui(Aj∗ , P ) for all i ∈ [n], and equitability can be
represented by fi,i′(U1(Aj∗ , P ), ..., Un(Aj∗ , P )) = Ui(Aj∗ , P )− Ui′(Aj∗ , P ) for all i, i′ ∈ [n].

While we defer the proof of Theorem 4.9 to Appendix B.8, we will state the key lemma used
in the proof (Lemma 4.10) and the algorithm that achieves the result.

Informally, Lemma 4.10 states that the set of solutions which satisfy negotiated envy-freeness
are equivalent for all welfare-maximizing assignments, in the sense that the same set of player
utilities can always be found for any choice of welfare-maximizing assignment. Note that
Lemma 4.10 has a similar flavor to the 2nd Welfare Theorem (Gal et al., 2017; Mas-Colell
et al., 1995) (see Lemma B.2).

Lemma 4.10. Let A,A′ be two assignments that maximize welfare in every apartment,
and let P be a price matrix such that (A,P, j∗) satisfies negotiated envy-freeness. Then
there exists a price matrix P ′ such that (A′, P ′, j∗) satisfies negotiated envy-freeness and
Ui(Aj, P ) = Ui(A

′
j, P

′) for all i, j.

The proof of Lemma 4.10 can be found in Section B.7. The algorithm used to prove Theorem
4.9 is the following.
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4.5 Strong Negotiated Envy-freeness

We have so far defined two notions of fairness for multi-apartment rent division: universal
envy-freeness and negotiated envy-freeness. Universal envy-freeness is simpler to interpret,
but may not always exist. On the other hand, negotiated envy-freeness always exists, but
there may be envy in the chosen apartment. In this section, we briefly describe an extension
of negotiated envy-freeness (strong negotiated envy-freeness) that provides an interpretation
for envy within the chosen apartment. Due to space constraints we defer the formal definition
and proofs to Appendix G.

The definition of strong negotiated envy-freeness is similar to negotiated envy-freeness in that
the solution (A,P, j∗) must satisfy consensus and there must be an individually envy-free
solution (A,Q) that is reachable by negotiations. However, strong negotiated envy-freeness
has an additional requirement that bounds the price differences between P and Q in the
consensus apartment j∗. Due to this additional requirement, any envy in the final chosen
apartment can be interpreted as being “necessary” to reach consensus. We also show in
Theorem G.4 that a solution satisfying strong negotiated envy-freeness always exists and that
optimizing an objective subject to strong negotiated envy-freeness can be done in polynomial
time (as in Theorem 4.9).

5 Discussion

5.1 Limitations

Our model suffers the same limitations as that of Gal et al. (2017), including that envy-
freeness is not strategy-proof and that the quasi-linear utility model is a strong simplifying
assumption. We also acknowledge that negotiated envy-freeness, despite having a reasonable
justification as reachable by negotiations, is less easily explainable as a fairness notion than
envy-freeness, and that envy within the consensus apartment may still lead to discontent.
From an application standpoint, it may be useful to let users find a negotiated envy-free
solution themselves, by presenting users with individually envy-free solutions in each apart-
ment and enabling the group to negotiate amongst themselves in the way dictated in the
paper.

5.2 Extensions

We have required throughout this work that solutions to the multi-apartment rent division
problem are of the form (A,P, j∗), where j∗ is the chosen apartment. A natural generalization
would be a distributional solution of the form (A,P,D), where D is a distribution over all
m apartments. We would then want to find a distributional solution (A,P,D) such that in
expectation, every player prefers their assignment to any other player’s assignment. This
notion of distributional envy-freeness is a weaker notion of fairness than universal envy-
freeness, and more instances of the problem have a distributional envy-free solution than a
universal envy-free solution (including Example 1.1). See Appendix C for more details on
distributional envy-freeness.
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In our work, we assumed that each group of n players is determined to room together in
an apartment with n bedrooms. One extension is to have various sizes of apartments and
allow the group of players to be split into multiple smaller apartments. This setting can
be modeled as a cooperative game with transferable utility, and a natural question is then
whether the core is always non-empty. In Appendix E, we show that even when there are
infinite copies of each apartment, there still exist instances where the core is empty.

Another interesting question is how the solution changes as additional apartments are added
(e.g. appear on the market). An additional apartment could change the set of negotiated
envy-free solutions, which could in turn change the chosen apartment when optimizing ob-
jective functions such as maximin or equitability. We show in Appendix D that the maximin
solution under negotiated envy-freeness does not satisfy apartment monotonicity, in that
an additional apartment could either raise or lower the achievable maximin value over all
negotiated envy-free solutions.

In Section 3, we studied the existence of universal envy-free solutions when the values are
drawn i.i.d. at random. In Appendix F, we study the probability of the existence of a
universal envy-free solution when there are two players with binary valuations. As the
correlation between player values decreases, the probability of the existence of a universal
envy-free solution generally increases. Interestingly, however, the increase is not monotonic.
Therefore, sometimes the highest likelihood that there does not exist a universal envy-free
solution occurs with correlation strictly between −1 and 1, implying that correlation between
players is not strictly better for finding a universal envy-free solution.
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A Proof of Probabilistic Universal Envy-free Results

A.1 Proof of Theorem 3.2

proof. Define H as the maximum value of D and let p be the probability that a random draw
from D equals H. Define Ej

H as the event that there exists an assignment A∗
j for apartment

j such that for all players i ∈ [n], Vi(Aj(i)) = H. For any j, Pr(Ej
H) ≥ pn, and therefore

Pr(
⋃

j E
j
H) ≥ 1− (1− pn)m. Now we will show that Ej

H implies that there exists a universal
envy-free solution with apartment j as the consensus apartment. Suppose we choose price
matrix P such that the price of every room in every apartment is equal to R/n. Then the
solution (A,P, j) where Aj = A∗

j satisfies universal envy-freeness. This is because every

player in apartment j will have utility H − R
n
, and no player can have more than utility

H − R
n
for any room in any apartment because H is the maximum of the distribution D.

Therefore, we have shown that Pr(Em) ≥ Pr(
⋃

j E
j
H) ≥ 1− (1− pn)m −−−→

m→∞
1.

A.2 Proof of Theorem 3.3

Before proving Theorem 3.3, we must introduce some additional notation that will allow
us to define events under which a universal envy-free solution does and does not exist.
Informally, we define the maximum unbalanced welfare of an apartment as the maximum
possible welfare of that apartment if we could assign multiple rooms to the same player.

Definition A.1. Define the maximum unbalanced welfare (MUW) of an apartment j as

MUW (j) =

(∑
k

max
i∈[n]

Vi(rjk)

)
−R.

In order to prove the lower bound in Theorem 3.3, we want to define an event F under which
a universal envy-free solution exists for any number of apartments m. Furthermore, we want
to be able to lower bound the probability of F by p0(n) that does not depend on m or D.

Definition A.2. Let j∗ be the smallest j such thatMUW (j) ≥MUW (j′) for all apartments
j′. Define F as the event that there exists an assignment A∗

j∗ such that∑
i∈[n]

Vi(A
∗
j∗(i))−R = MUW (j∗). (4)

Lemma A.3. Conditioned on event F , there exists a universal envy-free solution.

proof. Construct assignment A as follows. Let Aj∗ = A∗
j∗ . For every other apartment j, let

Aj be a welfare-maximizing assignment for apartment j. Now, construct the price matrix P
as follows. Let

P (Aj∗(i)) = Vi(Aj∗(i))−
MUW (j∗)

n
∀ i.
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Note that these are valid prices due to Equation (4). A consequence of this is

Ui(Aj∗ , P ) = Vi(Aj∗(i))− P (Aj∗(i)) =
MUW (j∗)

n
∀ i. (5)

For every other apartment j ̸= j∗, assign prices in a way that minimizes the maximum utility
any player has for any room within that apartment. Formally, let Pj be the set of all possible
prices for apartment j. Then

Pj = argmin
P ′
j∈Pj

max
i,k∈[n]

Vi(rjk)− P ′
j(rjk) ∀ j ̸= j∗.

Under this choice of prices, for any apartment j ̸= j∗ and rooms rjk1 , rjk2 in apartment j,

max
i∈[n]

Vi(rjk1)− P (rjk1) = max
i∈[n]

Vi(rjk2)− P (rjk2).

By Definition A.1, MUW (j) =
∑

k∈[1:n] maxi∈[n](Vi(rjk)−P (rjk)). Therefore, for every room
rjk in apartment j ̸= j∗,

max
i∈[n]

Vi(rjk)− P (rjk) =
MUW (j)

n
. (6)

We will now show that (A,P, j∗) satisfies universal envy-freeness. First, we will show that
no player strictly prefers another room in apartment j∗ to their assigned room in apartment
j∗. For any players i, i′,

Vi(Aj∗(i))− P (Aj∗(i)) = Vi′(Aj∗(i
′))− P (Aj∗(i

′))

≥ Vi(Aj∗(i
′))− P (Aj∗(i

′)) (7)

The equality holds by an application of Equation (5). The inequality holds by Equation (4)
and Definition A.1, which together imply that Vi′(Aj∗(i

′)) ≥ Vi(Aj∗(i
′)).

To finish showing that (A,P, j∗) is a universal envy-free solution, we must show that no
player prefers any room in any j ̸= j∗ to their assigned room in apartment j∗. By Equation
(6),

Ui(Aj, P ) = Vi(Aj(i))− P (Aj(i)) ≤
MUW (j)

n
∀ j ̸= j∗.

Furthermore, by Equation (5), Ui(Aj∗ , P ) = MUW (j∗)
n

for every player i. By assumption,
MUW (j∗) ≥MUW (j) ∀ j, and therefore for every player i and apartment j ̸= j∗,

Ui(Aj∗ , P ) =
MUW (j∗)

n
≥ MUW (j)

n
≥ Ui(Aj, P )

Therefore, (A,P, j∗) is a universal envy-free solution.

Lemma A.4. Suppose that Vi(rjk)
i.i.d.∼ D for all i, j, k where D is a continuous distribution

supported on [0, 1]. Then for all m, Pr (F) ≥ n!
nn .
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proof. Let j∗ be the smallest j such that MUW (j) ≥ MUW (j′) for all apartments j′. By
construction, F only depends on the values in apartment j∗. Again by Equation (4) and
Definition A.1, F occurs if and only if there exists an assignment A∗

j∗ such that

Vi(A
∗
j∗(i)) ≥ Vi′(A

∗
j∗(i)) ∀ i, i′.

Now consider the following process of generating an i.i.d. valuation matrix from D. First,
draw n i.i.d. values for each room from D. Then, map these n values to the n players
uniformly at random.

Note that whether event F occurs does not depend on the which values are drawn for rooms
in apartment j∗, but rather depends only on the mapping of those values to players. To
compute Pr(F), it suffices to compute the probability that for each room in apartment j∗,
the maximum of the n values is mapped to a different person. Let π be a permutation from
[n] to [n]. Then the probability that, for all i, the maximum value of room rj∗π(i) is mapped
to player i is exactly 1

nn . Since there are n! such permutations π, we can conclude that
Pr(F) = n!

nn .

We now define an event E under which there is no universal envy-free solution. We show in
Lemma A.6 that the probability of this event is bounded away from 0.

Definition A.5. Let m ≥ n+1 and n ≥ 2. Assume w.l.o.g that the m apartments 1, 2, ...,m
are ordered by MUW, i.e. MUW (j) ≥MUW (j′) for j ≤ j′. Define E as the event that the
following all hold:

1. MUW (1) > MUW (2) > ... > MUW (m) (i.e. inequalities are strict).

2. Define A∗
j be a welfare maximizing assignment for apartment j. Then∑

i

Vi(A
∗
n+1(i))−R >

∑
i

Vi(A
∗
j(i))−R ∀j.

3. For every apartment j ∈ [n],

Vj(rjk) ≥ Vi(rjk) ∀ i, k ∈ [n].

In other words, the jth player has the highest value over all players for every room in
apartment j.

Lemma A.6. Suppose that m ≥ n + 1 and n ≥ 2 and event E holds. Then there is no
universal envy-free solution. Furthermore, Pr(E) > 0 and Pr(E) depends only on n and D.

proof. We first show that there does not exist a universal envy-free solution of the form
(A,P, j∗) with j∗ ̸= n + 1. Suppose we have a universal envy-free solution (A,P, j∗) where
j∗ ̸= n + 1. Then by definition of universal envy-freeness, Ui(Aj∗ , P ) ≥ Ui(A

′
n+1, P ) for

every assignment A′
n+1 in apartment n + 1. Let A∗

n+1 be a welfare-maximizing assignment
in apartment n+ 1 and let A∗

j∗ be a welfare-maximizing assignment in apartment j∗. Then
we must have that ∑

i

Ui(A
∗
j∗ , P ) ≥

∑
i

Ui(Aj∗ , P ) ≥
∑
i

Ui(A
∗
n+1, P ),
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however this is a contradiction with the second condition of E .

Now we will show that there are no universal envy-free solutions of the form (A,P, n + 1).
If (A,P, n+ 1) is a universal envy-free solution, then

Ui(An+1, P ) ≥ Ui(Aj, P ) ∀j.

By the third condition of E , for any i ∈ [n] and any price matrix P ,∑
k

Ui(Ai, P ) =
∑
k

Vi(rik)−R = MUW (i).

Therefore by the pigeonhole principle, there must be at least one room in apartment i for
which player i has utility at least MUW (i)

n
. Putting these last two equations together, if

(A,P, n+ 1) satisfies universal envy-freeness, then

MUW (i)

n
≤ Ui(An+1, P ) ∀i ∈ [n]. (8)

By Definition A.1, it must be the case that

n∑
i=1

Ui(An+1, P ) ≤MUW (n+ 1) ∀i ∈ [n]. (9)

Combining Equations (8) and (9) gives

n∑
i=1

MUW (i)

n
≤

n∑
i=1

Ui(An+1, P ) ≤MUW (n+ 1).

However, by the definition of event E we have MUW (i) > MUW (n+1) for all i. Therefore,
we have reached a contradiction and can conclude that under event E , there is no universal
envy-free solution.

To lower bound the probability of E , it will be helpful to consider the following process of
generating an i.i.d. valuation matrix. We defineDmax as the distribution of the maximum of n
draws from D. For each room rjk in each apartment j, first draw one value vmax(rjk) ∼ Dmax.
Next, draw another n− 1 values from D conditioned on each value being at most vmax(rjk).
Finally, map these n values to the n players uniformly at random.

Now, we will define a more complicated distribution-specific event E = E0 ∩ E1 ∩ E2 ∩ E3

such that E ⊆ E . We will lower bound Pr(E), which will immediately yield a lower bound
for Pr(E). Define µU and µL as the maximum and minimum of the distribution D, i.e.
µU = inf {x : PrX∼D(X ≤ x) = 1} and µL = inf {x : PrX∼D(X ≤ x) > 0}. Consider the
following events E0, E1, E2, and E3:

• Define E0 as the event that there are no two apartments j and j′ such thatMUW (j′) =
MUW (j). Because D is continuous, Pr(E0) = 1.

19



• Define E1 as the event that for every room rjk in apartments j = 1, 2, ...n+1, the value
of vmax(rjk) is greater than

3µU+µL

4
.

For any single draw from Dmax, the probability of being greater than 3µU+µL

4
is at

least the probability that a random draw from D is greater than 3µU+µL

4
because Dmax

stochastically dominates D. Therefore, the probability that vmax(rjk) is greater than
3µU+µL

4
for a single room rjk is at least Prx∼D

(
x ≥ 3µU+µL

4

)
. There are n(n+1) rooms

in the first n + 1 apartments, and the maximum value for each room is independent
across rooms, and therefore

Pr(E1) ≥ Pr
x∼D

(
x ≥ 3µU + µL

4

)n(n+1)

> 0. (10)

• Define E2 as the event that in apartment n+1, there exists a permutation π : [n]→ [n]
such that for all i ∈ [n], player i has the maximum value for room π(i). The probability
of event E2 is n!

nn as in the proof of Lemma A.3. Therefore

Pr(E2) =
n!

nn
. (11)

• Define event E3 as the event that for every apartment j ∈ [1, ..., n] and player i ̸= j,
the value of player i for every room in apartment j is at most µU+3µL

4
.

We will lower bound the probability of event E3 conditioned on event E1. Consider
any fixed room rjk. Conditioned on event E1, the maximum value in room rjk is at
least 3µU+µL

4
. Therefore, in order to have Vi(rjk) ≤ µU+3µL

4
for all i ̸= j, player j must

have the highest value among all players for room rjk. Furthermore, the other n − 1
values for room rjk must all be less than µU+3µL

4
. The other n− 1 values for room rjk

are drawn independently. Therefore, the probability that the other n − 1 values for
room rjk are all less than µU+3µL

4
is

Pr
x∼D

(
x ≤ µU + 3µL

4

∣∣∣∣x ≤ vmax(rjk), E1

)n−1

= Pr
x∼D

(
x ≤ µU + 3µL

4

∣∣∣∣x ≤ vmax(rjk), vmax(rjk) ≥
3µU + µL

4

)n−1

≥ Pr
x∼D

(
x ≤ µU + 3µL

4

)n−1

> 0.

Note that the probability that player j has the highest value for room rjk among all n
players is 1/n, and that this event is independent of event E1. Putting this all together,
we have

Pr

(
Vi(rjk) ≤

µU + 3µL

4
∀i ̸= j

∣∣∣∣ E1

)
≥ 1

n
Pr
x∼D

(
x ≤ µU + 3µL

4

)n−1

.

There are n2 such rooms rjk in the first n apartments. Furthermore, for two rooms
r ̸= r′, the event that for Vi(r) ≤ µU+3µL

4
for all i ̸= j is independent of the event that

Vi(r
′) ≤ µU+3µL

4
for all i ̸= j. Therefore, we have that

Pr(E3|E1) ≥

(
1

n
Pr
x∼D

(
x ≤ µU + 3µL

4

)n−1
)n2

. (12)
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Recall that E = E0 ∩ E1 ∩ E2 ∩ E3.

Next, we will show that E ⊆ E . The first condition of Definition A.5 is satisfied under event
E by definition of event E0. Recall as argued above that events E1 and E3 together imply
that player j must have the highest value among all players for every room in apartment j
for j ∈ [n]. This implies that under event E the third condition of Definition A.5 is satisfied.
Finally, we will show that under event E, the second condition of Definition A.5 is satisfied.
Under events E1 and E2, there exists an assignment A∗

n+1 in apartment n+1 such that every
player i has value at least 3µU+µL

4
for room A∗

n+1(i). This implies that

n∑
i=1

Vi(A
∗
n+1(i))−R ≥ n · 3µU + µL

4
−R. (13)

For every assignment Aj for apartment j ∈ [n], under event E3, every player i ̸= j has value
at most µU+3µL

4
for room Aj(i). Because D is bounded, player j has value at most µU for

room Aj(j). Let A∗
j be a welfare-maximizing assignment in apartment j. Putting this all

together, we have that for any j ∈ [n], conditioned on event E3

n∑
i=1

Vi(A
∗
j(i))−R ≤ (n− 1) · µU + 3µL

4
+ µU −R. (14)

Because µU > µL, we note that (n− 1) · µU+3µL

4
+ µU < n · 3µU+µL

4
for n ≥ 2. This combined

with Equations (13) and (14) implies that for any j ∈ [n], conditioned on event E,

n∑
i=1

Vi(A
∗
j(i))−R <

n∑
i=1

Vi(A
∗
n+1(i))−R.

Now we need to show the same result for j > n+1. For any apartment j and any assignment
Aj,

∑n
i=1 Vi(Aj(i))−R ≤MUW (j). Furthermore, event E2 implies that

∑n
i=1 Vi(A

∗
n+1(i))−

R = MUW (n + 1). Let A∗
j be a welfare-maximizing assignment in apartment j. Putting

this together with event E0 and that the apartments are ordered by MUW, we have that
conditioned on events E0 and E2, for any j > n+ 1,

n∑
i=1

Vi(A
∗
j(i))−R ≤MUW (j)

< MUW (n+ 1)

=
n∑

i=1

Vi(A
∗
n+1(i))−R.

We have now exactly shown that the second condition for event E is satisfied conditioned on
event E. Therefore, we have shown that E ⊆ E .

Now all that remains to be done is to lower bound the probability of event E. Note that
by construction, event E2 is independent of events E1 and E3. Using this with the fact that
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Pr(E0) = 1 and Equations (10), (11), (12), we have that

Pr(E0 ∩ E1 ∩ E2 ∩ E3) = Pr(E2) · Pr(E1) · Pr(E3|E1)

≥ n!

nn
· Pr
x∼D

(
x ≥ 3µU + µL

4

)n(n+1)

·

(
1

n
Pr
x∼D

(
x ≤ µU + 3µL

4

)n−1
)n2

:= p(n).

Therefore, we can also conclude that Pr(E) ≥ Pr(E) ≥ p(n) which only depends on the
distribution D and n.

A.3 Proof of Corollary 3.4

proof. Let ℓ1, ℓ2, ... be an a strictly increasing sequence of integers greater than m0 such that
argmaxj∈[ℓt] MUW (j) = ℓt for all t. Define Ft as the event from A.2 considering only the
first ℓt apartments. By definition, Ft only depends on the mapping of values in apartment
ℓt. Therefore event Ft and Ft′ are independent for any t ̸= t′. By Lemma A.3, Pr(Ft) =

n!
nn

for all t. Define T as the random variable that is the smallest t such that Ft holds. T is
a geometric random variable with probability n!

nn , therefore with probability 1, T is finite.
By definition of FT , there must exist a universal envy-free solution for apartments 1, .., ℓT .
Putting this all together, with probability 1, there will exist a universal envy-free solution
for apartments 1, ..., ℓT for some finite T .

Now we need to show that for any finite T , with probability 1 there exists a strictly in-
creasing sequence ℓ1, ..., ℓT such that argmaxj∈[ℓt] MUW (j) = ℓt. Denote the distribu-
tion of the MUW of an apartment with randomly drawn values as M. As before, define
µU = inf {x : PrX∼D(X ≤ x) = 1}. By definition, if Z ∼M then Z ≤ n ·µU −R. Because D
is continuous,M is also continuous, which implies PrZ∼M(Z < n·µU−R) = 1. Furthermore,
if ϵ > 0, then PrZ∼M(Z > n · µU − R − ϵ) > 0. This implies that for any finite T , with
probability 1 there will be a sequence ℓ1, ℓ2, ..., ℓT such that ℓt = argmaxj∈[ℓt] MUW (j) for
all t ≤ T . Combining this with the result in the first paragraph gives the desired result.

A.4 Checking Existence of a Universal Envy-free Solution

We can check whether a given multi-apartment rent division instance has a universal envy-
free solution using the following linear program. Note that the linear program has no objec-
tive, as we are only checking for feasibility.

max
j∗,P

0

s.t.
∑
i

P (Aj(i)) = Rj ∀ j [payments equal rent]

Vi(Aj∗(i))− P (Aj∗(i)) ≥ Vi(Aj(i
′))− P (Aj(i

′)) ∀ i, i′, j [universal EF]
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B Proofs of Lemmas from Section 4

B.1 Proof of Lemma 4.2

Suppose that (A,P ) is a partial solution satisfying consensus. We first prove that consensus
can only occur in an apartment j if for all j′ ̸= j,

n∑
i=1

Vi(Aj(i))−Rj ≥
n∑

i=1

Vi(Aj′(i))−Rj′ . (15)

Consider any apartment j such that Equation (15) does not hold. This implies that there is
some apartment j′ such that

∑n
i=1 Vi(Aj′(i))−Rj′ >

∑n
i=1 Vi(Aj(i))−Rj. This implies that

0 <
n∑

i=1

Vi(Aj′(i))−Rj′ −
n∑

i=1

Vi(Aj(i))−Rj =
n∑

i=1

Ui(Aj′(i))−
n∑

i=1

Ui(Aj(i)).

By the pigeonhole principle, at least one player must have strictly higher utility in j′ than
j. Therefore, j cannot be a consensus apartment.

We now prove that if Equation (15) holds for apartment j, then apartment j must be a
consensus apartment. Let j∗ be the consensus apartment under (A,P ). We will show that
if apartment j satisfies Equation (15), then for all i,

Ui(Aj, P ) = Ui(Aj∗ , P ), (16)

which directly implies that j must be a consensus apartment. Proof by contradiction. As-
sume that apartment j satisfies Equation (15) but does not satisfy Equation (16). Because j∗

is a consensus apartment, by the first part of this proof we have that
∑n

i=1 Vi(Aj∗(i))−Rj∗ ≥∑n
i=1 Vi(Aj(i))−Rj. This combined with the assumption that Equation (15) holds for apart-

ment j implies that
∑n

i=1 Vi(Aj(i)) − Rj =
∑n

i=1 Vi(Aj∗(i)) − Rj∗ , which immediately gives∑n
i=1 Ui(Aj, P ) =

∑n
i=1 Ui(Aj∗ , P ). If Equation (16) does not hold, then there exists some

player i′ such that Ui′(Aj∗ , P ) > Ui′(Aj, P ). This implies that∑
i ̸=i′

Ui(Aj(i))−
∑
i ̸=i

Ui(Aj∗(i)) > 0.

By the pigeonhole principle, at least one player (which is not i′) must therefore have strictly
higher utility in j than j∗. This is a contradiction with the fact that j∗ is a consensus
apartment.

B.2 Proof of Lemma 4.3

Lemma B.1 (“If” direction of Lemma 4.3). A partial solution (A,P ) is reachable by ne-
gotiations from an individual envy-free starting partial solution (A,Q) if

∑m
j=1 P (Aj(i)) =∑m

j=1Q(Aj(i)) for all players i.
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proof. As in the problem statement, let (A,Q) be an individually envy-free partial solution
and (A,P ) be a partial solution such that

∑m
j=1 P (Aj(i)) =

∑m
j=1Q(Aj(i)) for all players

i. We will provide a constructive algorithm for finding a series of negotiations that trans-
form the partial solution (A,Q) into the partial solution (A,P ). Specifically, we will find
a sequence of partial solutions (A,Q), (A,Q1), (A,Q2), ..., (A,Qm−1) such that the partial
solution (A,Q1) is reachable by negotiations from (A,Q), the partial solution (A,Qj) is
reachable from (A,Qj−1) for all j ≤ m− 1, and (A,Qm−1) = (A,P ).

For any price matrix P ′, define the n by m matrix ∆P (P
′) as

∆P (P
′)ij = P ′(Ai(j))− P (Ai(j)).

Because P and P ′ are both valid price matrices, the sum of the prices within any apartment
is equal to the rent of that apartment for both P and P ′, which implies that for all j,

n∑
i=1

∆P (P
′)ij = 0. (17)

If we apply Equation (17) to apartment 1 and price matrixQ, we observe that
∑n

i=1∆P (Q)i1 =
0. This implies that

n∑
i=1,∆P (Q)i1>0

∆P (Q)i1 = −
n∑

i=1,∆P (Q)i1<0

∆P (Q)i1. (18)

Therefore, there must exist a sequence of negotiations that occur only between apartment 1
and apartmentm that result in a partial solution (A,Q1) such that ∆P (Q1)i1 = 0 for all i. By
definition of a valid negotiation, it must still be true that

∑m
j=1 P (Aj(i)) =

∑m
j=1Q1(Aj(i))

after each negotiation. Furthermore, by construction we have Q1(Ai(1)) = P (Ai(1)) for all
players i.

The same logic allows us to conclude that there exists a sequence of negotiations between
apartment 2 and apartment m that transform the partial solution (A,Q1) into the partial
solution (A,Q2) such that

∑m
j=1 P (Aj(i)) =

∑m
j=1Q2(Aj(i)) and ∆P (Q2)i2 = 0 for all players

i. Note that by this construction, in the partial solution (A,Q2), we have Q2(Ai(j)) =
P (Ai(j)) for all players i and j ≤ 2.

We can recursively continue this negotiating process between apartments j and m up until
j = m−1. At that point, we will have a partial solution (A,Qm−1) reachable by negotiations
from (A,Q) such that the following two equations hold:

m∑
j=1

P (Aj(i)) =
m∑
j=1

Qm−1(Aj(i)) ∀i (19)

Qm−1(Ai(j)) = P (Ai(j)) ∀i,∀j ≤ m− 1 (20)

Note that plugging Equation (20) into Equation (19) gives the following result.

Qm−1(Ai(m)) = P (Ai(m)) ∀i
Therefore, we have shown that Qm−1 = P . Since (A,Qm−1) was reachable by negotiations
from (A,Q), this implies that (A,P ) is reachable by negotiations from (A,Q), which is the
result we wanted to show.
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B.3 Proof of Property 4.5

proof. We know that an envy-free solution in a single apartment j must include a welfare-
maximizing assignment for j Gal et al. (2017). A negotiated envy-free solution (A,P, j∗)
thus must include a welfare-maximizing assignment in every apartment, as the assignment
A satisfies for some price matrix that (A,Q) is individually envy-free. From Lemma 4.2,
we know that consensus can only occur in an apartment with the highest welfare across all
apartments. Because A must contain only welfare-maximizing assignments and j∗ must be
the apartment with the highest welfare over all apartments, assignment Aj∗ must achieve
the maximum welfare among all possible assignments and apartments. This implies that
(A,P, j∗) is Pareto optimal.

B.4 Proof of Property 4.6

proof. Let (A,P, j∗) be a solution that satisfies negotiated envy-freeness, and consider the
bundle of rooms {Aj(i)}mj=1 which is assigned to player i under assignment A. We say that
player i’s total utility for the bundle {Aj(i

′)}mj=1 of player i
′ is equal to the sum of the utilities

that player i has for each room in {Aj(i
′)}mj=1. In an individually envy-free partial solution

(A,Q), every player i has weakly higher utility for her own bundle {Aj(i)}mj=1 than any other
player’s bundle {Aj(i

′)}mj=1. By definition of negotiated envy-freeness, every player in the
partial solution (A,P ) has the same total utility for every bundle as in some individually
envy-free partial solution (A,Q). This implies that in partial solution (A,P ), player i has
weakly higher total utility for the bundle {Aj(i)}mj=1 than the bundle {Aj(i

′)}mj=1. The sum
of each player’s utility over all players’ bundles is 0 by the assumption that each player’s
total value for all rooms is equal to the total rent. This implies that player i’s average
utility over all bundles is 0, which in turn means that her value for {Aj(i)}mj=1, her favorite
bundle, must be at least 0 as well. Finally, we know that j∗ is a consensus apartment,
which means that player i’s favorite room within her bundle is in apartment j∗. By the same
averaging argument, we conclude that player i has non-negative utility for her assigned room
in apartment j∗, or equivalently that Ui(Aj∗(i)) ≥ 0.

B.5 Proof of Property 4.7

proof. In the single-apartment setting, consensus is always satisfied and no negotiations are
possible. Therefore, any envy-free solution within the one apartment satisfies consensus
and hence satisfies negotiated envy-freeness. For the other direction, any negotiated envy-
free solution must be an individually envy-free solution as no negotiations are possible, and
individual envy-freeness implies envy-freeness in the lone apartment.

B.6 Proof of Theorem 4.8

proof. Our proof is by construction of such a solution (A,P ∗, j∗) for any multi-apartment
rent division instance. Note that throughout the proof, we will be referring to the same
assignment A, but different price matrices Q,P, and P ∗.

We begin with a partial solution (A,Q) which is individually envy-free. Such a partial
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solution (A,Q) always exists because an envy-free solution always exists in the one apartment
setting. As in the proof of individual rationality (Property 4.6), we define player i’s bundle
as {Aj(i)}mj=1, i.e., the set of rooms assigned to player i across all apartments. The price of
each bundle will be the sum of prices of rooms in that bundle; for notational convenience, we
will overload the operator P and let P ({Aj(i)}mj=1) =

∑m
j=1 P (Aj(i)). Our goal will be to find

a price matrix P ∗ such that Q({Aj(i)}mj=1) = P ∗({Aj(i)}mj=1) and there exists a consensus
apartment j∗ in the partial solution (A,P ∗). This would then give a negotiated envy-free
solution (A,P ∗, j∗).

Let Pj be the set of all price vectors in apartment j that add up to the total rent. First,
consider the partial solution (A,P ) where P satisfies for all apartments j,

Pj ∈ arg max
P ′
j∈Pj

min
i

Vi(Aj(i))− P ′
j(Aj(i)).

This partial solution guarantees that for each apartment j, the utilities of all players for
their assigned rooms in j will be equal. Therefore, the apartment j∗ with the highest value
of mini Vi(Aj∗(i))− Pj∗(Aj∗(i)) will be a consensus apartment.

Unfortunately, it is not necessarily true that Q({Aj(i)}mj=1) = P ({Aj(i)}mj=1) for all i. There-
fore, we will construct another price assignment P ∗ from P that has this desired property.
For every player i, define Xi = Q({Aj(i)}mj=1)− P ({Aj(i)}mj=1).

We define the new price matrix P ∗ such that P ∗(Aj(i)) = Pi +
Xi

m
for every i, j. In other

words, we increase each of player i’s prices in P by Xi

m
. By this construction, we have that

P ∗(Aj(i))− P (Aj(i)) = P ∗(Aj′(i))− P (Aj′(i)) ∀j, j′ ∈ [m],∀i ∈ [n].

This implies that each player’s preferences over rooms are the same in P and P ∗, and
therefore the consensus apartment j∗ for (A,P ) is also a consensus apartment for (A,P ∗).
Furthermore, we have for every i that

P ∗({Aj(i)}mj=1) =
m∑
j=1

(
P (Aj(i)) +

Xi

m

)
= Xi + P ({Aj(i)}mj=1)

= Q({Aj(i)}mj=1)

as desired.

Our final step is to show that P ∗ is a valid price matrix in the sense that the prices in each
apartment j add up to the rent Rj. Because we started from a valid price matrix P , for each
apartment j we have that

n∑
i=1

P ∗(Aj(i)) =
n∑

i=1

(
P (Aj(i)) +

Xi

m

)
= Rj +

1

m

n∑
i=1

Xi.

Therefore, it suffices to prove that
∑n

i=1Xi = 0. We know that both P and Q are valid price
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matrices, and so we can conclude that

n∑
i=1

Xi =
n∑

i=1

Q({Aj(i)}mj=1)−
n∑

i=1

P ({Aj(i)}mj=1)

=
n∑

i=1

m∑
j=1

Q(Aj(i))−
n∑

i=1

m∑
j=1

P (Aj(i))

=
m∑
j=1

n∑
i=1

Q(Aj(i))−
m∑
j=1

n∑
i=1

P (Aj(i))

=
m∑
j=1

Rj −
m∑
j=1

Rj

= 0.

Thus, P ∗ is a valid price matrix. In summary, we have shown that (A,P ∗) is a valid partial
solution, that (A,P ∗) satisfies consensus, and that Q({Aj(i)}mj=1) = P ∗({Aj(i)}mj=1). There-
fore, letting j∗ be a consensus apartment for (A,P ∗), we have that (A,P ∗, j∗) is a solution
that satisfies negotiated envy-freeness.

B.7 Proof of Lemma 4.10

proof. Define P ′ as follows:

P ′(A′
j(i)) = Vi(A

′
j(i))− Vi(Aj(i)) + P (Aj(i)).

We will prove the following three claims regarding P ′, which will together prove the the-
orem statement. First, we show that P ′ is a valid price matrix, i.e. for all apartments j,∑

i P
′(A′

j(i)) = Rj. Next, we show that for all players i and apartments j, Ui(Aj, P ) =
Ui(A

′
j, P

′). Finally, we show that (A′, P ′, j∗) satisfies negotiated envy-freeness.

We first show that P ′ is a valid price matrix. For every j, we have

n∑
i=1

P ′(A′
j(i)) =

n∑
i=1

Vi(A
′
j(i))−

n∑
i=1

Vi(Aj(i)) +
n∑

i=1

P (Aj(i))

=
n∑

i=1

P (Aj(i))

= Rj

where we used that A,A′ are welfare-maximizing assignments and that P is a valid price
matrix.

Next, we show that Ui(Aj, P ) = Ui(A
′
j, P

′) for all i and j. By our choice of P ′, we have

Ui(Aj, P ) = Vi(Aj(i))− P (Aj(i)) = Vi(A
′
j(i))− P ′(A′

j(i)) = Ui(A
′
j, P

′)

as desired. Note that this implies that (A′, P ′, j∗) satisfies consensus because (A,P, j∗)
satisfies consensus.
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We next show that (A′, P ′, j∗) satisfies negotiated envy-freeness. We already showed that
(A′, P ′, j∗) satisfies consensus. As (A,P, j) satisfies negotiated envy-freeness, we know that
there must be some price matrixQ such that (A,Q) is individually envy-free and

∑
j Q(Aj(i)) =∑

j P (Aj(i)). Through repeated applications of Lemma B.2, we observe that (A′, Q) is indi-
vidually envy-free as well. In order to show that (A′, P ′, j∗) satisfies negotiated envy-freeness,
it therefore suffices to show that for all players i,

∑m
j=1 P

′(A′
j(i)) =

∑m
j=1Q(A′

j(i)).

Because A′, A are welfare maximizing assignments and (A,Q) is individually envy-free,
Lemma B.2 implies that for any j, Vi(A

′
j(i)) − Q(A′

j(i)) = Vi(Aj(i)) − Q(Aj(i)) (which is
used in the final line below). Furthermore, recall that we chose Q such that

∑
j Q(Aj(i)) =∑

j P (Aj(i)) (which is used in the second line below). By construction of P ′ and Q, we can
therefore conclude that

m∑
j=1

P ′(A′
j(i)) =

m∑
j=1

(
Vi(A

′
j(i))− Vi(Aj(i)) + P (Aj(i))

)
=

m∑
j=1

(
Vi(A

′
j(i))− Vi(Aj(i)) +Q(Aj(i))

)
=

m∑
j=1

Q(A′
j(i)).

Therefore, we have shown that (A′, P ′, j∗) satisfies negotiated envy-freeness.

B.8 Proof of Theorem 4.9

proof. In order to prove Theorem 4.9, we recall the following key result from the single
apartment setting which implies that we can start from any welfare-maximizing assignment
when optimizing over envy-free solutions. This is necessary because the number of welfare-
maximizing assignments could potentially be exponential in n. For the reader’s convenience,
we will state and give a proof sketch of this result below.

Lemma B.2 (2nd Welfare Theorem Gal et al. (2017); Mas-Colell et al. (1995)). For a single
apartment j, if (Aj, Pj) is an envy-free solution and A′

j is a welfare-maximizing assignment,
then for all i ∈ [n],

Vi(Aj(i))− P (Aj(i)) = Vi(A
′
j)− P (A′

j(i)).

This further implies that (A′
j, Pj) is an envy-free solution.

proof. It holds that Ui(Aj, Pj) ≥ Ui(A
′
j, Pj) for all players i because (Aj, Pj) is envy-free.

We also know that because A′
j is a welfare-maximizing assignment,

∑n
i=1 Ui(Aj, Pj) ≤∑n

i=1 Ui(A
′
j, Pj). Therefore, no player i can have Ui(Aj, Pj) > Ui(A

′
j, Pj), as this would

imply that there is some player i′ such that Ui′(Aj, Pj) < Ui′(A
′
j, Pj). Therefore, we can con-

clude that Ui(Aj, Pj) = Ui(A
′
j, Pj) for all players i. Since (Aj, Pj) was an envy-free solution,

these utilities being equal implies that (A′
j, Pj) must be an envy-free solution as well.

28



In Lemma B.2, if (Aj, Pj) is envy-free, then a different maximum-welfare assignment A′
j

immediately yields an envy-free solution (A′
j, Pj) where all players have the same utilities.

However, in the multi-apartment setting, if (A,P, j∗) satisfies negotiated envy-freeness, we
cannot simply use a different welfare-maximizing assignment A′ with the same price matrix
to find a negotiated envy-free solution (A′, P, j∗). Surprisingly, however, we are able to
construct another price matrix P ′ such that (A′, P ′, j∗) and (A,P, j∗) have the same utilities
for every player in their assigned room in every apartment. This is exactly the result of
Lemma 4.10.

For a rent division instance V , we are able to find some maximum welfare assignment A in
polynomial time using maximum weight bipartite matching separately in each apartment.
Fix any apartment j′. We can find the optimal price matrix P for assignment A subject to
negotiated envy-freeness with j′ as the consensus apartment in polynomial time using the
following linear program. Note that this linear program will have no solution if there does
not exist a price matrix P such that j′ is a consensus apartment for (A,P ).

max
P,Q

Z

s.t. Z ≤ fq(U1(Aj′ , P ), ..., Un(Aj′ , P )) ∀ q [min over fq]

Vi(Aj′(i))− P (Aj′(i)) ≥ Vi(Aj(i))− P (Aj(i)) ∀ i, j [consensus in j′]

Vi(Aj(i))−Q(Aj(i)) ≥ Vi(Aj(i
′))−Q(Aj(i

′)) ∀ i, i′, j [Q is individually EF]∑
j

P (Aj(i)) =
∑
j

Q(Aj(i)) ∀ i [negotiated EF]∑
i

P (Aj(i)) = Rj ∀ j [payments equal rent]

(LP1)

In order to find the optimal value of the objective function over all negotiated envy-free
solutions with assignment A, we also need to optimize the objective over all choices of
apartment j′. We could simply run this linear program for all j′ ∈ [m] and choose the j′

that achieves the highest objective value. However, we will instead choose j′ in such a way
that we only need to run this linear program once. From Lemma 4.2, we know that if (A,P )
satisfies consensus, then apartment j∗A is a consensus apartment for (A,P ) if and only if∑n

i=1 Vi(Aj∗A
(i)) − Rj∗A

= maxj
∑n

i=1 Vi(Aj(i)) − Rj. Furthermore, Lemma 4.2 implies that
for any two consensus apartments j1, j2 in (A,P ), every player must have the same utility
in j1 as they do in j2. Therefore, in the linear program we can set j′ equal to any j∗A which
satisfies

∑n
i=1 Vi(Aj∗A

(i)) − Rj∗A
≥ maxj

∑n
i=1 Vi(Aj(i)) − Rj, and this will be equivalent to

optimizing over all choices of j′.

Finally, we show that the optimal solution assuming an arbitrary maximum welfare assign-
ment A is in fact a globally optimal solution over all negotiated envy-free solutions. Let the
globally optimal solution over all negotiated envy-free solutions be (A∗, P ∗, j∗). By Lemma
4.10, we know there exists a P ′ such that Ui(A

∗
j , P

∗) = Ui(Aj, P
′) ∀i, j. Note that this im-

plies that j∗ is a consensus apartment for (A,P ′). Then, because (A,P, j∗A) was the optimal
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solution for all negotiated envy-free solutions with assignment A, we know that

fq(U1(Aj∗A
, P ), ..., Un(Aj∗A

, P ))

≥ fq(U1(Aj∗ , P
′), ..., Un(Aj∗ , P

′))

= fq(U1(A
∗
j∗ , P

∗), ..., Un(A
∗
j∗ , P

∗))

Therefore, it suffices to run the linear program with any arbitrary welfare-maximizing as-
signment A. The full algorithm is shown in the body in Algorithm 1.

C Distribution Envy-Freeness

Up until this point, we have required that the solution be of the form (A,P, j), where
j is the chosen apartment. In this section, we will consider the natural generalization of a
distributional solution of the form (A,P,D), where D is a distribution over allm apartments.
Generalizing the notion of envy-freeness in the one apartment case, we want to choose a
distribution D such that no player is envious of any other player in expectation. Formally,
we want to choose a distribution D such that

m∑
j=1

D[j] · (Vi(Aj(i))− P (Aj(i))) ≥ max
i′

m∑
j=1

D[j] · (Vi(Aj(i
′))− P (Aj(i

′))) ∀ i. (21)

This requirement alone is actually easy to satisfy, as we could simply choose any individually
envy-free partial solution (A,Q). Then for any distribution D, no player will be envious in
expectation under distributional solution (A,P,D). In fact, equation (21) is too easy to sat-
isfy because it does not have any consensus-like requirement that players do not prefer other
distributions over apartments. Therefore, we also want to require that every player i prefers
the distribution D to any other distribution D′ under partial solution (A,P ). Formally, we
will require that

m∑
j=1

D[j] · (Vi(Aj(i))− P (Aj(i))) ≥ max
D′

m∑
j=1

D′[j] (Vi(Aj(i))− P (Aj(i))) ∀ i. (22)

We will define a distributional solution (A,P,D) as distribution envy-free (DEF) if Equations
(21) and (22) are both satisfied. Note that if the solution (A,P, j∗) is universal envy-free,
then the distributional solution (A,P,D), where D chooses apartment j∗ with probability 1,
must be distribution envy-free. Furthermore, distribution envy-free and consensus have the
following relationship.

Lemma C.1. If the distributional solution (A,P,D) is distribution envy-free, then any so-
lution of the form (A,P, j∗) for any j∗ with non-0 weight under distribution D will satisfy
consensus.

proof. Proof by contradiction. Suppose (A,P,D) is a distributional solution that is distribu-
tion envy-free, and there exists a j∗ that has positive probability under distribution D, but
(A,P, j∗) does not satisfy consensus. Because (A,P, j∗) does not satisfy consensus, there
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must exist some player i and apartment j′ ̸= j∗ such that Ui(Aj′ , P ) ≥ Ui(Aj, P ) for all
apartments j and Ui(Aj′ , P ) > Ui(Aj∗ , P ). Consider the distributional solution (A,P,D′),
where D′ with probability 1 chooses apartment j′. Then

m∑
j=1

D[j] · (Vi(Aj(i))− P (Aj(i))) <
m∑
j=1

D[j] · (Vi(Aj′(i))− P (Aj′(i)))

= Vi(Aj′(i))− P (Aj′(i))

=
m∑
j=1

D′[j] (Vi(Aj(i))− P (Aj(i))) .

This violates Equation (22) and is a contradiction to the assumption that (A,P,D) is dis-
tribution envy-free.

Distribution envy-freeness can be seen as a compromise between consensus and universal
envy-freeness. To better understand the relationship between universal envy-freeness and
distribution envy-freeness, recall Example 1.1. In this example, the two players have sym-
metric utility functions, but each prefers a different apartment. Despite this symmetry, there
does not exist a universal envy-free solution for this example. However, there does exist a
distributional solution that is distribution envy-free. One such solution is to assign rents
equal to the assigned player’s values in every room, and then take the distribution D to be
uniform over the two apartments. Under this solution, both players have utility of 0 for
both of their assigned rooms. Furthermore, both players in expectation have utility 0 for
the other player’s assigned rooms under distribution D. Therefore Equations (21) and (22)
are both satisfied and this solution is distribution envy-free. Furthermore, this solution is
intuitively fair, in the sense that the problem is perfectly symmetric and the solution also
treats both players perfectly symmetrically.

Unfortunately, a distributional solution that is distribution envy-free does not always exist,
as can be seen by Example G.1. However, Equations (22) and (21) are both linear constraints
on the prices P . Therefore, as for universal envy-freeness, it is possible check for existence
of a distributional solution satisfying distribution envy-freeness in polynomial time.

D Apartment Monotonicity of Negotiated Envy-Freeness

In this section we explore whether adding more apartments always implies higher objective
values for the optimal solution under negotiated envy-freeness. Specifically, suppose that we
start with m apartments, and consider the optimal solution under negotiated envy-freeness
for objective functions f1, ..., ft. We would like to know whether the optimal solution after
adding an m + 1th apartment always increases in value, and define this guarantee formally
as apartment monotonicity.

Definition D.1. Let f1, ..., ft : Rn×m → R be linear functions, where t is polynomial in n and
m. Let (A,P, j∗) be the solution which maximizes the minimum of fq(U1(Aj∗ , P ), ..., Un(Aj∗ , P ))
over all q ∈ [t] subject to negotiated envy-freeness given instance V ∈ Mn×m×n(R+). Let
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V ′ ∈Mn×(m+1)×n(R+) be a valuation matrix such that V ′ =
[
V Vm+1

]
. Finally, let (A′, P ′, j′)

be the solution which maximizes the minimum of fq(U1(A
′
j′ , P

′), ..., Un(A
′
j′ , P

′)) over all
q ∈ [t] subject to negotiated envy-freeness given instance V ′. Then we say that f1, ..., ft
satisfies apartment monotonicity if ∀ V ′,

fq(U1(A
′
j′ , P

′), ..., Un(A
′
j′ , P

′)) ≥ fq(U1(Aj∗ , P ), ..., Un(Aj∗ , P )).

Note that as we require that players have the same total value for all apartments under
consideration, and the players do not change their values for the first m apartments, it must
be the case that every player has the same total value for the rooms in apartment m+1. We
show below that the maximin objective function does not satisfy apartment monotonicity.

Lemma D.2. Let the maximin objective function be the linear functions f1, ..., fn such that

fi(U1(Aj∗ , P ), ..., Un(Aj∗ , P ) = Ui(A
∗
j , P )

for all i ∈ [n]. Then the maximin objective function does not satisfy apartment monotonicity.

proof. Consider below the following two apartments, both with total rent 300. A maximum
welfare assignment in each apartment is in bold.

r11 r12 r13
1 150 150 0
2 0 150 150
3 75 75 150

r21 r22 r23
1 100 100 100
2 300 0 0
3 300 0 0

Let the partial solution (A,P ) be individually envy-free, which means that A must be a
maximum welfare assignment. Then in apartment 1, we must have

P (r11) ≤ P (r12) ≤ P (r13) ≤ P (r11) + 75.

Violating the first inequality would result in player 1 envying player 2, violating the second
would result in player 2 envying player 3, and violating the third would result in player 3
envying player 1. Therefore, the maximum rent that player 1 can pay in an envy-free solution
for apartment 1 is 300/3 = 100, which implies that the minimum utility player 1 can have in
apartment 1 is 50. The minimum rent player 1 can pay in an envy-free solution for apartment
1 is 50, which implies that the maximum utility player 1 can have in apartment 1 is 100. In
apartment 2, there is only one envy-free solution; we must have P (r21) = 300, P (r22) = 0,
and P (r23) = 0. In this solution, player 1 has utility 100 in apartment 2, while players 2 and
3 each have utility 0.

Let Vj ∈ M3×3 be the valuation matrix of player values in apartment j. Further let V ′ =
[V1V2]. Let (A

∗
V1
, P ∗

V1
, 1) be the negotiated envy-free solution given instance V1 which has the

highest maximin value. Note that because negotiated envy-freeness reduces to envy-freeness
in the single apartment setting, this is equivalent to the envy-free solution in apartment 1
which has the highest maximin value. We can therefore observe that P ∗

V1
is the symmetric

price matrix where P ∗
V1
(r1k) = 100 for k ∈ [3], which results in each player having utility 50.

Note that the maximin value cannot be higher because the maximum utility of player 3 in
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apartment 1 is 50. Furthermore, when player 3’s utility in apartment 1 is 50, it must be the
case that the utilities of player 1 and 2 in apartment 1 are 50 as well.

Let (A∗
V ′ , P ∗

V ′ , j∗) be the negotiated envy-free solution given V ′ which has the highest max-
imin value, and let F (A∗

V ′ , P ∗
V ′ , j∗) be its maximin value. We would like to show that

F (A∗
V ′ , P ∗

V ′ , j∗) is strictly lower than 50. Note that

F (A∗
V ′ , P ∗

V ′ , j∗) = max
j∈{1,2}

F (A∗
V ′ , P ∗

V ′ , j).

Therefore, it suffices to show that the objective value of (A∗
V ′ , P ∗

V ′ , j) is less than 50 both when
apartment 1 is the consensus apartment, and when apartment 2 is the consensus apartment.

First, assume apartment 1 is the consensus apartment. Observe that
∑2

j=1 PV ′(Aj(1)) ≤ 100,
i.e. that player 1’s rent burden over both apartments is at most 400. Because apartment 1
is the consensus apartment, player 1 must have utility at least

V ′
1(A1(i)) + V ′

1(A2(i))− 400

2
= 75.

However, we established earlier that the only way for player 3’s utility in apartment 1 to be
≥ 50 is for player 1’s utility in apartment 1 to equal 50. Therefore, F (A∗

V ′ , P ∗
V ′ , 1) < 50. Now,

assume apartment 2 is the consensus apartment. Observe that
(∑3

i=1 V
′
i (A2(i))

)
−R2 = 100.

This implies that the total utility of the players in apartment 2 for any solution is at most
100, and the maximin value can therefore be at most 100/3. Therefore, F (A∗

V ′ , P ∗
V ′ , 2) < 50.

This shows that F (A∗
V ′ , P ∗

V ′ , j∗) < 50, as desired.

It may seem surprising that adding more apartments can lead to a decrease in the utility
of the least happy player. However, this result makes sense when we consider that adding
more apartments may lead to a wider spread of player preferences over apartments. In
particular, adding a new apartment may make consensus more difficult to achieve, as one
or more players may find that the new apartment is now their favorite apartment. Recall
that in the negotiated envy-free setting, compromising in order to reach consensus takes the
form of a player paying more rent in a favorable apartment in order to pay less rent in a
less favorable apartment. As more apartments are added, players favoring the consensus
apartment may need to pay more in order to convince other players to join them, which in
turn may decrease the maximin value.

Note that it is also possible that adding a new apartment increases the maximin value. For
example, suppose that apartment 2 instead consisted of each player preferring a different
room, with their value for that room being equal to the total rent. Then the consensus
apartment for instance V ′ would be apartment 2, and the maximin value would be 200.
Hence, the effect of adding a new apartment on the maximin value depends on the structure
of the valuation functions of the players for the new apartment.

E Core

Throughout our work, we have focused on the setting where there are n players who are con-
sidering only n-bedroom apartments. An extension would be to consider when apartments
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of size < n are available as well, and players are willing to split into groups to rent multiple
apartments. In this setting, each apartment j has a size s(j). Each player i still has a
non-negative value Vi(rjk) for any room rjk in apartment j. We will define a solution to this
problem as a tuple (A,P, J) where J ⊆ [m] such that

∑
j∈J s(j) = n, A is a mapping from

players to rooms in the apartments in J , and P is a price map for all rooms in apartments
in J such that for any j ∈ J ,

∑
rjk∈j P (rjk) = Rj. Intuitively, this last requirement means

that the subset of players renting any apartment is responsible for paying exactly the rent of
that apartment (without subsidizing or subsidization from players who have been assigned
to other apartments). Note that unlike in the rest of the paper, A is now a one-to-one map
from players to rooms in the apartments in J .

We are interested in whether we can always find a stable solution in which no set of players
can achieve higher total utility by deviating to a set of unoccupied apartments. When there
are a finite number of copies of each apartment type, we can easily see that the answer is
no. Specifically, consider the following example with two players. There are two apartments
both with rent 0. The first apartment has two rooms and both players have utility −1 for
both rooms. The second apartment has one room and both players have utility 1 for that
room. Then the only valid solution is to assign both players to the two-bedroom apartment,
but both players will want to deviate to the one-bedroom apartment.

When there are infinite copies of each type of apartment, it is less straightforward to de-
termine whether such a solution always exists. With infinite copies of apartments, we can
treat this problem as a cooperative game with transferable utility. A natural question in
cooperative game theory is whether the core is non-empty. In our setting, this boils down
to asking whether we can always find a solution (A,P, J) such that no group of players S
would want to deviate to a valid set of apartments J ′ ⊆ [m]. Formally, let S ⊆ [n] be a
coalition of |S| players and let S be the set of all valid solutions (A′, P ′, J ′) for just these S
players. Therefore

∑
j∈J ′ s(j) = |S| and A′ only assigns players in the coalition S to rooms

in the apartments in J ′. We can then define the value function v for the coalition S as

v(S) = max
(A′,P ′,J ′)∈S

∑
i∈S

Vi(A
′(i))− P ′(A′(i)).

In this definition, v(S) can be thought of as the utility that the coalition S can get if they
deviate. Define αi as the utility of player i under solution (A,P, J), i.e. αi = Vi(A(i)) −
P (A(i)). Then the core is the set of all solutions (A,P, J) such that∑

i∈S

αi ≥ v(S) ∀S ⊆ [n]. (23)

Note that this is equivalent by construction a solution (A,P, J) such that∑
i∈S

Vi(A(i))− P (A(i)) ≥ max
(A′,P ′,J ′)∈S

∑
i∈S

Vi(A
′(i))− P ′(A′(i)) ∀S ⊆ [n] (24)

We show below that the core can be empty for the multi-apartment rent divsion problem.

Lemma E.1. There exists instances of the multi-apartment rent division problem for which
the core as described above is empty.
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proof.

Example E.2. Consider the following example where there are three types of apartments
and the rent is 0 in every apartment.

r11 r12 r13
1 340 340 340
2 -20 -20 -20
3 -20 -20 -20

r21 r22
1 170 170
2 170 170
3 170 170

r31
1 -1360
2 -280
3 -280

Consider any solution (A,P, J) where J ̸= {1}. This solution then only assigns players to
rooms of type 2 and 3, and therefore the total utility of all three players under this solution
must be at most 60. This means that the three players would want to deviate together to
the apartment 1, and therefore this solution is not in the core. Therefore, any solution in
the core must be of the form (A,P, {1}). Consider such a solution. Because the rooms in
apartment 1 are symmetric, WLOG assume that A(i) = r1i for all players i. Since the total
rent is 0, we must have

P (r11) + P (r12) + P (r13) = 0.

Let u1, u2, u3 be the utilities for players 1, 2, 3 under solution (A,P, {1}). We know that
u1 = 340− P (r11), u2 = −20− P (r12), and u3 = −20− P (r13). Then u1, u2, u3 must satisfy
the following system of equations if the solution (A,P, {1}) is in the core.

u1 + u2 + u3 = 300

u1 + u2 ≥ 340

u1 + u3 ≥ 340

u2 + u3 ≥ 340

However, this system of equations has no solution. Therefore no such solution exists, and
the core is empty.

F Universal Envy-Freeness for correlated distributions

In this section we will look at the existence of a universal envy-free solution in the setting of
m apartments and two players who have values drawn from a Bernoulli distribution. First,
we need the following lemma which exactly characterizes the event that a universal envy-free
solution exists when values of both players are 0 or 1. For simplicity, we will assume that
the rent of every apartment is equal to 1.

Lemma F.1. Suppose we have m apartments each with rent 1 and two players such that
Vi(r) ∈ {0, 1} for every room r. Then there does not exist a universal envy-free solution if
and only if all of the following three events occur.

• No apartment has an assignment where both players value their assigned rooms with
value 1. Denote this event as E1.
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• Both players have value 1 for at least one room. Denote this event as E2.

• In at least one apartment, one player has value 1 for both rooms and the other player
has value 0 for both rooms. Denote this event as E3.

proof. First we will show the “only if” direction. To show this we will prove the contrapos-
itive, which is that if any one of these three events does not hold, then there does exist a
universal envy-free solution. Assume E1 does not hold. Then there must be an apartment
j and an corresponding assignment A∗

j such that V1(A
∗
j(1)) = V2(A

∗
j(2)) = 1. Let A be any

assignment such that Aj = A∗
j , and let P be the price matrix with every entry equal to 0.5.

Then (A,P, j) will satisfy universal envy-freeness. This is because no player can have utility
of more than 0.5 for any room in any apartment, and both players have utility of exactly 0.5
for their assigned rooms in apartment j.

Assume instead that event E2 does not hold. Then there must be some player who has utility
0 for every room. WLOG let this player be player 1. Choose A to be a welfare-maximizing
assignment in every apartment and choose P to be a price matrix with every entry equal to
0.5. Let j be the apartment in which player 2 has the highest utility. Then (A,P, j) is a
universal envy-free solution. This is because the utility of player 1 for every room is −0.5,
and we chose j such that U2(Aj, P ) > U2(Aj′ , P ) for j′ ̸= j.

Finally, assume that event E3 does not hold. Then no apartment has one player with value
1 for both rooms and the other player with value 0 for both rooms. If E1 does not hold, then
we already have shown that a universal envy-free solution exists. Therefore, assume that E1

holds and E3 does not hold. There are only three possible sets of values for an apartment
under E1 ∩ ¬E3. These possibilities are: 1. both players have value 0 for every room in
that apartment, 2. Exactly one player has value 1 for exactly one room in that apartment,
3. Both players have value 1 for the same room in that apartment. Construct the price
matrix P as follows. For any apartment in case 1, assign price 0.5 to both rooms, and for
any apartment in cases 2 and 3, assign price 1 to the room that has a non-0 value by at least
one of the players. Under these prices, both players will have utility exactly 0 for both rooms
in an apartment satisfying case 3. Similarly, both players will have utility exactly −0.5 for
both rooms of any apartment satisfying case 1. Finally, for any apartment satisfying case 2,
for any maximum welfare assignment both players will have utility 0 for their assigned rooms
and utility at most 0 for the other room. Choose A to be a welfare-maximizing assignment
in every apartment and let j be an apartment which has the highest utility under the partial
solution (A,P ). Then (A,P, j) is a universal envy-free solution. This completes the proof of
the “only if” direction.

Now we will show the “if” direction. We want to show that if all of events E1, E2, E3

hold, then there is no universal envy-free solution. Proof by contradiction. Assume events
E1, E2, E3 all hold and there exists a universal envy-free solution (A,P, j∗). Under event E1,
there is no possible price assignment and choice of apartment where the sum of the player
utilities exceeds 0. Therefore, in apartment j∗, both players have utility at most 0. Suppose
apartment j satisfies event E3, and player 1 has value 1 for both rooms in apartment j. Then
under any prices, player 1 has utility of at least 0.5 for one room in apartment j. Therefore,
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since (A,P, j∗) satisfies universal envy-freeness, player 1 has utility at least 0.5 in apartment
j∗. Since the total utility in apartment j∗ is at most 0 under event E1, this implies that
player 2 has utility at most −0.5 in apartment j∗. However, under event E2, player 2 must
have value 1 for at least one room in some apartment j′. This implies that player 2 has
utility of at least 0 for at least one room in apartment j′ under partial solution (A,P ). Since
(A,P, j∗) satisfies universal envy-freeness, this implies that player 2 must have utility of at
least 0 in apartment j∗. This is a contradiction.

Lemma F.2. Suppose there are m apartments and two players, and fix r ∈ [0, 1]. For every
room rjk in any apartment j, suppose V1(rjk) and V2(rjk) are drawn from a joint distribution
such that the marginal distributions of both V1(rjk) and V2(rjk) are both Bernoulli(1/2) and
Pr (V1(rjk) = V2(rjk)) = r. Note that the values are drawn independently for every room.
Then

Pr(Exists a universal envy-free solution) = 1−
((

r2 + 2

4

)m

− 2

(
1

4

)m

−
(
4r − r2

4

)m

+ 2

(
2r − r2

4

)m)
proof. We will calculate the probability of E1∩E2∩E3 from Lemma F.1. We have four cases
for utilities within an apartment if event E1 holds.

• One player has value 1 for both rooms and the other player has value 0 for both rooms.
There are two symmetric ways to achieve this each with probability p1 =

(
1
4
(1− r)2

)
.

• Every player has value 0 for every room. There is one way to achieve this with p2 =(
1
4
r2
)
.

• Exactly one player has value 1 for exactly one room in the apartment. There are four
symmetric ways to achieve this, each with probability p3 =

(
1
4
(1− r)r

)
.

• Both players have value 1 for the same room and both players have value 0 for the other
room. There are two symmetric ways to achieve this, each with probability p4 =

(
1
4
r2
)
.

Using these four cases, we have that

Pr(E1) = (2p1 + p2 + 4p3 + 2p4)
m =

(
r2 + 2

4

)m

Pr(¬E2 ∩ E1) = 2(p1 + p2 + 2p3)
m − pm2 = 2

(
1

4

)m

−
(
r2

4

)m

Pr(¬E3 ∩ E1) = (p2 + 4p3 + 2p4)
m =

(
4r − r2

4

)m

Pr(¬E2 ∩ ¬E3 ∩ E1) = 2(p2 + 2p3)
m − pm2 = 2

(
2r − r2

4

)m

−
(
r2

4

)m

Putting this all together, by Lemma F.1, we have that

Pr(No universal envy-free solution) = Pr(E1)− Pr(¬E2 ∩ E1)− Pr(¬E3 ∩ E1) + Pr(¬E2 ∩ ¬E3 ∩ E1)

=

(
r2 + 2

4

)m

− 2

(
1

4

)m

−
(
4r − r2

4

)m

+ 2

(
2r − r2

4

)m
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Lemma F.2 exactly characterizes the probability of the existence of a university envy-free
solution in terms of the dependency r between the player values. Interestingly, we note that
for sufficiently large m (for example m = 10), this function is not monotonically decreasing
and has a global minimum for r strictly between 0 and 1.
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G Strong Negotiated Envy-Freeness

G.1 Definition and Main Result

We begin with an illustrative example. Consider the following instance, for which there does
not exist a universal envy-free solution.

Example G.1. There are two players and two apartments. Each apartment has total rent
100 and contains two symmetric rooms. The value of each player for each room is shown
below:

r11 r12
1 100 100
2 1 1

r21 r22
1 0 0
2 99 99

As the rooms are symmetric within each apartment, we can WLOG consider only the assign-
ment A where player 1 is assigned room 1 in both apartments. We can furthermore conclude
that the only price matrix which satisfies individually envy-freeness assigns price 50 to every
room. By Lemma 4.2, only apartment 1 can be a consensus apartment. Therefore, through
simple calculations, we can observe that the only price matrices which satisfy negotiated
envy-freeness are of the form P (A1(1)) = 99 + x, P (A2(1)) = 1 − x, P (A2(1)) = 1 − x,
P (A2(2)) = 99 + x, for x ∈ [0, 1].

In every such solution, player 1 is envious of player 2 in the consensus apartment, and
therefore no solution of this form will satisfy universal envy-freeness. However, we would
like to provide a justification for why this solution is fair even though there exists envy in
the consensus apartment. Consider the sequence of negotiations necessary to move from the
individually envy-free price matrix where P (A1(1)) = P (A1(2)) = P (A2(1)) = P (A2(2)) =
50 to a negotiated envy-free price matrix as characterized above. The negotiations must have
consisted of player 1 increasing their rent in apartment 1 by a total of 49+x and decreasing
their rent in apartment 2 by the same amount. In the negotiation interpretation, player 1 is
willing to negotiate only to reach consensus with player 2. Therefore, player 1 would want to
stop negotiating once player 2 weakly prefers apartment 1. In other words, a “fair” stopping
point for the negotiations would be exactly when consensus is reached. Using this “fair”
stopping point is equivalent to choosing x = 0 in the solution set described above. When
x = 0, the envy of player 1 in the consensus apartment can be explained as the result of
negotiations that were necessary to reach consensus with player 2.

In this example, the envy of player 1 in the consensus apartment is caused by the rent decrease
of player 2 and corresponding rent increase of player 1 in the consensus apartment. Using
this intuition, we can impose a cap on the rent decrease any player can have in the consensus
apartment in any instance. For any player i, apartment j∗, and partial solution (A,P ), define
Si(A,P, j

∗) ⊆ [m] as the set of apartments that player i strictly prefers to apartment j∗ under
the partial solution (A,P ). Equivalently, Si(A,P, j

∗) = {j : Ui(Aj, P ) > Ui(Aj∗ , P )}.

Lemma G.2. Starting from partial solution (A,P ), let {τt}Tt=1 = {(δt, i, it, jt, j∗)}Tt=1 be a
sequence of T negotiations that each decrease player i’s price in apartment j∗ and suppose
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that after the T th negotiation, player i prefers apartment j∗ to any other apartment. Then

min
T,{τt}Tt=1

T∑
t=1

δt =
1

|Si(A,P, j∗)|+ 1
·

∑
j∈Si(A,P,j∗)

(Ui(Aj, P )− Ui(Aj∗ , P )) . (25)

proof. Define ∆ =
∑T

t=1 δ
t. Then the T negotiations will decrease player i’s price in apart-

ment j∗ by a total of ∆, thereby increasing player i’s utility in apartment j∗ by ∆. For
every apartment j ̸= j∗, define ∆j as the amount negotiated with that apartment among
the T negotiations, which implies that

∑
j ̸=j∗ ∆j = ∆. In words, in every apartment j ̸= j∗,

player i’s utility decreases by ∆j. Assume that the T negotiations resulted in player i weakly
preferring apartment j∗ to every other apartment. This implies that, for every j ̸= j∗,

Ui(Aj∗ , P ) + ∆ ≥ Ui(Aj, P )−∆j, (26)

which is equivalent to the condition that ∆ +∆j ≥ Ui(Aj, P )− Ui(Aj∗ , P ) for every j ̸= j∗.
Summing this for all j in Si(A,P, j

∗), we have that

|Si(A,P, j
∗)| ·∆+

∑
j∈Si(A,P,j∗)

∆j ≥
∑

j∈Si(A,P,j∗)

(Ui(Aj, P )− Ui(Aj∗ , P )) .

Using that
∑

j∈Si(A,P,j∗) ∆j ≤ ∆, we conclude that

∆ ≥ 1

|Si(A,P, j∗)|+ 1
·

∑
j∈Si(A,P,j∗)

(Ui(Aj, P )− Ui(Aj∗ , P )) .

We have shown the ≥ direction of the desired result. Now we want to show that there exist
a sequence of negotiations that sum to the desired value of ∆. This is equivalent to finding
values of ∆j that satisfy Equation (26) for all j and sum to the value on the right hand side
of Equation (25). Let

∆j = Ui(Aj, P )− Ui(Aj∗ , P )− 1

|Si(A,P, j∗)|+ 1
·

∑
j∈Si(A,P,j∗)

(Ui(Aj, P )− Ui(Aj∗ , P )) (27)

for every j ∈ S(A,P, j∗) and ∆j = 0 otherwise. Then

∆ =
∑
j=1

∆j =
1

|Si(A,P, j∗)|+ 1
·

∑
j∈Si(A,P,j∗)

(Ui(Aj, P )− Ui(Aj∗ , P ))

as desired. Plugging this expression for ∆ into Equation (27) gives that Equation (26) is
satisfied for all j ∈ Si(A,P, j

∗). Equation (26) is satisfied for all j ̸∈ Si(A,P, j
∗) because by

definition these j satisfy Ui(Aj∗ , P ) ≥ Ui(Aj, P ). Therefore, a sequence of negotiations that
achieves the desired minimum value of ∆ is {(∆t, i, i

t, t, j∗)}mt=1 for any choice of it.

In Definition G.3, we define a stronger version of negotiated envy-freeness such that no
player’s price in the consensus apartment decreases by more than the quantity specified in
Lemma G.2.

40



Definition G.3. A solution (A,P, j∗) satisfies strong negotiated envy-freeness if

1. (A,P, j∗) satisfies consensus.

2. ∃ a price matrix Q such that (A,Q) is individually envy-free and Equations 28 and 29
hold ∀i.

m∑
j=1

P (Aj(i)) =
m∑
j=1

Q(Aj(i)) (28)

P (Aj∗(i)) ≥ Q(Aj∗(i))−
1

|Si(A,Q, j∗)|+ 1
·

∑
j∈Si(A,Q,j∗)

(Ui(Aj(i), Q)− Ui(Aj∗(i), Q)) . (29)

Note that a direct result of a solution satisfying strong negotiated envy-freeness is that within
the consensus apartment j∗, no player is envious of any other player by more than

2
∑
i

 1

|Si(A,Q, j∗)|+ 1
·

∑
j∈Si(A,Q,j∗)

(Ui(Aj(i), Q)− Ui(Aj∗(i), Q))

 .

This upper bound is directly related to how much each player preferred their assignment
in other apartments over their assignment in the consensus apartment in the corresponding
individually envy-free solution.

Strong negotiated envy-free solutions are a subset of negotiated envy-free solutions, with the
advantage that the envy in the consensus apartment of strong negotiated envy-free solutions
has an upper bound that is justifiable by necessary negotiations. As the following theorem
shows, this benefit comes at no cost in terms of our positive results.

Theorem G.4. There always exists a solution (A,P, j∗) that satisfies strong negotiated envy-
freeness. Furthermore, optimizing an objective as in Theorem 4.9 subject to strong negotiated
envy-freeness can be done in time polynomial in both n and m.

Proof sketch. We provide a constructive proof of existence by presenting a rebalancing al-
gorithm. This algorithm starts with a partial solution (A,Q) that is individually envy-free,
and after a sequence of negotiations is guaranteed to terminate with a solution (A∗, P, j∗)
that satisfies strong negotiated envy-freeness. Without loss of generality, assume that apart-
ment 1 is a welfare-maximizing apartment. Informally, the algorithm works as follows. The
algorithm iterates over every apartment j = 1, 2, ...,m, with the goal of maintaining the
invariant that after the jth iteration, apartment 1 is the consensus apartment among the
first j apartments. In the body of the jth iteration, the goal is to “rebalance” the prices
in apartment j so that no player prefers apartment j to apartment 1. Any player i who
currently prefers apartment j to apartment 1 by ∆ will have her rent increased by m−1

m
∆ in

apartment j and her rent decreased evenly in every other apartment by ∆
m
. In order for player

i to have her rent changed in this way, she must negotiate with at least one other player
i′ who will have his rent decreased in apartment j and increased in every other apartment.
Specifically, player i will negotiate with the set T of players that currently prefer apartment
1 to apartment j. The complication in the algorithm comes from deciding how much player
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i can negotiate with each of the players in T , as no player in T can have his rent increase
drastically enough in apartment 1 that he no longer prefers apartment 1 to each of the first
j apartments. The formal algorithm and proof are presented in Appendix G.2.

To see that we can optimize objectives under strong negotiated envy-freeness, note that
Equation (29) can be expressed as a linear constraint in the linear program LP1. Therefore,
optimizing an objective with respect to all strong negotiated envy-free solutions can still be
done in polynomial time as in 4.9 with this additional linear constraint added to the linear
program.

G.2 Proof of Theorem G.4

proof. To prove Theorem G.4, we will show that Algorithm 2 terminates in a polynomial
number of steps, and the solution returned by the algorithm satisfies strong negotiated envy-
freeness.

We will first argue that the algorithm finishes in polynomial time. The outer “for” loop on
Line 2 goes through m iterations. After each iteration of the “while” loop in Line 4, the size
of the set |{i : Ui(Aj(i), P ) > Ui(A1, P )}| decreases by 1, and therefore there are at most n
iterations of this loop per iteration of the outer “for” loop. In each iteration of the “while”
loop on Line 10, the size of the set T decreases by at least 1. Therefore, since the size of the
set T is at most n, the inner while loop has at most n iterations. Therefore, we can conclude
that the entire algorithm runs in polynomial time O(n2m) and always terminates.

After the jth iteration of the “for” loop on Line 2, apartment 1 is weakly preferred among
the first j apartments by all n players, as this is exactly the condition for terminating the
while loop on Line 4. Therefore, after the “for” loop on Line 2 completes m iterations, the
first apartment will be a consensus apartment. The algorithm is also constructed so that
no player’s total utility for their assigned m rooms ever changes. Since (A,Q) begins as an
individually envy-free assignment, this implies that the returned solution (A,P, 1) satisfies
negotiated envy-freeness.

In order to show that Algorithm 2 further satisfies strong negotiated envy-freeness, we need
to show that Equation 29 holds for all i, i.e.

P (A1(i)) ≥ Q(A1(i))−
1

|Si(A,Q, 1)|+ 1
·

∑
j∈Si(A,Q,1)

(Ui(Aj, Q)− Ui(A1, Q)) ∀i

Intuitively, Equation 29 requires that player i’s rent in apartment 1 is not decreased by too
much when moving from price matrix Q to price matrix P . The only part of the algorithm
where P (A1(i)) can decrease is in Line 8, and such a decrease only occurs in round j if player
i strictly preferred apartment j to apartment 1 under (A,Q). In this case, player i will have

their rent in apartment 1 decrease by
Ui(Aj ,P )−Ui(A1,P )

m
=

Ui(Aj ,Q)−Ui(A1,Q)

m
. This equality is

because until Line 8 is reached for apartment j and player i, we have Ui(A1, P ) = Ui(A1, Q)
and Ui(Aj, P ) = Ui(Aj, Q).
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Algorithm 2 [Strong Negotiated Envy-Freeness]

Require: (A,Q) is individually envy-free.
1: P ← Q
2: for j ← 1 to m do
3: ▷ Negotiate until every player prefers apartment 1 to apartment j
4: while |{i : Ui(Aj(i), P ) > Ui(A1, P )}| > 0 do
5: i← min{i : Ui(Aj(i), P ) > Ui(A1, P )}
6: ∆ = Ui(Aj, P )− Ui(A1, P )

7: P (Aj(i)) = P (Aj(i)) +
(m−1)∆

m

8: ∀j′ ̸= j : P (Aj′(i)) = P (Aj′(i))− ∆
m

9: ▷ Redistribute the price changes among the other players evenly
10: while ∆ > 0 do
11: T ← {i : Ui(Aj(i), P ) < Ui(A1, P )}
12: ϵ← mini′∈T |Ui(A1, P )− Ui(Aj(i), P )|
13: if ϵ ≥ ∆

|T | then

14: for i′ ∈ T do
15: P (Aj(i

′)) = P (Aj(i
′))− (m−1)∆

m|T |
16: ∀j′ ̸= j : P (Aj′(i

′)) = P (Aj′(i
′)) + ∆

m|T |
17: end for
18: ∆ = 0
19: else
20: for i′ ∈ T do
21: P (Aj(i

′)) = P (Aj(i
′))− (m−1)ϵ

m

22: ∀j′ ̸= j : P (Aj′(i
′)) = P (Aj′(i

′)) + ϵ
m

23: end for
24: ∆ = ∆− |T |ϵ
25: end if
26: end while
27: end while
28: end for
29: return (A,P, 1)

Therefore, we can conclude that

P (A1(i)) ≥ Q(A1(i))−
∑

j:Ui(Aj ,Q)>Ui(A1,Q)

Ui(Aj, Q)− Ui(A1, Q)

m

= Q(A1(i))−
1

m

∑
j∈Si(A,Q,1)

Ui(Aj, Q)− Ui(A1, Q)

≥ Q(A1(i))−
1

|Si(A,Q, 1)|+ 1

∑
j∈Si(A,Q,1)

Ui(Aj, Q)− Ui(A1, Q)

where the last inequality is because m ≥ |Si(A,Q, 1)|+ 1.
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